Chapter 3: Data Description Numerical Methods

Size: px
Start display at page:

Download "Chapter 3: Data Description Numerical Methods"

Transcription

1 Chapter 3: Data Description Numerical Methods Learning Objectives Upon successful completion of Chapter 3, you will be able to: Summarize data using measures of central tendency, such as the mean, median, mode and midrange. Describe data using measures of variation, such as the range, variance, and standard deviation. Identify the position of a data value in a data set, using various measures of position, such as percentiles, deciles, and quartiles. Use the techniques of exploratory data analysis, including boxplots and five-number summaries, to discover various aspects of data. I. Basic Vocabulary A. Statistics vs. Parameter A statistic is a numerical characteristic or numerical summary obtained by using the data values from a sample. A parameter is a numerical characteristic or numerical summary obtained by using all the data values for the entire population. B. Numerical Summaries of Quantitative Data 1. Measures of the average or center: mean, median, mode, and midrange. 2. Measures of variation (spread, variability, or dispersion): range, variance, and standard deviation. THE GENERAL ROUNDING RULE: Always round to one more place than the data when the final answer is computed. C. Notation for numerical summaries indicate if it is a parameter or a statistic N: population size n: sample size population mean sample mean Note: The mean is found the same way for the sample or population Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 1

2 population variance population standard deviation sample variance sample standard deviation population proportion sample proportion is a value of the variable or an answer to the question asked II. Measures of the Center A. Mean I. Mean (ungrouped data) To calculate the mean, take the sum of all data values, and then divide by the number of values: Sample Mean Population Mean Note: The mean is found the same way for the sample and population. Example: Mean I Note: The answer is rounded t one more place than the data. a) Example: Mean II Note: The answer is rounded t one more place than the data. Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 2

3 II. Mean for Grouped Data To calculate the mean of grouped data, 1. Use the class midpoint (x i ) for each class 2. Use the class frequency for each class (f) with the formula a) Example: Mean for Grouped Data Class Midpoint(x) Frequency (f) xf Totals Note: The answer is rounded t one more place than the data. III. Weighted Mean A weighted mean has an additional factor or weight for each class. a) Example: Weighted Mean PSU Grade Point Average (GPA) grades are weighted by their quality points. Course Credit (w) Grade (x) xw English 3.0 B Stat 4.0 A History 3.0 C Totals Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 3

4 B. Median (MD, x ) I. Median To calculate the median, place the data in increasing order and find a value in the center of the ordered list. II. Median: The middle value in an ordered list of data. It is the value with the same number of data values above and below it. Used for data sets with outliers. In the absence of outliers, use the mean. Process: 1. Order the data values from the smallest to the largest. 2. When the sample size n is odd, the median is the data located in the exact middle. 3. When the sample size n is even, there are two data values in the middle. The median is the average of the two data values in the middle. Example: Example data: Ordered data: Answer: 14 is the data value in the center Example: Median Example data: Ordered data: The middle value is between 14 and 23. Solve for the average: ( )/2 = 37/2 = 18.5 MD = 18.5 (round to one more place or tenths) C. Mode For ungrouped data, the mode is the value that occurs most often in a data set. For grouped data, the mode is the class with the highest frequency and is called the modal class. Bi-modal Two classes each with the largest frequency OR Two data value each with the largest frequency. No mode- no value is repeated. Multi modal- more than two data values or more than two classes with the same greatest frequency. No symbol for the mode. Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 4

5 Question 1 When a person says that the average age of a group of workers is 35, the average a) is the mean of the ages. b) is the median of the ages. c) could be either the mean or the median of the ages. d) do not know. Question 2 If we are taking a test and we wish to score in the upper half of the students, then we wish to be higher than the a) is the mean of the ages. b) is the median of the ages. c) could be either the mean or the median of the ages. d) do not know. D. Midrange (MR) I. Midrange (MR) : The value in the middle of the range The value midway between the lowest and highest data values II. Example: Midrange Find the midrange for: 2, 13, 1, 25, 45, 67, Order the data: The average of 1 (lowest) and 90 (highest) 3. (1 + 90)/2 = 45.5 (round to one more place or tenths) Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 5

6 E. Comparison of Mean, Median, Mode, and Midrange Measure of Center Mean Median Mode Midrange Definition middle value most frequent data value How Common? most familiar average commonly used sometimes used rarely used Existence always exists always exists might not exist; may be more than one mode always exists Takes Every Value into Account? yes no no no Affecte d by Extreme Values? yes no no yes Advantages and Disadvantage s used throughout this book; works well with many statistical methods often a good choice if there are some extreme values appropriate for data at the nominal level very sensitive extreme values General Comments: For a data collection that is approximately symmetric with one mode, the mean, median, mode, and midrange tend to be about the same. For a data collection that is obviously asymmetric, it would be good to report both the mean and median. The mean is relatively reliable. That is, when samples are drawn from the same population, the sample means tend to be more consistent than the other measures of center (consistent in the sense that the means of samples drawn from the same population don t vary as much as the other measure of center. (Triola & Triola, 2006) Question 3 Which measures of the center are influenced by outliers? a) Mean b) Median c) Mode d) Midrange e) Both A & D Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 6

