PSYCHOLOGICAL STATISTICS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "PSYCHOLOGICAL STATISTICS"

Transcription

1 UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics which helps i iferrig Sample value b) Populatio value c) Both ( ad (b). Which of the followig are fuctio(s) of iferetial statistics? Estimatio b) Testig of hypothesis c) Both ( ad (b) 3. Which of the followig is true about iferetial statistics? Help i gettig a idea about sample value from populatio value. b) Help i gettig a idea about populatio value from sample value. c) Help i gettig data from sample. 4. Parameter i iferetial statistics refers to Sample value b) Data c) Populatio value d) Variable ame 5. A statistic i iferetial statistics is related to which of the followig? Sample b) Populatio c) Both ( ad (b) 6. Estimatio is the process of Formulatig some hypothesis about the populatio b) Iferrig statistic from parameter c) Testig some hypothesis about the populatio d) Iferrig parameter from statistic 7. Which oe of the followig statemets is true about hypothesis? It is a assumptio about populatio value b) There are differet types of hypothesis c) Hypothesis testig is a fuctio of iferetial statistics Psychological Statistics Page

2 8. Which of the followig is a ull hypothesis? There is sigificat relatioship betwee the variable X ad Y. b) There is o geder differece i the mea scores of mechaical aptitude. c) There is sigificat effect of itelligece o achievemet. 9. The opposite of ull hypothesis is kow as Directioal hypothesis b) Statistical hypothesis c) Alterate hypothesis d) Composite hypothesis 0. Which of the followig is a alterate hypothesis? There is sigificat geder differece i the mea scores of mechaical aptitude. b) There is o sigificat relatioship betwee achievemet ad previous kowledge. c) There is o sigificat effect of itelligece o creativity.. Some statemet or assertio above a populatio is kow as Uique statemet b) a stadard statemet c) Stadard hypothesis d) a statistical hypothesis. A hypothesis i which there is o idicatio of directio of chage or relatio is called a directioal hypothesis b) o directioal hypothesis c) alterate hypothesis 3. Tests used to test o directioal hypothesis are Oe tailed tests b) Two-tailed tests c) Three tailed tests d) Four tailed tests 4. For testig H 0 : = agaist H 0 : we have the Oe tailed test b) Two-tailed test c) Three tailed test 5. The alterate hypothesis for the ull hypothesis H 0 : < is H : > b) H : = c) H : < d) H : > 6. For testig which of the followig hypothesis two-tailed test is used? H 0 : < agaist H : > b) H 0 : > agaist H : < c) H 0 : = agaist H : Psychological Statistics Page

3 7. For testig which of the followig hypothesis oe tailed test is used? o directioal hypothesis b) directioal hypothesis c) alterate hypothesis d) composite hypothesis 8. For testig which of the followig hypothesis oe tailed test is used? There is o sigificat geder differece i the mea scores of axiety. b) There is sigificat relatioship betwee variables X ad Y. c) Experimetal group has a higher mea Y score tha the cotrol group after the treatmet. d) There is o sigificat differece i mea Y scores of cotrol ad experimetal groups after the treatmet. 9. Statistical tests are desiged to test the Alterate hypothesis b) Statistical hypothesis c) Composite hypothesis d) Null hypothesis 0. Which of the followig hypothesis are accepted or rejected? alterate hypothesis b) statistical hypothesis c) composite hypothesis d) ull hypothesis. Hypothesis testig deals with Predictio of populatio values based o sample values b) predictio of sample values based o populatio values c) Both ( ad (b). Which of the followig is type I error? The error of acceptig H 0 whe H 0 is true. b) The error of rejectig H 0 whe H 0 is false c) The error of rejectig H 0 whe H 0 is true d) The error of acceptig H 0 whe H 0 is false. 3. Which of the followig is type II errors? The error of acceptig H 0 whe H 0 is true b) The error of rejectig H 0 whe H 0 is false c) The error of acceptig H 0 whe H 0 is false d) The errors of rejectig H 0 whe H 0 is true 4. The probability of type I error is Power of the test b) Statistical sigificace c) Level of sigificace Psychological Statistics Page 3

