Chapter 2: Frequency Distributions and Graphs

Size: px
Start display at page:

Download "Chapter 2: Frequency Distributions and Graphs"

Transcription

1 Chapter 2: Frequency Distributions and Graphs Learning Objectives Upon completion of Chapter 2, you will be able to: Organize the data into a table or chart (called a frequency distribution) Construct a graph from the chart I. Basic Vocabulary Raw data is data in its original form. A frequency distribution is the organization of raw data into a table using categories for the data in one column and the frequencies for each category in the second column. Frequency (f) is the tally or count of the number of data values in each class. Relative frequency (f/n) is the tally or count of the number of data values in each class divided by the total number of data values. Cumulative Frequency is the tally or count of the number of data values in a class plus the frequencies for all lower classes. Cumulative relative fequency is the cumlative frequency divided by the totally number of data values. II. Frequency Distributions A. Types of Frequency Distributions I. Qualitative Data: Categorical frequency distribution is a two column chart with a list of all possible attributes or categories for the data in the first column and the count of the amount of data in each category in the second column. II. Quantitative Data: a) Grouped frequency distribution (for data with a small range) is a chart of each possible individual value of the data in the first column and the count of the amount of data with that value in the second column. b) Ungrouped frequency distribution (for data with a small range) is a chart of each possible individual value of data in the first column and the count of the amount of data with that value in the second column. Dr. Janet Winter, Stat 200 Page 1

2 B. Examples of Frequency Distributions I. Qualitative or Categorical Frequency Distributions Create a table with gender (Male/Female) in the first column and the count of the number of men and women in the class in the second column. Create a table with level of Employment (none, part time, full time) in the first column and the count of the number of students in the class in each category in the second column. II. Ungrouped Quantitative Frequency Distributions In the first column, list the numbers 0, 1, 2, 3, 4 representing the number of keys a student is carrying. In the second column, list the count of the number of students with that many keys. In the first column, list the numbers 0, 1, 2, 3, 4 representing the number of cars in your family. In the second column, list the count of the number of students with that many cars in their family. C. Why Construct Frequency Distributions? To organize the data for interpretation To compare different data sets To simplify the computation for measures of average and speed To determine the shape distribution To draw charts and graphs for data III. Grouped Frequency Distributions For data with a large range, place the data in groups or classes that are several units in width. A. Terms for Grouped Frequency Distributions The lower class limit represents the smallest data value that can be included in the class. The upper class limit represents the largest value that can be included in the class. Range (R): largest data value minus the smallest data value. Class boundaries are the numbers used to separate classes but without the gaps created by class limits. Dr. Janet Winter, Stat 200 Page 2

3 B. Characteristics of Classes or Groups There should be between 5 and 20 classes. The class width should be an odd number. (Suggested by Bluman) The classes must be mutually exclusive. The classes must be continuous. The classes must be able to include all data. The classes must be equal width. The classes must include all data or be exhaustive. C. Finding the Class Midpoint It is the average of either: a) The 2 class boundaries for each individual class, OR b) The 2 class limits for each individual class D. Finding the Class Width There are several ways to find the class width (all with the same answer). The class width is either: a) The difference in 2 sequential lower class limits (2 different classes), b) The different between 2 sequential upper class limits (2 different classes), OR c) The different between the lower and upper boundaries for the same class Note: the class width is constant throughout the frequency distribution E. Procedure to find the Class Limits from Data The process to find class limits from data is as follows: 1. Find the range. Range= maximum-minimum values 2. To find the class width, divide the range by the number of classes and round up to the next whole odd number. The width has the same number of decimal places as the data. 3. Select the lowest data value as the starting point or lowest class limit. 4. Add the width to find the next lower class limit. 5. Upper limits are 1 unit less than the next class s lower limit. 6. Continue this process until an upper class limit is less than the highest data value. Note: The last class should not have no members or should not have a frequency equal to zero. Dr. Janet Winter, Stat 200 Page 3

4 F. Suggested Number of Classes Based on Sample Size Sample Size (n) Less than 16 Suggested Number of Classes Not Enough Information G. Finding Class Boundaries from Class Limits Use class limits to find class boundaries: I. Find the class limits (same number of decimal places as the data). II. Find upper class boundaries by adding ½ unit to the upper class limit of each class. III. Find the lower class boundaries by subtracting ½ unit from the lower class limit of each class. H. Decimal Place Rule IV.Graphs Class limits have the same number of decimal places as the data, but class boundaries have one additional place value than the data and end in a 5. A. The Role of Graphs Presents the data in pictorial form. Attracts attention in a publication or a presentation. B. Types of Graphs Bar graph graph of the frequency distribution for qualitative or categorical data. Histograph graph of the frequency distribution for quantitative data. Ogive graph of the cumulative frequency for quantitative data. Frequency polygon graph of the frequency for quantitative data. Dr. Janet Winter, Stat 200 Page 4