7 Question 4 If we tally the votes in an election, then the winner would be the candidate corresponding to a) the mean of the number of votes. b) the median of the number of votes. c) the mode of the number of votes. d) do not know. III. Shapes of Distributions A. Symmetrical Symmetrical shapes have evenly distributed data values on both side of the mean. Mean median and mode are all equal. B. Positively skewed or Right skewed Positively skewed or right skewed shapes have the majority of data values fall to the left of the mean and cluster at the lower end of the distribution, with the tail to the right. The mean and median are to the right of the mode. Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 7

8 C. Negatively skewed or Left skewed Negatively skewed or left skewed shapes have the majority of the data values fall to the right of the mean and cluster at the upper end of the distribution, with the tail to the left. The mean and median are to the left of the mode. IV. Measures of Spread (dispersion or variability) A. Types 1. Range the highest value minus the lowest value in a data set (R) 2. Variance 3. Standard Deviation Question 5 An entertainment event advertises that people ages 1 to 100 would enjoy the event. The advertisement specifically describes a set of people with a) a large number of ages. b) a large range of ages. c) a large mean of ages. d) do not know. B. Variance I. Population Variance ( ) - To calculate population variance: 1. Find the mean. 2. Subtract the Mean from each data value 3. Square each difference 4. Divide the sum by the number of data values Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 8

9 II. Sample Variance ( ) To calculate sample variance: 1. Find the mean. 2. Subtract the Mean from each data value 3. Square each difference 4. Divide the sum by the number of data values minus one s 2 = (x i x ) 2 (n 1) III. Example: Sample Variance Data: x = = = = -1 1 Total 10 Note: Round to one more place than the original data. C. Standard Deviation I. Population Standard Deviation (σ) The population standard deviation (σ) is the square root of the population variance (σ 2 ). Same Rounding rule: Round the final answer to one more decimal place than the original data. II. Sample Standard Deviation (s) a) Deviation Formula the sample standard deviation (s) is the square root of the sample variances (s 2 ). s = (x i x ) 2 (n 1) Same Rounding rule: Round the final answer to one more decimal place than the original data. Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 9

10 b) Computational Formula Note: This is used for better accuracy when the mean has several decimal points and folks are more likely to ignore those decimals. Process: 1. Find the sum of all of the data values 2. Find the sum of the squared data values 3. Multiply the sum of the squared data values by the number of data values 4. Square the sum of the data values in step 1 5. Subtract step 4 answer from the step 3 answer: 6. Divide the difference in step 5 by the n times (n 1) 7. Take the square root of the quotient c) Example: Standard Deviation (again with the computational formula) Data: x x Total D. Range Rule of Thumb A rough estimate of the standard deviation is: Where range is highest data value minus lowest data value. Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 10

11 E. Standard Deviation for Grouped Data: Use the class midpoints and frequencies s = (x i x ) 2 f i (n 1) I. Example: Standard Deviation for Grouped Data Data: Midpoint Frequency (f) xf x 2 f Question 6 If we know the variance of a set of data, then to calculate the standard deviation of this data a) is a long process because of the many operations needed. b) is a short process because the standard deviation is equal to the variance. c) is a short process because the standard deviation is the square root of the variance. d) do not know. F. Uses for Variance and Standard Deviation 1. Measures of spread, variability, and consistency. 2. To complete inferential statistics. 3. To understand data distributions using Chebyshev s theorem and the Empirical Rule. Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 11

12 G. Coefficient of variation (cvar): Comparing Standard Deviations for Different Distributions To compare standard deviations for different distributions, use the coefficient of variation. The coefficient of variation is the standard deviation divided by the mean and multiplied by 100%. It is free of measurement units. cvar = standard deviation mean 100% I. Example: Comparing Standard Deviations for Different Distributions I The mean of the number of sales of cars over a 3 month period is 87, and the standard deviation is 5. The mean of the commissions is $5225, and the standard deviation is $773. Compare the variations of the two. Sales Commissions The commissions are more variable than the sales. II. Example: Comparing Standard Deviations for Different Distributions II John took two tests last week. The average for the history test was 61.3 and the standard deviation was The average for the math test was 81.5 and the standard deviation was Compare the variation for the two tests. History Test Math Test The history test is more variable than the math test. V. Calculator A. TI-83 Key Strokes to Clear Lists ALWAYS clear out Lists before entering data. 1. STAT 2. CLRLIST (L 1, L 2, L 3, ) Use second function 1 for L 1, second function 2 for L 2 etc. Be sure to include commas and end with parentheses. 3. ENTER Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 12