4 5. The probability of type II error is deoted by b) c) d) 6. Which of the followig statemets is icorrect? As probability of Type I error icreases, probability of type II error also icreases. b) As the probability of Type I error decreases, the probability of type II error icreases. c) As the probability of Type II error decreases, the probability of Type I error icreases. 7. Samplig distributios are distributios formed by Populatio values b) Sample values c) Parameters 8. Samplig distributio of mea values is distributio formed by Populatio mea values b) Sample correlatio values c) Sample mea values d) Populatio correlatio values 9. Which of the followig statemets is true about samplig distributios? Distributios formed by sample values b) Formed from a populatio distributio kow or assumed. c) A umber of samplig distributios is possible from a populatio. 30. Which of the followig is stadard error? Mea of samplig distributio b) Stadard deviatio of populatio distributio c) Mea of populatio distributio d) Stadard deviatio of sample distributio. 3. Which oe of the followig idicates stadard error of samplig distributio of mea? b) c) d) N N N N 3. Which of the followig are true about stadard error? Gives a idea about ureliability of the sample b) Gives a idea about cofidece limits of parameter values c) Both ( ad (b) 33. Which of the followig is a statistically large sample? 9 b) 45 c) 6 Psychological Statistics Page 4

5 34. The term statistical sigificace refers to How importat the data are for research o the topic b) The coclusio that there are o reasoable alterative explaatio c) The represetativeess of the sample d) The iferece that the observed effects are ulikely to be due to chace. 35. If we take level of sigificace as 0.0 the the cofidece limit will be % b) 0% c) 99% d) 00% 36. Critical ratio for large idepedet sample is give by the formula z = c) z = Mea Stadard Deviatio Differece betwee Meas SE of the differece b) z = Differece betwee Meas Stadard Error 37. Z =.03 while testig H 0 : = agaist H :. The which of the followig is true? H 0 is rejected at 0.05 level b) H 0 is accepted at 0.05 level c) Both ( ad (b) 38. Followig data is related to emotioal itelligece of two groups A ad B. Mea SD N Group A Group B The the critical ratio is give by.53 b).98 c) The critical ratio is foud to be.63 while testig H 0 : = agaist H :. The which of the followig statemets is true? H 0 is accepted at 0.05 level b) H 0 is rejected at 0.05 level c) H 0 is accepted at 0.0 level d) H 0 is rejected at 0.0 level 40. While dealig with small samples, preferece is give to estimatig the populatio value b) testig a give hypothesis c) both ( ad (b) d) oe of these 4. The critical regio is the regio of rejectio of H 0 whe H 0 is false b) acceptace of H 0 whe H 0 is false c) rejectio of H 0 whe H 0 is true 4. Studet was the pe ame of Ramauja b) Gosset c) Garrette Psychological Statistics Page 5

6 43. Uder which of the followig circumstaces t distributio is used? Sample size less tha or equal to 30 b) Populatio stadard deviatio is ukow c) Both ( ad (b) 44. Formula for calculatig t statistic to test the sigificace of mea is give by X μ X μ X μ X μ b) c) c) S S S S 45. I the formula for calculatig t statistic, the letter S stads for X X X X X X b) c) d) Which of the followig are the properties of t distributio? rages from mius ifiity to plus ifiity b) t distributio does ot vary with c) Both ( ad (b) 47. Which of the followig is true about t distributio? Symmetrical b) Negatively skewed b) Positively skewed c) Noe of these 48. As sample size icreases the t distributio approaches a X X Biomial distributio b) Gamma distributio c) Poisso distributio d) Normal distributio 49. The degrees of freedom for which the tabled t value is foud for test of sigificace of mea is give by b) c) 50. If the calculated t value is less tha t 0.05 (tabled value of t) the which of the followig coclusios ca be made about the hypothesis H 0 : X μ, where is populatio mea. H 0 is accepted at 0.0 level b) H 0 is accepted at 0.05 level b) H 0 is rejected at 0.05 level c) Noe of these 5. To test whether two meas (Small idepedet samples) differ sigificatly, t ca be calculated usig the formula c) X X X X X X X X b) X X X X X X - X X X X Psychological Statistics Page 6

7 5. The degrees of freedom for testig sigificace of differece betwee two meas for small idepedet samples is + b) + - c) If the samples are depedet, the differece betwee mea ca be tested usig the formula. d t = N s d b) t = s c) d s d d) s 54. Which of the followig is the t value for the followig data (small idepedet samples) X =, X =, =5, =7, s =., s = b) 0.35 c) 0.89 d) To test the sigificace of correlatio coefficiet, which of the followig formula is used? r t = r r c) r r b) r r d) r 56. Degrees of freedom for testig the sigificace of correlatio coefficiet is calculated usig the formula b) - c) -3 d) Normal distributio was origially ivestigated by Gauss b) Laplace c) DeMoivre 58. Normal distributio was defied specially by Laplace b) Gauss c) DeMoivre 59. Which of the followig is sigificace of ormal distributio i statistical aalysis? May of the depedet variables are commoly assumed to be ormally distributed b) May of the statistical techiques i iferetial statistics assumes ormality of variable. c) The theoretical distributio of the hypothetical set of sample meas is approximately ormal. 60. Which of the followig is icorrect about ormal distributio? It is symmetrical with respect to the ordiate at mea. b) Mea, Media ad Mode coicide c) Ordiate is miimum at the mea Psychological Statistics Page 7

