Nonlife insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring


 Blake Byrd
 3 years ago
 Views:
Transcription
1 Nolife isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig
2 Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy be modelled? Poisso with determiistic muh Poisso with stochastic muh Poisso regressio
3 Isurace works because risk ca be diversified away through size The core idea of isurace is risk spread o may uits Assume that policy risks X1,,XJ are stochastically idepedet Mea ad variace for the portfolio total are the E ( ) 1... J ad var( ) 1... ad E( X ) ad 1 (... J ) J sd( X ). Itroduce 2 1 ad ( 1... J 1 J which is average expectatio ad variace. The sd( ) / E( ) J ad sd( ) J so that E( ) J The coefficiet of variatio approaches 0 as J grows large (law of large umbers) Isurace risk ca be diversified away through size Isurace portfolios are still ot riskfree because of ucertaity i uderlyig models risks may be depedet J )
4 Risk premium expresses cost per policy ad is importat i pricig Risk premium is defied as P(Evet)*Cosequece of Evet More formally Risk premium P(evet)*Cosequece of Claim frequecy Number of claims Total claim amout * Number of risk years Number of claims Total claim amout Number of risk years *Claim severity evet From above we see that risk premium expresses cost per policy Good price models rely o soud uderstadig of the risk premium We start by modellig claim frequecy
5 The world of Poisso (Chapter 8.2) Number of claims Poisso Some otios Examples Radom itesities I k1 I k I k+1 t 0 =0 t k2 t k1 t k t k+1 t k =T What is rare ca be described mathematically by cuttig a give time period T ito small pieces of equal legth h=t/ O short itervals the chace of more tha oe icidet is remote Assumig o more tha 1 evet per iterval the cout for the etire period is N=I I,where I is either 0 or 1 for =1,..., If p=pr(i k =1) is equal for all k ad evets are idepedet, this is a ordiary Beroulli series Pr( N )! p!( )! (1 p), for 0,1,..., Assume that p is proportioal to h ad set is a itesity which applies per time uit p h where 5
6 The world of Poisso 6 T T T T T p p N ) ( 1) (! ) ( 1 )!!(! ) (1 )!!(! ) Pr( 1 1 T e T e T N! ) ( ) Pr( I the limit N is Poisso distributed with parameter T Some otios Examples Radom itesities Poisso
7 The world of Poisso Poisso Some otios Examples Radom itesities It follows that the portfolio umber of claims N is Poisso distributed with parameter ( J ) T JT, where (... J ) / J Whe claim itesities vary over the portfolio, oly their average couts 7
8 Poisso Radom itesities (Chapter 8.3) Some otios Examples Radom itesities How varies over the portfolio ca partially be described by observables such as age or sex of the idividual (treated i Chapter 8.4) There are however factors that have impact o the risk which the compay ca t kow much about Driver ability, persoal risk averseess, This radomeess ca be maaged by makig a stochastic variable 1 2 N ~ Poisso ( 2 2 T ) N ~ Poisso ( 1 1 T )
9 Poisso Radom itesities (Chapter 8.3) Some otios Examples Radom itesities The models are coditioal oes of the form N ~ Poisso ( T ) ad Ν ~ Poisso ( JT ) Let E( ) Policy level ad sd( ) ad recall Portfolio level that E( N ) var( N ) T which by double rules i Sectio 6.3 imply E 2 2 ( N) E( T ) T ad var( N) E( T ) var( T ) T T Now E(N)<var(N) ad N is o loger Poisso distributed 9
10 The fair price The Poisso regressio model (Sectio 8.4) The model A example Why regressio? The idea is to attribute variatio i to variatios i a set of observable variables x1,...,xv. Poisso regresso makes use of relatioships of the form log() log( ) b b x... b x v v Why ad ot itself? The expected umber of claims is oegative, where as the predictor o the right of (1.12) ca be aythig o the real lie It makes more sese to trasform so that the left ad right side of (1.12) are more i lie with each other. Historical data are of the followig form (1.12) Repetitio of GLM 1 T1 x11...x1x 2 T2 x21...x2x T x1...xv Claims exposure covariates The coefficiets b0,...,bv are usually determied by likelihood estimatio 10
11 The fair price The model (Sectio 8.4) The model A example Why regressio? I likelihood estimatio it is assumed that is Poisso distributed where is tied to covariates x1,...,xv as i (1.12). The desity fuctio of is the or ( T ) f ( ) exp( T )! T Repetitio of GLM log( f ( )) log( ) log( T ) log(!) T log(f()) above is to be added over all for the likehood fuctio L(b0,...,bv). Skip the middle terms T ad log (!) sice they are costats i this cotext. The the likelihood criterio becomes L ( b0,..., bv ) { log( ) T} where log( ) b0 b1 x b Numerical software is used to optimize (1.13). McCullagh ad Nelder (1989) proved that L(b0,...,bv) is a covex surface with a sigle maximum Therefore optimizatio is straight forward. x v (1.13) 11