13 B. TI-83 Key Strokes to Enter Data Enter data into a Cleared List. 1. STAT 2. EDIT 3. Enter the data in the lists as need pressing ENTER after each data value. C. TI-83 Basic Statistics for Ungrouped Data 1. Clear L 1 and enter the data in L 1 2. STAT 3. CALC 4. 1 VARIABLE STATS L 1 5. ENTER D. TI-83 Basic Statistics for Grouped Data 1. Clear L 1, L 2 2. STAT 3. EDIT 4. Enter midpoints in L 1 and enter their corresponding frequencies in L 2 5. STAT 6. CALC 7. I-variable stats L 1, L 2 8. Check that n is the sum of the frequencies VI. Rules For Data Distribution For all data sets, use Chebyshev s Theorem. For bell-shaped or approximately normally distributed data sets, use the Empirical Rule ( Rule) A. Chebyshev s Theorem for All Distributions For any distribution, the proportion of values from a data set that will fall within k standard deviations of the mean will be at least: 1 1/k 2, where k is a number greater than 1. I. Process Select values for k and compute 1 1/k 2 k 1 1/k 2 Interpretation = % of the data is within 2.1 standard deviations of the mean or would be in the interval (X 2.1 S, X S) =.75 75% of the data is within 2 standard deviations of the mean or would be in the interval (X 2 S, X + 2 S) = % of the data is within 3.3 standard deviations of the mean or would be in the interval (X 3.35 S, X S) Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 13

14 II. Example: Chebyshev s Theorem for All Distributions - with k = 2 The mean price of houses in a certain neighborhood is $150,000, and the standard deviation is $10,000. Find the price range for which at least 75% of the houses will sell. Using the table from the previous example, k=2. $150,000 +2($10,000) = $150,000 + $20,000 = $170,000 $150,000 +2($10,000) = $150,000 $20,000 = $130,000 75% of the houses cost between $130,000 and $170,000 B. Empirical Rule for Bell Shaped Distributions Approximately 68% of data values fall within one standard deviation of the mean. Approximately 95% of the data values fall within two standard deviations of the mean. Approximately 99.75% of the data values fall within three standard deviations of the mean. VII. Measures of Position or Relative Standing Measures of position are the relative positions of one data value in comparison with the entire set of data values. Z-score Percentiles Quartiles Deciles Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 14

15 A. Standard Scores (used to compare data values between two groups) To compare data values, subtract the mean from the data value and divide by the standard deviation. I. Z-score Forumlas For samples: For populations: II. Example: Z-score I A student scored 75 on a calculus test that had a mean of 50 and a standard deviation of 10; she scored 80 on a history test with a mean of 75 and a standard deviation of 6.1. Compare her relative positions on the two tests. The second z-score is larger. Thus, the 75 in calculus is a better grade as a standard score or compared to the classmates than the 80 on the history test. Note: z-scores are always given to two-place accuracy. III. Understanding Z-score a) Z-scores have a mean of 0 and a standard deviation of 1. b) A z-score is the number of standard deviations a value is away from the mean for a specific distribution. c) d) Ordinary and Unusual z-scores Ordinary values: -2 < z < 2 Unusual values: z < -2 or z> 2 e) Whenever a value is less than the mean, its corresponding z-score is negative. Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 15

16 f) Example: Z-score II Using the information below, compare Joe s height of 78 inches to Susan s height of 73 inches. Men have heights with a mean of 69.0 inches and a standard deviation of 2.8 inches. Women have heights with a mean of 63.6 inches and a standard deviation of 2.5 inches. Joe: z = (78 69)/2.8 = 3.21 Susan: z = ( )/2.5 = 3.76 Susan is taller compared to other women than Joe compared to other men. B. Percentiles (the position of a data value within its group) A percentile, P, is an integer between 1 and 99 such that P% of the data values are less than or equal to the value and (100 P)% of the data values are greater than or equal to the value. I. Given a data value x, find the percentile P 1. Count the number of data values below x 2. Add.5 3. Divide the sum by the number of data values n 4. Multiply by 100% 5. Round to an integer using regular rounding rules II. Given the percentile P, find the data value x n: the total number of data values p: the percentile c: used to find the position of the data value 1. Order the data lowest to highest 2. To find the position of the data value x, let: c = (n p)/ To find the data value, use the position value c If c is not a whole number, round to the next larger whole number. Starting at the lowest data value, count to the number that corresponds to the rounded up value of c. If c is a whole number, use the value halfway between the c th and (c + 1) st values when counting up from the lowest value. Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 16