8 6. A ormal curve shows. a distributio of metally ormal persos. populatio distributed equally i various parts 3. greater percetage of cases distributed about the mea score 4. lesser percetage of cases belogig to extreme scores Oly ad are true b) Oly 3 ad 4 are true c) all are true d) all are false 6. A mesokurtic distributio curve is a ormal probability curve b) bell shaped curve c) both ( ad (b) 63. A leptokurtic distributio shows A bell shaped curve b) Skewess c) Steep rise i the middle d) Upto some extet it shows all of these 64. Mathematically a ormal distributio is defied as y = c) y = e σ π e σ π x μ x μ σ b) y = d) y = e π Psychological Statistics Page 8 x μ σ e σ π xμ 65. The area uder the ormal curve betwee the ordiates x = - ad x = + is 68.6% b) 95.44% c) 34.3% 66. The area uder the ormal curve betwee the ordiates x = - ad x = + is 68.6% b) 95.44% c) 99% 67. The area uder the ormal curve betwee the ordiates x = - 3 ad x = +3 is 68.6% b) 95.44% c) 99.73% d) 90% 68. The ormal curve is symmetric with respect to x = b) x = c) x = σ σ 69. Exact cofidece limit whe the populatio is ormal, for mea is σ 95% cofidece limit = x +.96 σ b) 99% cofidece limit = = x +.58 c) a ad b both

9 70. Which of the followig statemet is true about ormal curve? The curve exteds from - to + b) Good model for may aturally occurrig distributios. c) Fifty percet of the scores are below the mea ad fifty percet above it. 7. Which of the followig is applicatio of ormal curve? Used to covert a raw score ito stadard score b) Useful i calculatig percetile rak of scores c) For ormalizig a give frequecy distributio 7. The term skewess refers to bulgiess b) lack of symmetry c) symmetrical d) ormal 73. Measure of skewess gives Directio of skewess b) Extet of skewess c) Both ( ad (b) 74. Which of the followig is true about skewed distributio? It is symmetrical b) Mea, media ad mode coicide c) Similar to ormal distributio d) The more mea moves away from mode, larger skewess 75. Which of the followig statemets is true about skewed distributio? Either positively skewed or egatively skewed. b) I positively skewed distributio mea is maximum ad mode is miimum. c) I egatively skewed distributio mode is maximum ad mea is miimum. 76. Which of the followig statemets is false? I a positively skewed distributio there is excess tail o right had side b) I a egatively skewed distributio tail more exteded i the left had side. c) I a skewed distributio media lies betwee mea ad mode. 77. Which of the followig is a measure of skewess? Mea Mode Stadard deviatio b) 3 Q Q Q Q c) Both ( ad (b) 78. Which of the followig statemets is true about measures of skewess? No limit for value i Karl Pearso s method b) Value rages from - to + i Bowley s method c) Value of zero idicates the curve is symmetrical Q 3 Psychological Statistics Page 9

10 79. Which of the followig statemets is true about platykurtic curve as compared to ormal curve? Flatter b) broader cetral positio c) Lower tails 80. Which of the followig is a measure of kurtosis? Quartile Deviatio P75 P5 Stadard Deviatio P75 P5 b) c) d) P 90 P 0 4 P 90 P A distributio is leptokurtic if the calculated value of kurtosis i terms of percetile is Equal to 0.63 b) Less tha 0.63 c) Greater tha A distributio is platykurtic if the calculated value of kurtosis i terms of percetile is equal to zero b) less tha 0.63 c) greater tha 0.63 d) equal to ANOVA test is based o Variace ratio b) Probability ratio c) radom sample 84. ANOVA is used whe There are more tha two groups b) There is oly two groups to be compared. c) Sigificat differece betwee two meas is to be foud 85. Which of the followig test is used i ANOVA t-test b) z-test c) F-test 86. I ANOVA, F-value is calculated usig which of the followig formula? Variace withi groups Variace betwee groups b) Variace betwee groups Variace withi groups c) Both ( ad (b) 87. The assumptio basic to Aalysis of Variace is Populatio distributio of the depedet variable follow ormality b) Subgroups uder study have same variability c) Groups draw o certai criteria, radomly selected from the sub populatio. 88. Which of the followig is the correct sequece of steps for oe way ANOVA? ) Total sum of squares ) Correctio 3) Withi sum of squares 4) Betwee sum of squares,, 3, 4 b) 3,, 4, c) 4, 3,, d),, 4, The mea sum of squares (MS) is The sum of squares multiplied by its degrees of freedom b) The sum of squares divided by its degrees of freedom c) The sum of squares mius its degrees of freedom d) The sum of squares plus its degrees of freedom Psychological Statistics Page 0