12 Mai steps How to build a model How to evaluate a model How to use a model
13 How to build a regressio model Select detail level Variable selectio Groupig of variables Remove variables that are strogly correlated Model importat iteractios
14 Cliet Select detail level Policies ad claims Poisso Some otios Examples Radom itesities Policy Isurable obect (risk) Claim Isurace cover Cover elemet /claim type Step 1 i model buildig: Select detail level
15 PP: Select detail level PP: Review potetial risk drivers Groupig of variables PP: Select groups for each risk driver PP: Select large claims strategy PP: idetify potetial iteractios PP: costruct fial model Price assessmet 250 Number of water claims buildig age
16 PP: Select detail level PP: Review potetial risk drivers Groupig of variables PP: Select groups for each risk driver PP: Select large claims strategy PP: idetify potetial iteractios PP: costruct fial model Price assessmet Exposure i risk years buildig age
17 PP: Select detail level PP: Review potetial risk drivers Groupig of variables PP: Select groups for each risk driver PP: Select large claims strategy PP: idetify potetial iteractios PP: costruct fial model Price assessmet 12,00 Claim frequecy water claims buildig age 10,00 8,00 6,00 4,00 2,00 0,00
18 PP: Select detail level PP: Review potetial risk drivers Model importat iteractios PP: Select groups for each risk driver PP: Select large claims strategy PP: idetify potetial iteractios PP: costruct fial model Price assessmet Defiitio: Cosider a regressio model with two explaatory variables A ad B ad a respose Y. If the effect of A (o Y) depeds o the level of B, we say that there is a iteractio betwee A ad B Example (house ower): The risk premium of ew buildigs are lower tha the risk premium of old buildigs The risk premium of youg policy holders is higher tha the risk premium of old policy holders The risk premium of youg policy holders i old buildigs is particularly high The there is a iteractio betwee buildig age ad policy holder age
19 PP: Select detail level PP: Review potetial risk drivers Model importat iteractios PP: Select groups for each risk driver PP: Select large claims strategy PP: idetify potetial iteractios PP: costruct fial model Price assessmet
20 How to evaluate a regressio model QQplot Akaike Iformatio Criterio (AIC) Scaled deviace Cross validatio Type 3 aalysis Results iterpretatios
21 QQplot The quatiles of the model are plotted agaist the quatiles from a stadard Normal distributio If the model is good, the poit i the QQ plot will lie approximately o the lie y=x
22 AIC Akaike Iformatio criterio is a measure of goodess of fit that balaces model fit agaist model simplicity AIC has the form AIC=2LL+2p where LL is the log likelihood evaluated at the value fo the estimated parameters p is the umber of parameters estimated i the model AIC is used to compare model alteratives m1 ad m2 If AIC of m1 is less tha AIC of m2 the m1 is better tha m2
23 Scaled deviace Scaled deviace = 2(l(y,y)l(y,muh)) where l(y,y) is the maximum achievable log likelihood ad l(y,muh) is the log likelihood at the maximum estimates of the regressio parameters Scaled deviace is approximately distributed as a Chi Square radom variables with p degrees of freedom Scaled deviace should be close to 1 if the model is good
24 Cross validatio Estimatio Validatio Model is calibrated o for example 50% of the portfolio Model is the validated o the remaiig 50% of the portfolio For a good model that predicts well there should ot be too much differece betwee the modelled umber of claims i a group ad the observed umber of claims i the same group
25 Type 3 aalysis Does the degree of variatio explaied by the model icrease sigificatly by icludig the relevat explaatory variable i the model? Type 3 aalysis tests the fit of the model with ad without the relevat explaatory variable A low p value idicates that the relevat explaatory variable improves the model sigificatly
26 Results iterpretatio Is the itercept reasoable? Are the parameter estimates reasoable compared to the results of the oe way aalyses?