17 III. Example: Percentiles I Find the value corresponding to the 13 th percentile. Unordered Data: 18, 15, 12, 6, 8, 2, 3, 5, 20, 10 Ordered data: 2, 3, 5, 6, 8, 10, 12, 15, 18, 20 n p c = = = Since c is not a whole number, round up to 2. Start at the lowest score and count to the second value, which is 3. 3 is the 13th percentile value. IV. Example: Percentiles II A teacher gives a 20-point test to 10 students. The scores are shown below. Find the percentile rank of a score of 12. Unordered Data: 18, 15, 12, 6, 8, 2, 3, 5, 20, 10 Ordered Data: 2, 3, 5, 6, 8, 10, 12, 15, 18, Percentile = 100% = 65th percentile 10 C. Quartiles Divide the order list of data values into four groups. Q 1 is the same as the 25 th percentile Q 2 is the 50 th percentile or the median Q 3 is the 75 th percentile Question 7 If a botanist measures the length of flower petals and finds that 75% of the lengths are 1.5 cm or longer, then 1.5 is a) the f the first quartile of lengths of petals. b) the 25 th percentile of lengths of petals. c) both of the above. Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 17

18 d) do not know. D. Deciles Deciles divide the distribution into 10 groups. They are denoted by D 1, D 2,, D 10. How do deciles related to percentiles? Question 8 The percentile that corresponds to the mean is a) the 50 th percentile. b) the 100 th percentile. c) no particular percentile corresponds to the mean. d) do not know. VIII. Exploratory Data Analysis A. Introduction I. Purpose: Examine data patterns when the mean is affected by outliers. Find gaps in the data. Find patterns. Compare data sets. Identify outliers (values located far away from other values) II. Exploratory Data Analysis is 1. Five-number summary 2. Box plot B. Five-Number Summary A five-number summary is a list of: The lowest value of data set (L or minimum) Q 1 (25 th percentile) The median (MD or 50 th percentile) Q 3 (75 th percentile) The highest value of data set (H or maximum) A box plot is a graphical representation of a five-number summary on a scaled axes. Be sure the box is above the scaled line and drawn to scale (see example in the text and section x). Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 18

19 Question 9 IX. Outliers A box plot can be drawn from data in a stem and leaf plot by a) counting the values in the stem and leaf plot to determine the five number summary. b) adding the values in the stem and leaf plot to determine the five number summary. c) graphing only the stems and not the leaves from the stem and leaf plot. d) do not know. An outlier is an extremely high or an extremely low data value when compared with the rest of the data values. Can be the result of measurement or observational error. Outliers can also indicate something else in the data. Can have a dramatic affect on the mean Can have a dramatic affect on the standard deviation Can have a dramatic affect on the scale of the histogram so that the shape of the distribution is obscured. A. Outliers for Normally Distributed Data Any data value more than three standard deviations away from the mean is considered an outlier. B. Outliers for Other Distributions 1. Arrange the data in order 2. Find Quartile 1 and Quartile 3 3. Find the inter-quartile range: IQR = Q 3 Q 1 4. Outliers are: Any data value larger than Q (IQR) Any data value smaller than Q (IQR) Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 19

20 X. Box Plots (Box and Whisker Plots) Scaled graph of the five number summary Process: 1. Find the 5-number summary (minimum, Q1, Q2, Q3, and maximum) 2. Construct a horizontal scale that includes the minimum and the maximum data. Start the scale at or below the lowest data values and end it slightly above the largest data value. 3. Construct a rectangle floating above the line with the left end at Quartile 1 and the right end at Quartile Construct a vertical line segment inside the box at the median. 5. Construct a horizontal line segment from the center of the lower vertical box edge to the lowest data value that is not an outlier. Construct a second horizontal line segment from the cent of the upper vertical box edge to the highest data value that is not an outlier. 6. Graph mild outliers with a solid dot. Graph extreme outliers with an open dot. XI. Summary Histograms, frequency polygons and ogives are used for quantitative data organized in a grouped frequency distribution. Pareto charts and bar graphs are frequency graphs for qualitative variables. Time series graphs are used to show a pattern or trend that occurs over time. Pie graphs are used to show the relationship between the parts and the whole for qualitative or categorical data. Data can be organized in meaningful ways using frequency distributions and graphs. In descriptive statistics, we use all of these numerical and graphical techniques with sampling methods to collect, organize, summarize, and present data. Data is organized for interpretation and inference Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 20