11 90. The F value for oe-way ANOVA is give by the formula b w b) df df b b w w c) df df 9. I ANOVA idepedet variables are called Categories b) Levels c) Factors 9. I ANOVA differet categories of a idepedet variable are called. w w b b d) factors b) levels c) groups d) blocks 93. If there are more tha oe idepedet variables we use Oe Way ANOVA b) ANOVA for factorial desig c) Both ( ad (b) 94. I oe way ANOVA how may F values are calculated b) 3 c) d) If there are two idepedet variables the how may effects are foud i ANOVA? b) c) 3 d) Which of the followig statemets are true about Two-way ANOVA with x 3 desig. There are two idepedet variables b) The first idepedet variable has two levels c) The secod idepedet variable has 3 levels 97. For testig the sigificace of differece betwee meas, ANOVA aalyses Meas b) Stadard deviatios c) Correlatios Coefficiets d) Variaces 98. I oe way ANOVA, if the calculated F value is greater tha the tabled value of F, the Mea differece betwee all pairs of groups will be sigificat b) Mea differece is ot sigificat c) Mea differece betwee more tha two groups i the set will be sigificat d) Mea differece betwee atleast two groups i the set will be sigificat 99. Which of the followig is true about ANOVA? It is a o parametric test b) Homogeeity of variace is ot a basic assumptio c) It is a parametric test d) Assumptio of ormality is ot ecessary w b 00. The calculated value of kurtosis i terms of percetile for a give data is foud to be 0.3, the the distributio is Mesokurtic b) Leptokurtic c) Platykurtic Psychological Statistics Page

12 ANSWER KEY. B. A 4. C 6. B 8. B. C. C 4. B 6. C 8. C 3. B 3. C 43. C 63. C 83. A 4. C 4. C 44. D 64. D 84. A 5. A 5. B 45. C 65. A 85. C 6. D 6. A 46. A 66. B 86. B 7. D 7. B 47. A 67. C 87. D 8. B 8. C 48. D 68. B 88. D 9. C 9. D 49. C 69. C 89. B 0. A 30. D 50. B 70. D 90. B. D 3. B 5. C 7. D 9. C. B 3. C 5. C 7. B 9. B 3. B 33. B 53. A 73. C 93. B 4. B 34. D 54. C 74. D 94. C 5. A 35. C 55. A 75. D 95. C 6. C 36. C 56. D 76. D 96. D 7. B 37. A 57. C 77. C 97. D 8. C 38. C 58. A 78. D 98. D 9. D 39. D 59. D 79. D 99. C 0. A 40. B 60. C 80. A 00. C Reserved Psychological Statistics Page

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about

More information

Inference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval

Inference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT - Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio

More information

Hypothesis testing in a Nutshell

Hypothesis testing in a Nutshell Hypothesis testig i a Nutshell Summary by Pamela Peterso Drake Itroductio The purpose of this readig is to discuss aother aspect of statistical iferece, testig. A is a statemet about the value of a populatio

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, P-value Type I Error, Type II Error, Sigificace Level, Power Sectio 8-1: Overview Cofidece Itervals (Chapter 7) are

More information

Hypothesis Tests Applied to Means

Hypothesis Tests Applied to Means The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with

More information

Definition. Definition. 7-2 Estimating a Population Proportion. Definition. Definition

Definition. Definition. 7-2 Estimating a Population Proportion. Definition. Definition 7- stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

One-sample test of proportions

One-sample test of proportions Oe-sample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:

More information

Section 7-3 Estimating a Population. Requirements

Section 7-3 Estimating a Population. Requirements Sectio 7-3 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio

More information

x : X bar Mean (i.e. Average) of a sample

x : X bar Mean (i.e. Average) of a sample A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For