27 How to use a regressio model Smoothig of estimates
1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationPROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUSMALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationInstitute of Actuaries of India Subject CT1 Financial Mathematics
Istitute of Actuaries of Idia Subject CT1 Fiacial Mathematics For 2014 Examiatios Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig i
More informationOverview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More information, a Wishart distribution with n 1 degrees of freedom and scale matrix.
UMEÅ UNIVERSITET Matematiskstatistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 00409 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationSubject CT5 Contingencies Core Technical Syllabus
Subject CT5 Cotigecies Core Techical Syllabus for the 2015 exams 1 Jue 2014 Aim The aim of the Cotigecies subject is to provide a groudig i the mathematical techiques which ca be used to model ad value
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationNow here is the important step
LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"
More informationNonlife insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring
Nolife isurace matematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Overview Nolife isurace from a fiacial perspective: for a premium a isurace compay commits itself to pay a sum if
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationMaximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
More information*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.
Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationCONTROL CHART BASED ON A MULTIPLICATIVEBINOMIAL DISTRIBUTION
www.arpapress.com/volumes/vol8issue2/ijrras_8_2_04.pdf CONTROL CHART BASED ON A MULTIPLICATIVEBINOMIAL DISTRIBUTION Elsayed A. E. Habib Departmet of Statistics ad Mathematics, Faculty of Commerce, Beha
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationPresent Values, Investment Returns and Discount Rates
Preset Values, Ivestmet Returs ad Discout Rates Dimitry Midli, ASA, MAAA, PhD Presidet CDI Advisors LLC dmidli@cdiadvisors.com May 2, 203 Copyright 20, CDI Advisors LLC The cocept of preset value lies
More informationLECTURE 13: Crossvalidation
LECTURE 3: Crossvalidatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Threeway data partitioi Itroductio to Patter Aalysis Ricardo GutierrezOsua Texas A&M
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More information3 Basic Definitions of Probability Theory
3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio
More informationInstallment Joint Life Insurance Actuarial Models with the Stochastic Interest Rate
Iteratioal Coferece o Maagemet Sciece ad Maagemet Iovatio (MSMI 4) Istallmet Joit Life Isurace ctuarial Models with the Stochastic Iterest Rate NiaNia JI a,*, Yue LI, DogHui WNG College of Sciece, Harbi
More informationMEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)
MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationThe analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection
The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity
More informationStatistical inference: example 1. Inferential Statistics
Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either
More informationExploratory Data Analysis
1 Exploratory Data Aalysis Exploratory data aalysis is ofte the rst step i a statistical aalysis, for it helps uderstadig the mai features of the particular sample that a aalyst is usig. Itelliget descriptios
More informationTHE TWOVARIABLE LINEAR REGRESSION MODEL
THE TWOVARIABLE LINEAR REGRESSION MODEL Herma J. Bieres Pesylvaia State Uiversity April 30, 202. Itroductio Suppose you are a ecoomics or busiess maor i a college close to the beach i the souther part
More informationEstimating Probability Distributions by Observing Betting Practices
5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,
More informationChapter 7  Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:
Chapter 7  Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationInference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval
Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT  Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio
More informationBiology 171L Environment and Ecology Lab Lab 2: Descriptive Statistics, Presenting Data and Graphing Relationships
Biology 171L Eviromet ad Ecology Lab Lab : Descriptive Statistics, Presetig Data ad Graphig Relatioships Itroductio Log lists of data are ofte ot very useful for idetifyig geeral treds i the data or the
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationOMG! Excessive Texting Tied to Risky Teen Behaviors
BUSIESS WEEK: EXECUTIVE EALT ovember 09, 2010 OMG! Excessive Textig Tied to Risky Tee Behaviors Kids who sed more tha 120 a day more likely to try drugs, alcohol ad sex, researchers fid TUESDAY, ov. 9
More informationW. Sandmann, O. Bober University of Bamberg, Germany
STOCHASTIC MODELS FOR INTERMITTENT DEMANDS FORECASTING AND STOCK CONTROL W. Sadma, O. Bober Uiversity of Bamberg, Germay Correspodig author: W. Sadma Uiversity of Bamberg, Dep. Iformatio Systems ad Applied
More informationThe Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,
More informationTO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC
TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationSampling Distribution And Central Limit Theorem
() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,
More informationA Mathematical Perspective on Gambling
A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal
More informationNotes on exponential generating functions and structures.
Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a elemet set, (2) to fid for each the
More informationSPC for Software Reliability: Imperfect Software Debugging Model
IJCSI Iteratioal Joural of Computer Sciece Issues, Vol. 8, Issue 3, o., May 0 ISS (Olie: 694084 www.ijcsi.org 9 SPC for Software Reliability: Imperfect Software Debuggig Model Dr. Satya Prasad Ravi,.Supriya
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationTHE ROLE OF EXPORTS IN ECONOMIC GROWTH WITH REFERENCE TO ETHIOPIAN COUNTRY
 THE ROLE OF EXPORTS IN ECONOMIC GROWTH WITH REFERENCE TO ETHIOPIAN COUNTRY BY: FAYE ENSERMU CHEMEDA EthioItalia Cooperatio ArsiBale Rural developmet Project Paper Prepared for the Coferece o Aual Meetig
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationBond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond
What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixedicome security that typically pays periodic coupo paymets, ad a pricipal
More informationBasic Data Analysis Principles. Acknowledgments
CEB  Basic Data Aalysis Priciples Basic Data Aalysis Priciples What to do oce you get the data Whe we reaso about quatitative evidece, certai methods for displayig ad aalyzig data are better tha others.
More informationVladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
More informationLecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)
18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the BruMikowski iequality for boxes. Today we ll go over the
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More information15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011
15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes highdefiitio
More information7. Concepts in Probability, Statistics and Stochastic Modelling
7. Cocepts i Probability, Statistics ad Stochastic Modellig 1. Itroductio 169. Probability Cocepts ad Methods 170.1. Radom Variables ad Distributios 170.. Expectatio 173.3. Quatiles, Momets ad Their Estimators
More informationFACULTEIT ECONOMIE EN BEDRIJFSKUNDE. TWEEKERKENSTRAAT 2 B9000 GENT Tel. : 32  (0)9 264.34.61 Fax. : 32  (0)9 264.35.
FACULTEIT ECOOMIE E BEDRIJFSKUDE TWEEKERKESTRAAT 2 B9000 GET Tel. : 3209 264.34.6 Fax. : 3209 264.35.92 WORKIG PAPER Pricig Decisios ad Isider Tradig i Horse Bettig Markets Adi Schytzer a, Vasiliki
More informationNormal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
More informationGCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea  add up all
More informationODBC. Getting Started With Sage Timberline Office ODBC
ODBC Gettig Started With Sage Timberlie Office ODBC NOTICE This documet ad the Sage Timberlie Office software may be used oly i accordace with the accompayig Sage Timberlie Office Ed User Licese Agreemet.
More informationSTATISTICAL METHODS FOR BUSINESS
STATISTICAL METHODS FOR BUSINESS UNIT 7: INFERENTIAL TOOLS. DISTRIBUTIONS ASSOCIATED WITH SAMPLING 7.1. Distributios associated with the samplig process. 7.2. Iferetial processes ad relevat distributios.
More informationHCL Dynamic Spiking Protocol
ELI LILLY AND COMPANY TIPPECANOE LABORATORIES LAFAYETTE, IN Revisio 2.0 TABLE OF CONTENTS REVISION HISTORY... 2. REVISION.0... 2.2 REVISION 2.0... 2 2 OVERVIEW... 3 3 DEFINITIONS... 5 4 EQUIPMENT... 7
More informationConfidence Intervals
Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more
More informationThis chapter considers the effect of managerial compensation on the desired
Chapter 4 THE EFFECT OF MANAGERIAL COMPENSATION ON OPTIMAL PRODUCTION AND HEDGING WITH FORWARDS AND PUTS 4.1 INTRODUCTION This chapter cosiders the effect of maagerial compesatio o the desired productio
More informationAmendments to employer debt Regulations
March 2008 Pesios Legal Alert Amedmets to employer debt Regulatios The Govermet has at last issued Regulatios which will amed the law as to employer debts uder s75 Pesios Act 1995. The amedig Regulatios
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationResearch Method (I) Knowledge on Sampling (Simple Random Sampling)
Research Method (I) Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationFlood Emergency Response Plan
Flood Emergecy Respose Pla This reprit is made available for iformatioal purposes oly i support of the isurace relatioship betwee FM Global ad its cliets. This iformatio does ot chage or supplemet policy
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationIntroducing Your New Wells Fargo Trust and Investment Statement. Your Account Information Simply Stated.