21 Answer: Question 1 When a person says that the average age of a group of workers is 35, the average C could be either the mean or the median of the ages. Answer: Question 2 If we are taking a test and we wish to score in the upper half of the students, then we wish to be higher than the B the median of the test scores. Answer: Question 3 Which measures of the center are influenced by outliers? E both A & D. Answer: Question 4 If we tally the votes in an election, then the winner would be the candidate corresponding to C the mode of the number of votes. Answer: Question 5 An entertainment event advertises that people ages 1 to 100 would enjoy the event. The advertisement specifically describes a set of people with B a large range of ages. Answer: Question 6 If we know the variance of a set of data, then to calculate the standard deviation of this data C is a short process because the standard deviation is the square root of the variance. Answer: Question 7 If a botanist measures the length of flower petals and finds that 75% of the lengths are 1.5cm or longer, then 1.5 is C both A & C. Answer: Question 8 The percentile that corresponds to the mean is C no particular percentile corresponds to the mean. Answer: Question 9 A box plot can be drawn from data in a stem and leaf plot by A counting the values in the stem and leaf plot to determine the five number summary. Dr. Janet Winter, jmw11@psu.edu Stat 200 Page 21

Chapter 2: Frequency Distributions and Graphs

Chapter 2: Frequency Distributions and Graphs Chapter 2: Frequency Distributions and Graphs Learning Objectives Upon completion of Chapter 2, you will be able to: Organize the data into a table or chart (called a frequency distribution) Construct

More information

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

More information

Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

More information

The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

More information

Exercise 1.12 (Pg. 22-23)

Exercise 1.12 (Pg. 22-23) Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

More information

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

More information

Variables. Exploratory Data Analysis

Variables. Exploratory Data Analysis Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is

More information

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

More information

Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)

Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.) Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center

More information

Lecture 1: Review and Exploratory Data Analysis (EDA)

Lecture 1: Review and Exploratory Data Analysis (EDA) Lecture 1: Review and Exploratory Data Analysis (EDA) Sandy Eckel seckel@jhsph.edu Department of Biostatistics, The Johns Hopkins University, Baltimore USA 21 April 2008 1 / 40 Course Information I Course

More information

Descriptive Statistics

Descriptive Statistics Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

More information

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

More information

Summarizing and Displaying Categorical Data

Summarizing and Displaying Categorical Data Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency

More information

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

More information

MEASURES OF VARIATION

MEASURES OF VARIATION NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

More information

Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences

Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html

More information

2 Describing, Exploring, and

2 Describing, Exploring, and 2 Describing, Exploring, and Comparing Data This chapter introduces the graphical plotting and summary statistics capabilities of the TI- 83 Plus. First row keys like \ R (67$73/276 are used to obtain

More information

How To Write A Data Analysis

How To Write A Data Analysis Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction

More information

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

More information

3: Summary Statistics

3: Summary Statistics 3: Summary Statistics Notation Let s start by introducing some notation. Consider the following small data set: 4 5 30 50 8 7 4 5 The symbol n represents the sample size (n = 0). The capital letter X denotes

More information

Sta 309 (Statistics And Probability for Engineers)

Sta 309 (Statistics And Probability for Engineers) Instructor: Prof. Mike Nasab Sta 309 (Statistics And Probability for Engineers) Chapter 2 Organizing and Summarizing Data Raw Data: When data are collected in original form, they are called raw data. The

More information

Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion

Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research

More information

MATH 103/GRACEY PRACTICE EXAM/CHAPTERS 2-3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 103/GRACEY PRACTICE EXAM/CHAPTERS 2-3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MATH 3/GRACEY PRACTICE EXAM/CHAPTERS 2-3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) The frequency distribution

More information

Statistics Chapter 2

Statistics Chapter 2 Statistics Chapter 2 Frequency Tables A frequency table organizes quantitative data. partitions data into classes (intervals). shows how many data values are in each class. Test Score Number of Students

More information

3.2 Measures of Spread

3.2 Measures of Spread 3.2 Measures of Spread In some data sets the observations are close together, while in others they are more spread out. In addition to measures of the center, it's often important to measure the spread

More information

Lecture 2: Descriptive Statistics and Exploratory Data Analysis

Lecture 2: Descriptive Statistics and Exploratory Data Analysis Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals

More information

Mind on Statistics. Chapter 2

Mind on Statistics. Chapter 2 Mind on Statistics Chapter 2 Sections 2.1 2.3 1. Tallies and cross-tabulations are used to summarize which of these variable types? A. Quantitative B. Mathematical C. Continuous D. Categorical 2. The table

More information

Ch. 3.1 # 3, 4, 7, 30, 31, 32

Ch. 3.1 # 3, 4, 7, 30, 31, 32 Math Elementary Statistics: A Brief Version, 5/e Bluman Ch. 3. # 3, 4,, 30, 3, 3 Find (a) the mean, (b) the median, (c) the mode, and (d) the midrange. 3) High Temperatures The reported high temperatures

More information

Northumberland Knowledge

Northumberland Knowledge Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about

More information

Introduction to Environmental Statistics. The Big Picture. Populations and Samples. Sample Data. Examples of sample data

Introduction to Environmental Statistics. The Big Picture. Populations and Samples. Sample Data. Examples of sample data A Few Sources for Data Examples Used Introduction to Environmental Statistics Professor Jessica Utts University of California, Irvine jutts@uci.edu 1. Statistical Methods in Water Resources by D.R. Helsel

More information

Diagrams and Graphs of Statistical Data

Diagrams and Graphs of Statistical Data Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in

More information

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple.

Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple. Graphical Representations of Data, Mean, Median and Standard Deviation In this class we will consider graphical representations of the distribution of a set of data. The goal is to identify the range of

More information

AP * Statistics Review. Descriptive Statistics

AP * Statistics Review. Descriptive Statistics AP * Statistics Review Descriptive Statistics Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production

More information

MBA 611 STATISTICS AND QUANTITATIVE METHODS

MBA 611 STATISTICS AND QUANTITATIVE METHODS MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain

More information

Descriptive Statistics and Measurement Scales

Descriptive Statistics and Measurement Scales Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample

More information

Bar Graphs and Dot Plots

Bar Graphs and Dot Plots CONDENSED L E S S O N 1.1 Bar Graphs and Dot Plots In this lesson you will interpret and create a variety of graphs find some summary values for a data set draw conclusions about a data set based on graphs

More information

Week 1. Exploratory Data Analysis

Week 1. Exploratory Data Analysis Week 1 Exploratory Data Analysis Practicalities This course ST903 has students from both the MSc in Financial Mathematics and the MSc in Statistics. Two lectures and one seminar/tutorial per week. Exam

More information

DESCRIPTIVE STATISTICS - CHAPTERS 1 & 2 1

DESCRIPTIVE STATISTICS - CHAPTERS 1 & 2 1 DESCRIPTIVE STATISTICS - CHAPTERS 1 & 2 1 OVERVIEW STATISTICS PANIK...THE THEORY AND METHODS OF COLLECTING, ORGANIZING, PRESENTING, ANALYZING, AND INTERPRETING DATA SETS SO AS TO DETERMINE THEIR ESSENTIAL

More information

Exploratory Data Analysis. Psychology 3256

Exploratory Data Analysis. Psychology 3256 Exploratory Data Analysis Psychology 3256 1 Introduction If you are going to find out anything about a data set you must first understand the data Basically getting a feel for you numbers Easier to find

More information

Def: The standard normal distribution is a normal probability distribution that has a mean of 0 and a standard deviation of 1.

Def: The standard normal distribution is a normal probability distribution that has a mean of 0 and a standard deviation of 1. Lecture 6: Chapter 6: Normal Probability Distributions A normal distribution is a continuous probability distribution for a random variable x. The graph of a normal distribution is called the normal curve.

More information

Classify the data as either discrete or continuous. 2) An athlete runs 100 meters in 10.5 seconds. 2) A) Discrete B) Continuous

Classify the data as either discrete or continuous. 2) An athlete runs 100 meters in 10.5 seconds. 2) A) Discrete B) Continuous Chapter 2 Overview Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Classify as categorical or qualitative data. 1) A survey of autos parked in

More information

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

More information

Lesson 4 Measures of Central Tendency

Lesson 4 Measures of Central Tendency Outline Measures of a distribution s shape -modality and skewness -the normal distribution Measures of central tendency -mean, median, and mode Skewness and Central Tendency Lesson 4 Measures of Central

More information

Means, standard deviations and. and standard errors

Means, standard deviations and. and standard errors CHAPTER 4 Means, standard deviations and standard errors 4.1 Introduction Change of units 4.2 Mean, median and mode Coefficient of variation 4.3 Measures of variation 4.4 Calculating the mean and standard

More information

Basics of Statistics

Basics of Statistics Basics of Statistics Jarkko Isotalo 30 20 10 Std. Dev = 486.32 Mean = 3553.8 0 N = 120.00 2400.0 2800.0 3200.0 3600.0 4000.0 4400.0 4800.0 2600.0 3000.0 3400.0 3800.0 4200.0 4600.0 5000.0 Birthweights

More information

Describing, Exploring, and Comparing Data

Describing, Exploring, and Comparing Data 24 Chapter 2. Describing, Exploring, and Comparing Data Chapter 2. Describing, Exploring, and Comparing Data There are many tools used in Statistics to visualize, summarize, and describe data. This chapter

More information

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives. The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution

More information

Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

More information

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

More information

1.3 Measuring Center & Spread, The Five Number Summary & Boxplots. Describing Quantitative Data with Numbers

1.3 Measuring Center & Spread, The Five Number Summary & Boxplots. Describing Quantitative Data with Numbers 1.3 Measuring Center & Spread, The Five Number Summary & Boxplots Describing Quantitative Data with Numbers 1.3 I can n Calculate and interpret measures of center (mean, median) in context. n Calculate