More information

Notes on Hypothesis Testing

Notes on Hypothesis Testing Probability & Statistics Grishpa Notes o Hypothesis Testig A radom sample X = X 1,..., X is observed, with joit pmf/pdf f θ x 1,..., x. The values x = x 1,..., x of X lie i some sample space X. The parameter

More information

TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004

TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004 TIEE Teachig Issues ad Experimets i Ecology - Volume 1, Jauary 2004 EXPERIMENTS Evirometal Correlates of Leaf Stomata Desity Bruce W. Grat ad Itzick Vatick Biology, Wideer Uiversity, Chester PA, 19013

More information

ˆ p 2. ˆ p 1. ˆ p 3. p 4. ˆ p 8

ˆ p 2. ˆ p 1. ˆ p 3. p 4. ˆ p 8 Sectio 8 1C The Techiques of Hypothesis Testig A claim is made that 10% of the populatio is left haded. A alterate claim is made that less tha 10% of the populatio is left haded. We will use the techiques

More information

Statistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals

Statistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals Statistics 111 - Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio

More information

NPTEL STRUCTURAL RELIABILITY

NPTEL STRUCTURAL RELIABILITY NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics

More information

Simple linear regression

Simple linear regression Simple liear regressio Tro Aders Moger 3..7 Example 6: Populatio proportios Oe sample X Assume X ~ Bi(, P, so that P ˆ is a frequecy. P The ~ N(, P( P / (approximately, for large P Thus ~ N(, ( / (approximately,

More information

AQA STATISTICS 1 REVISION NOTES

AQA STATISTICS 1 REVISION NOTES AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if

More information

Economics 140A Confidence Intervals and Hypothesis Testing

Economics 140A Confidence Intervals and Hypothesis Testing Ecoomics 140A Cofidece Itervals ad Hypothesis Testig Obtaiig a estimate of a parameter is ot the al purpose of statistical iferece because it is highly ulikely that the populatio value of a parameter is

More information

Chapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing

Chapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing Chapter 10 Hypothesis Tests Regardig a Parameter A secod type of statistical iferece is hypothesis testig. Here, rather tha use either a poit (or iterval) estimate from a simple radom sample to approximate

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

9.8: THE POWER OF A TEST

9.8: THE POWER OF A TEST 9.8: The Power of a Test CD9-1 9.8: THE POWER OF A TEST I the iitial discussio of statistical hypothesis testig, the two types of risks that are take whe decisios are made about populatio parameters based

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

A Test of Normality. 1 n S 2 3. n 1. Now introduce two new statistics. The sample skewness is defined as:

A Test of Normality. 1 n S 2 3. n 1. Now introduce two new statistics. The sample skewness is defined as: A Test of Normality Textbook Referece: Chapter. (eighth editio, pages 59 ; seveth editio, pages 6 6). The calculatio of p values for hypothesis testig typically is based o the assumptio that the populatio

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

This is arithmetic average of the x values and is usually referred to simply as the mean.

This is arithmetic average of the x values and is usually referred to simply as the mean. prepared by Dr. Adre Lehre, Dept. of Geology, Humboldt State Uiversity http://www.humboldt.edu/~geodept/geology51/51_hadouts/statistical_aalysis.pdf STATISTICAL ANALYSIS OF HYDROLOGIC DATA This hadout

More information

1 Hypothesis testing for a single mean

1 Hypothesis testing for a single mean BST 140.65 Hypothesis Testig Review otes 1 Hypothesis testig for a sigle mea 1. The ull, or status quo, hypothesis is labeled H 0, the alterative H a or H 1 or H.... A type I error occurs whe we falsely

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

Stat 104 Lecture 16. Statistics 104 Lecture 16 (IPS 6.1) Confidence intervals - the general concept

Stat 104 Lecture 16. Statistics 104 Lecture 16 (IPS 6.1) Confidence intervals - the general concept Statistics 104 Lecture 16 (IPS 6.1) Outlie for today Cofidece itervals Cofidece itervals for a mea, µ (kow σ) Cofidece itervals for a proportio, p Margi of error ad sample size Review of mai topics for

More information

Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean Cofidece Itervals Math 283 Cofidece Itervals for the Populatio Mea Recall that from the empirical rule that the iterval of the mea plus/mius 2 times the stadard deviatio will cotai about 95% of the observatios.