Itroducig Your New Wells Fargo Trust ad Ivestmet Statemet. Your Accout Iformatio Simply Stated. We are pleased to itroduce your ew easytoread statemet. It provides a overview of your accout ad a complete
More informationLogLogistic Software Reliability Growth Model
LogLogistic Software Reliability Growth Model Swapa S. Gokhale ad Kishor S. Trivedi 2y Bours College of Egg. CACC, Dept. of ECE Uiversity of Califoria Duke Uiversity Riverside, CA 9252 Durham, NC 277829
More informationUniversal coding for classes of sources
Coexios module: m46228 Uiversal codig for classes of sources Dever Greee This work is produced by The Coexios Project ad licesed uder the Creative Commos Attributio Licese We have discussed several parametric
More informationPage 1. Real Options for Engineering Systems. What are we up to? Today s agenda. J1: Real Options for Engineering Systems. Richard de Neufville
Real Optios for Egieerig Systems J: Real Optios for Egieerig Systems By (MIT) Stefa Scholtes (CU) Course website: http://msl.mit.edu/cmi/ardet_2002 Stefa Scholtes Judge Istitute of Maagemet, CU Slide What
More informationForecasting. Forecasting Application. Practical Forecasting. Chapter 7 OVERVIEW KEY CONCEPTS. Chapter 7. Chapter 7
Forecastig Chapter 7 Chapter 7 OVERVIEW Forecastig Applicatios Qualitative Aalysis Tred Aalysis ad Projectio Busiess Cycle Expoetial Smoothig Ecoometric Forecastig Judgig Forecast Reliability Choosig the
More informationOnesample test of proportions
Oesample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationAnalyzing Longitudinal Data from Complex Surveys Using SUDAAN
Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical
More informationA Review and Comparison of Methods for Detecting Outliers in Univariate Data Sets
A Review ad Compariso of Methods for Detectig Outliers i Uivariate Data Sets by Sogwo Seo BS, Kyughee Uiversity, Submitted to the Graduate Faculty of Graduate School of Public Health i partial fulfillmet
More informationValuing Firms in Distress
Valuig Firms i Distress Aswath Damodara http://www.damodara.com Aswath Damodara 1 The Goig Cocer Assumptio Traditioal valuatio techiques are built o the assumptio of a goig cocer, I.e., a firm that has
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationA Guide to the Pricing Conventions of SFE Interest Rate Products
A Guide to the Pricig Covetios of SFE Iterest Rate Products SFE 30 Day Iterbak Cash Rate Futures Physical 90 Day Bak Bills SFE 90 Day Bak Bill Futures SFE 90 Day Bak Bill Futures Tick Value Calculatios
More informationUsing Four Types Of Notches For Comparison Between Chezy s Constant(C) And Manning s Constant (N)
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH OLUME, ISSUE, OCTOBER ISSN  Usig Four Types Of Notches For Compariso Betwee Chezy s Costat(C) Ad Maig s Costat (N) Joyce Edwi Bategeleza, Deepak
More informationOn the Periodicity of Timeseries Network and Service Metrics
O the Periodicity of Timeseries Network ad Service Metrics Joseph T. Lizier ad Terry J. Dawso Telstra Research Laboratories Sydey, NSW, Australia {oseph.lizier, terry..dawso}@team.telstra.com Abstract
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More informationBest of security and convenience
Get More with Additioal Cardholders. Importat iformatio. Add a coapplicat or authorized user to your accout ad you ca take advatage of the followig beefits: RBC Royal Bak Visa Customer Service Cosolidate
More informationTrading the randomness  Designing an optimal trading strategy under a drifted random walk price model
Tradig the radomess  Desigig a optimal tradig strategy uder a drifted radom walk price model Yuao Wu Math 20 Project Paper Professor Zachary Hamaker Abstract: I this paper the author iteds to explore
More informationUnit 8: Inference for Proportions. Chapters 8 & 9 in IPS
Uit 8: Iferece for Proortios Chaters 8 & 9 i IPS Lecture Outlie Iferece for a Proortio (oe samle) Iferece for Two Proortios (two samles) Cotigecy Tables ad the χ test Iferece for Proortios IPS, Chater
More informationEnhance Your Financial Legacy Variable Annuity Death Benefits from Pacific Life
Ehace Your Fiacial Legacy Variable Auity Death Beefits from Pacific Life 7/15 2017215B As You Pla for Retiremet, Protect Your Loved Oes A Pacific Life variable auity ca offer three death beefits that
More information