More information

Box-and-Whisker Plots

Box-and-Whisker Plots Mathematics Box-and-Whisker Plots About this Lesson This is a foundational lesson for box-and-whisker plots (boxplots), a graphical tool used throughout statistics for displaying data. During the lesson,

More information

Chapter 1: Exploring Data

Chapter 1: Exploring Data Chapter 1: Exploring Data Chapter 1 Review 1. As part of survey of college students a researcher is interested in the variable class standing. She records a 1 if the student is a freshman, a 2 if the student

More information

Data Exploration Data Visualization

Data Exploration Data Visualization Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select

More information

The Normal Distribution

The Normal Distribution Chapter 6 The Normal Distribution 6.1 The Normal Distribution 1 6.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize the normal probability distribution

More information

THE BINOMIAL DISTRIBUTION & PROBABILITY

THE BINOMIAL DISTRIBUTION & PROBABILITY REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution

More information

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012 Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts

More information

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics. Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

More information

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

More information

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013 Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

More information

The Big Picture. Describing Data: Categorical and Quantitative Variables Population. Descriptive Statistics. Community Coalitions (n = 175)

The Big Picture. Describing Data: Categorical and Quantitative Variables Population. Descriptive Statistics. Community Coalitions (n = 175) Describing Data: Categorical and Quantitative Variables Population The Big Picture Sampling Statistical Inference Sample Exploratory Data Analysis Descriptive Statistics In order to make sense of data,

More information

Measures of Central Tendency and Variability: Summarizing your Data for Others

Measures of Central Tendency and Variability: Summarizing your Data for Others Measures of Central Tendency and Variability: Summarizing your Data for Others 1 I. Measures of Central Tendency: -Allow us to summarize an entire data set with a single value (the midpoint). 1. Mode :

More information

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

More information

consider the number of math classes taken by math 150 students. how can we represent the results in one number?

consider the number of math classes taken by math 150 students. how can we represent the results in one number? ch 3: numerically summarizing data - center, spread, shape 3.1 measure of central tendency or, give me one number that represents all the data consider the number of math classes taken by math 150 students.

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

More information

First Midterm Exam (MATH1070 Spring 2012)

First Midterm Exam (MATH1070 Spring 2012) First Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [40pts] Multiple Choice Problems

More information

A Correlation of. to the. South Carolina Data Analysis and Probability Standards

A Correlation of. to the. South Carolina Data Analysis and Probability Standards A Correlation of to the South Carolina Data Analysis and Probability Standards INTRODUCTION This document demonstrates how Stats in Your World 2012 meets the indicators of the South Carolina Academic Standards

More information

Visualizing Data. Contents. 1 Visualizing Data. Anthony Tanbakuchi Department of Mathematics Pima Community College. Introductory Statistics Lectures

Visualizing Data. Contents. 1 Visualizing Data. Anthony Tanbakuchi Department of Mathematics Pima Community College. Introductory Statistics Lectures Introductory Statistics Lectures Visualizing Data Descriptive Statistics I Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission of the

More information

Practice#1(chapter1,2) Name

Practice#1(chapter1,2) Name Practice#1(chapter1,2) Name Solve the problem. 1) The average age of the students in a statistics class is 22 years. Does this statement describe descriptive or inferential statistics? A) inferential statistics

More information

STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance

STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis

More information

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9 Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

More information

Common Tools for Displaying and Communicating Data for Process Improvement

Common Tools for Displaying and Communicating Data for Process Improvement Common Tools for Displaying and Communicating Data for Process Improvement Packet includes: Tool Use Page # Box and Whisker Plot Check Sheet Control Chart Histogram Pareto Diagram Run Chart Scatter Plot

More information

Measurement with Ratios

Measurement with Ratios Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

More information

Lecture 2. Summarizing the Sample

Lecture 2. Summarizing the Sample Lecture 2 Summarizing the Sample WARNING: Today s lecture may bore some of you It s (sort of) not my fault I m required to teach you about what we re going to cover today. I ll try to make it as exciting

More information

Using SPSS, Chapter 2: Descriptive Statistics

Using SPSS, Chapter 2: Descriptive Statistics 1 Using SPSS, Chapter 2: Descriptive Statistics Chapters 2.1 & 2.2 Descriptive Statistics 2 Mean, Standard Deviation, Variance, Range, Minimum, Maximum 2 Mean, Median, Mode, Standard Deviation, Variance,

More information

Descriptive statistics parameters: Measures of centrality

Descriptive statistics parameters: Measures of centrality Descriptive statistics parameters: Measures of centrality Contents Definitions... 3 Classification of descriptive statistics parameters... 4 More about central tendency estimators... 5 Relationship between

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

2. Here is a small part of a data set that describes the fuel economy (in miles per gallon) of 2006 model motor vehicles.