More information

3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average

3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average 5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives

More information

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

MEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)

MEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book) MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:

More information

Correlation. example 2

Correlation. example 2 Correlatio Iitially developed by Sir Fracis Galto (888) ad Karl Pearso (8) Sir Fracis Galto 8- correlatio is a much abused word/term correlatio is a term which implies that there is a associatio betwee

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Hypothesis Testing. Definitions. H 0 : The Null Hypothesis This is the hypothesis or claim that is initially assumed to be true.

Hypothesis Testing. Definitions. H 0 : The Null Hypothesis This is the hypothesis or claim that is initially assumed to be true. Hypothesis Testig Hypothesis testig allows us to use a sample to decide betwee two statemets made about a Populatio characteristic. These two statemets are called the Null Hypothesis ad the Alterative

More information

Hypothesis testing: one sample

Hypothesis testing: one sample Hypothesis testig: oe sample Describig iformatios Flow-chart for QMS 202 Drawig coclusios Forecastig Improve busiess processes Data Collectio Probability & Probability Distributio Regressio Aalysis Time-series

More information

Unit 20 Hypotheses Testing

Unit 20 Hypotheses Testing Uit 2 Hypotheses Testig Objectives: To uderstad how to formulate a ull hypothesis ad a alterative hypothesis about a populatio proportio, ad how to choose a sigificace level To uderstad how to collect

More information

Review for Test 3. b. Construct the 90% and 95% confidence intervals for the population mean. Interpret the CIs.

Review for Test 3. b. Construct the 90% and 95% confidence intervals for the population mean. Interpret the CIs. Review for Test 3 1 From a radom sample of 36 days i a recet year, the closig stock prices of Hasbro had a mea of $1931 From past studies we kow that the populatio stadard deviatio is $237 a Should you

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Descriptive statistics deals with the description or simple analysis of population or sample data.

Descriptive statistics deals with the description or simple analysis of population or sample data. Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

7. Sample Covariance and Correlation

7. Sample Covariance and Correlation 1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y

More information

Measures of Central Tendency

Measures of Central Tendency Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

7.1 Inference for a Population Proportion

7.1 Inference for a Population Proportion 7.1 Iferece for a Populatio Proportio Defiitio. The statistic that estimates the parameter p is the sample proportio cout of successes i the sample ˆp = cout of observatios i the sample. Assumptios for

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011 15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes high-defiitio

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

Chapter 10 Student Lecture Notes 10-1

Chapter 10 Student Lecture Notes 10-1 Chapter 0 tudet Lecture Notes 0- Basic Busiess tatistics (9 th Editio) Chapter 0 Two-ample Tests with Numerical Data 004 Pretice-Hall, Ic. Chap 0- Chapter Topics Comparig Two Idepedet amples Z test for

More information

BASIC STATISTICS. Discrete. Mass Probability Function: P(X=x i ) Only one finite set of values is considered {x 1, x 2,...} Prob. t = 1.

BASIC STATISTICS. Discrete. Mass Probability Function: P(X=x i ) Only one finite set of values is considered {x 1, x 2,...} Prob. t = 1. BASIC STATISTICS 1.) Basic Cocepts: Statistics: is a sciece that aalyzes iformatio variables (for istace, populatio age, height of a basketball team, the temperatures of summer moths, etc.) ad attempts

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

More information

TI-83, TI-83 Plus or TI-84 for Non-Business Statistics

TI-83, TI-83 Plus or TI-84 for Non-Business Statistics TI-83, TI-83 Plu or TI-84 for No-Buie Statitic Chapter 3 Eterig Data Pre [STAT] the firt optio i already highlighted (:Edit) o you ca either pre [ENTER] or. Make ure the curor i i the lit, ot o the lit

More information

Statistical Inference: Hypothesis Testing for Single Populations

Statistical Inference: Hypothesis Testing for Single Populations Chapter 9 Statistical Iferece: Hypothesis Testig for Sigle Populatios A foremost statistical mechaism for decisio makig is the hypothesis test. The cocept of hypothesis testig lies at the heart of iferetial

More information

3. Continuous Random Variables

3. Continuous Random Variables Statistics ad probability: 3-1 3. Cotiuous Radom Variables A cotiuous radom variable is a radom variable which ca take values measured o a cotiuous scale e.g. weights, stregths, times or legths. For ay

More information

MR. STEIN S WORDS OF WISDOM

MR. STEIN S WORDS OF WISDOM MR. STEIN S WORDS OF WISDOM P a g e 1 I am writig this review essay for two tests- the AP Stat exam ad the Applied Stat Fial exam. The topics are more or less the same, so reviewig for the two tests should

More information

SAMPLING NTI Bulletin 2006,42/3&4, 55-62

SAMPLING NTI Bulletin 2006,42/3&4, 55-62 SAMPLING NTI Bulleti 006,4/3&4, 55-6 Sample size determiatio i health studies VK Chadha * Summary Oe of the most importat factors to cosider i the desig of a itervetio trial is the choice of a appropriate

More information

Sampling Distribution And Central Limit Theorem

Sampling Distribution And Central Limit Theorem () Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,

More information

Practice Problems for Test 3

Practice Problems for Test 3 Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size 8/7/015 C H A P T E R S E V E N Cofidece Itervals ad Copyright 015 The McGraw-Hill Compaies, Ic. Permissio required for reproductio or display. 1 Cofidece Itervals ad Outlie 7-1 Cofidece Itervals for the

More information

Confidence intervals and hypothesis tests

Confidence intervals and hypothesis tests Chapter 2 Cofidece itervals ad hypothesis tests This chapter focuses o how to draw coclusios about populatios from sample data. We ll start by lookig at biary data (e.g., pollig), ad lear how to estimate

More information

Chapter 14 Nonparametric Statistics

Chapter 14 Nonparametric Statistics Chapter 14 Noparametric Statistics A.K.A. distributio-free statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Compare Multiple Response Variables

Compare Multiple Response Variables Compare Multiple Respose Variables STATGRAPHICS Mobile Rev. 4/7/006 This procedure compares the data cotaied i three or more Respose colums. It performs a oe-way aalysis of variace to determie whether

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

Confidence Intervals for One Mean with Tolerance Probability

Confidence Intervals for One Mean with Tolerance Probability Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

STATISTICAL METHODS FOR BUSINESS

STATISTICAL METHODS FOR BUSINESS STATISTICAL METHODS FOR BUSINESS UNIT 7: INFERENTIAL TOOLS. DISTRIBUTIONS ASSOCIATED WITH SAMPLING 7.1.- Distributios associated with the samplig process. 7.2.- Iferetial processes ad relevat distributios.

More information

Using Excel to Construct Confidence Intervals

Using Excel to Construct Confidence Intervals OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio

More information

Statistical Methods. Chapter 1: Overview and Descriptive Statistics

Statistical Methods. Chapter 1: Overview and Descriptive Statistics Geeral Itroductio Statistical Methods Chapter 1: Overview ad Descriptive Statistics Statistics studies data, populatio, ad samples. Descriptive Statistics vs Iferetial Statistics. Descriptive Statistics

More information

, a Wishart distribution with n -1 degrees of freedom and scale matrix.

, a Wishart distribution with n -1 degrees of freedom and scale matrix. UMEÅ UNIVERSITET Matematisk-statistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that

More information

USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR

USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR Objective:. Improve calculator skills eeded i a multiple choice statistical eamiatio where the eam allows the studet to use a scietific calculator..

More information

Single Factor ANOVA (A A Full Example)

Single Factor ANOVA (A A Full Example) Lecture Outlie Sigle Factor ANOVA (A A Full Example) ANOVA -- what it tells you Examie how we might follow up a sigificat result A rage of multiple compariso methods The David Tiller example Readig Objectives

More information

Institute for the Advancement of University Learning & Department of Statistics

Institute for the Advancement of University Learning & Department of Statistics Istitute for the Advacemet of Uiversity Learig & Departmet of Statistics Descriptive Statistics for Research (Hilary Term, 00) Lecture 5: Cofidece Itervals (I.) Itroductio Cofidece itervals (or regios)

More information

STA 2023 Practice Questions Exam 2 Chapter 7- sec 9.2. Case parameter estimator standard error Estimate of standard error

STA 2023 Practice Questions Exam 2 Chapter 7- sec 9.2. Case parameter estimator standard error Estimate of standard error STA 2023 Practice Questios Exam 2 Chapter 7- sec 9.2 Formulas Give o the test: Case parameter estimator stadard error Estimate of stadard error Samplig Distributio oe mea x s t (-1) oe p ( 1 p) CI: prop.