2. Here is a small part of a data set that describes the fuel economy (in miles per gallon) of 2006 model motor vehicles. Math 1530-017 Exam 1 February 19, 2009 Name Student Number E There are five possible responses to each of the following multiple choice questions. There is only on BEST answer. Be sure to read all possible

More information

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

More information

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing! MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics

More information

Calculation example mean, median, midrange, mode, variance, and standard deviation for raw and grouped data

Calculation example mean, median, midrange, mode, variance, and standard deviation for raw and grouped data Calculation example mean, median, midrange, mode, variance, and standard deviation for raw and grouped data Raw data: 7, 8, 6, 3, 5, 5, 1, 6, 4, 10 Sorted data: 1, 3, 4, 5, 5, 6, 6, 7, 8, 10 Number of

More information

4.1 Exploratory Analysis: Once the data is collected and entered, the first question is: "What do the data look like?"

4.1 Exploratory Analysis: Once the data is collected and entered, the first question is: What do the data look like? Data Analysis Plan The appropriate methods of data analysis are determined by your data types and variables of interest, the actual distribution of the variables, and the number of cases. Different analyses

More information

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced

More information

MATHS LEVEL DESCRIPTORS

MATHS LEVEL DESCRIPTORS MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will understand that normal distributions can be used to approximate binomial distributions whenever both np and n(1 p) are sufficiently large. Students will understand that when

More information

Week 3&4: Z tables and the Sampling Distribution of X

Week 3&4: Z tables and the Sampling Distribution of X Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal

More information

Mathematics. Mathematical Practices

Mathematics. Mathematical Practices Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with

More information

Grade 6 Mathematics Performance Level Descriptors

Grade 6 Mathematics Performance Level Descriptors Limited Grade 6 Mathematics Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Grade 6 Mathematics. A student at this

More information

DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS

DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 110 012 seema@iasri.res.in 1. Descriptive Statistics Statistics

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Topic 9 ~ Measures of Spread

Topic 9 ~ Measures of Spread AP Statistics Topic 9 ~ Measures of Spread Activity 9 : Baseball Lineups The table to the right contains data on the ages of the two teams involved in game of the 200 National League Division Series. Is

More information

Statistics. Measurement. Scales of Measurement 7/18/2012

Statistics. Measurement. Scales of Measurement 7/18/2012 Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does

More information

Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds

Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative

More information

Box-and-Whisker Plots

Box-and-Whisker Plots Learning Standards HSS-ID.A. HSS-ID.A.3 3 9 23 62 3 COMMON CORE.2 Numbers of First Cousins 0 3 9 3 45 24 8 0 3 3 6 8 32 8 0 5 4 Box-and-Whisker Plots Essential Question How can you use a box-and-whisker

More information

EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck!

EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck! STP 231 EXAM #1 (Example) Instructor: Ela Jackiewicz Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned.

More information

Census@School Data Handling and Probability (Grades 10, 11 and 12)

Census@School Data Handling and Probability (Grades 10, 11 and 12) Census@School Data Handling and Probability (Grades 10, 11 and 12) Statistics South Africa, 2013 Pali Lehohla, Statistician-General Census@School Data Handling and Probability (Grades 10, 11 and 12) /

More information

DesCartes (Combined) Subject: Mathematics Goal: Statistics and Probability

DesCartes (Combined) Subject: Mathematics Goal: Statistics and Probability DesCartes (Combined) Subject: Mathematics Goal: Statistics and Probability RIT Score Range: Below 171 Below 171 Data Analysis and Statistics Solves simple problems based on data from tables* Compares

More information

Chapter 2 Statistical Foundations: Descriptive Statistics

Chapter 2 Statistical Foundations: Descriptive Statistics Chapter 2 Statistical Foundations: Descriptive Statistics 20 Chapter 2 Statistical Foundations: Descriptive Statistics Presented in this chapter is a discussion of the types of data and the use of frequency

More information

A and B This represents the probability that both events A and B occur. This can be calculated using the multiplication rules of probability.

A and B This represents the probability that both events A and B occur. This can be calculated using the multiplication rules of probability. Glossary Brase: Understandable Statistics, 10e A B This is the notation used to represent the conditional probability of A given B. A and B This represents the probability that both events A and B occur.

More information

6. Decide which method of data collection you would use to collect data for the study (observational study, experiment, simulation, or survey):

6. Decide which method of data collection you would use to collect data for the study (observational study, experiment, simulation, or survey): MATH 1040 REVIEW (EXAM I) Chapter 1 1. For the studies described, identify the population, sample, population parameters, and sample statistics: a) The Gallup Organization conducted a poll of 1003 Americans

More information