More information

Estimating the Mean and Variance of a Normal Distribution

Estimating the Mean and Variance of a Normal Distribution Estimatig the Mea ad Variace of a Normal Distributio Learig Objectives After completig this module, the studet will be able to eplai the value of repeatig eperimets eplai the role of the law of large umbers

More information

Laboratory: Case-Control Studies. Hypothesis Testing

Laboratory: Case-Control Studies. Hypothesis Testing Laboratory: Case-Cotrol Studies How may do I eed? is oe of the most commo questios addressed to a epidemiologist. The epidemiologist aswers with What questio are you attemptig to aswer? Sample size depeds

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

A Mathematical Perspective on Gambling

A Mathematical Perspective on Gambling A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal

More information

Mann-Whitney U 2 Sample Test (a.k.a. Wilcoxon Rank Sum Test)

Mann-Whitney U 2 Sample Test (a.k.a. Wilcoxon Rank Sum Test) No-Parametric ivariate Statistics: Wilcoxo-Ma-Whitey 2 Sample Test 1 Ma-Whitey 2 Sample Test (a.k.a. Wilcoxo Rak Sum Test) The (Wilcoxo-) Ma-Whitey (WMW) test is the o-parametric equivalet of a pooled

More information

Now here is the important step

Now here is the important step LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

3. Covariance and Correlation

3. Covariance and Correlation Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics

More information

Case Study. Contingency Tables. Graphing Tabled Counts. Stacked Bar Graph

Case Study. Contingency Tables. Graphing Tabled Counts. Stacked Bar Graph Case Study Cotigecy Tables Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 4 6, 2011 Case Study Example 9.3 begiig o page 213 of the text describes a experimet i which

More information

Chapter 7. Estimation and testing. 7.1 Sampling distributions

Chapter 7. Estimation and testing. 7.1 Sampling distributions Chapter 7 Estimatio ad testig The researcher ca ever be certai that his observatios are ucotamiated by error. No matter how carefully oe may be i plaig ad coductig a study, a multitude of iflueces, uiteded

More information

AP * Statistics Review. Inference

AP * Statistics Review. Inference AP * Statistics Review Iferece Teacher Packet AP* is a trademark of the College Etrace Examiatio Board. The College Etrace Examiatio Board was ot ivolved i the productio of this material. Copyright 009

More information

Simple Linear Regression

Simple Linear Regression Simple Liear Regressio We have bee itroduced to the otio that a categorical variable could deped o differet levels of aother variable whe we discussed cotigecy tables. We ll exted this idea to the case

More information

Alternatives To Pearson s and Spearman s Correlation Coefficients

Alternatives To Pearson s and Spearman s Correlation Coefficients Alteratives To Pearso s ad Spearma s Correlatio Coefficiets Floreti Smaradache Chair of Math & Scieces Departmet Uiversity of New Mexico Gallup, NM 8730, USA Abstract. This article presets several alteratives

More information

Confidence Intervals

Confidence Intervals Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more

More information

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring No-life isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy

More information

Review for 1 sample CI Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review for 1 sample CI Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review for 1 sample CI Name MULTIPLE CHOICE. Choose the oe alterative that best completes the statemet or aswers the questio. Fid the margi of error for the give cofidece iterval. 1) A survey foud that

More information

Section 7.2 Confidence Interval for a Proportion

Section 7.2 Confidence Interval for a Proportion Sectio 7.2 Cofidece Iterval for a Proportio Before ay ifereces ca be made about a proportio, certai coditios must be satisfied: 1. The sample must be a SRS from the populatio of iterest. 2. The populatio

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Text&Tests5. Project Maths SUPPLEMENT. Frances O Regan O. D. Morris. Leaving Certificate Higher Level Maths

Text&Tests5. Project Maths SUPPLEMENT. Frances O Regan O. D. Morris. Leaving Certificate Higher Level Maths Project Maths SUPPLEMENT Text&Tests5 Leavig Certificate Higher Level Maths Cotais all the Deferred Material ad Cetral Limit Theorem Fraces O Rega O. D. Morris O.D. Morris, Fraces O Rega, 2014 All rights

More information

Lecture 10: Hypothesis testing and confidence intervals

Lecture 10: Hypothesis testing and confidence intervals Eco 514: Probability ad Statistics Lecture 10: Hypothesis testig ad cofidece itervals Types of reasoig Deductive reasoig: Start with statemets that are assumed to be true ad use rules of logic to esure

More information

THE TWO-VARIABLE LINEAR REGRESSION MODEL

THE TWO-VARIABLE LINEAR REGRESSION MODEL THE TWO-VARIABLE LINEAR REGRESSION MODEL Herma J. Bieres Pesylvaia State Uiversity April 30, 202. Itroductio Suppose you are a ecoomics or busiess maor i a college close to the beach i the souther part

More information