5 C. Histogram Scale: class boundaries or class midpoints Vertical (or horizontal) bars are proportional to the frequencies for each class. Class Boundaries Frequency Note: The scale on the non-frequency axis is either the class boundaries or class midpoints. Class midpoints are located in the middle of the bars and class boundaries are located at the ends of the bars. D. Frequency Polygon Scale: class midpoints Plot the frequency of each class at its midpoint, i.e., (class midpoint, class frequency.) The scale is sequential midpoints. Extend the midpoint scale once below the first class midpoint and once above the last class midpoint. Label the extensions. Plot a point at each extension with a frequency of zero (extension, 0). Connect all of the points with line segments forming a polygon. Note: Remember a polygon is a many sided closed figure. The extension points and the axis make the figure closed. Things to Remember About Frequency Polygons The scale is the difference between two sequential class midpoints. Extend the scale and graph once above the largest class midpoint and once below the smallest class midpoint. Use a frequency of zero with both extensions. Dr. Janet Winter, Stat 200 Page 5

6 Class Midpoint Frequency Note: Cumulative frequency for each upper boundary is the sum of the frequency in that class plus all lower class frequencies. E. Ogive or Cumulative Frequency Graph Scale: class boundaries Start with the lowest class boundary (lowest lower boundary, 0) and a frequency of zero, then plot the cumulative frequency at the class boundary of each class. End with the highest upper boundary (highest upper boundary, n) Class Frequency Cumulative Frequency Dr. Janet Winter, Stat 200 Page 6

7 Number of Students Scores for final exam Note: The line segments connect at (.5, 0), (20.5, 4), (40.5, 13), (60.5, 33), (80.5, 73), (100.5, 97) which are the (lowest lower boundary, 0), (first upper boundary, frequency for first class), (second upper boundary, frequency for second class), (last upper boundary, total frequency). F. Relative Frequency Graphs A relative frequency graph uses the frequencies divided by the total of all frequencies instead of frequencies. Use it with any graph when proportions are more meaningful than the actual count or frequency. G. Other Graphs of Interest I. Dot plot is a graph with a point r dot for each data value above a scaled horizontal line. II. A Pareto chart is a bar graph (for the categorical data) with the categories arranged from the highest to the lowest frequency. How People Get to Work Frequency Auto Bus Trolley Train Walk Dr. Janet Winter, Stat 200 Page 7

8 III. A time series graph is used for data that occur over a specific period of time; it is a graph of time on the x-axis and frequency on the y-axis ( time, quantity) connected with line segments: Temperature Over a 5-hour Period Temperature Time IV. A pie graph is a circle divided into sections proportional to the percentage in each category. Popcorn 13% Favorite American Snacks Snack Nuts 8% Potato Chips 38% Pretzels 14% Tortilla Chips 27% Note: The degree for a segment is the relative frequency for the segment times 360. V. A stem-and-leaf plot Use for quantitative data Vertically ordered list of the left part of the data digits (or stem) The right most digit of the data digits (called the leaf) listed horizontally and sequentially to the right Retains actual data while showing it in graphic form. Dr. Janet Winter, Stat 200 Page 8

9 a) Process: 1. Split the digits in the number into right most digit called the leaf and any remaining digits to the left called the stems 2. List all possible stem values once in increasing order 3. Draw a vertical line to the right of the stems 4. List the leaves sequentially and horizontally to the right of the vertical line with their respective stems as often as occurs Note: A stem value is listed once while leaves are listed as often as they occur in a data value b) Example: Data: Stem Plot: c) Other types of stem plots: Split stem-and-leaf Each stem value is recorded twice The first line is for trailing digits 1-4 The second line is for trailing digits 5-9 Back to back stem-and-leaf Separate the data into two categories by listing the leaf s for one category to the left of its stem and the leaf s for the other category to the right of its stem Dr. Janet Winter, Stat 200 Page 9

10 V. Chapter Review Questions 1. One of the early steps a researcher must do when conducting a statistical study is to a) gather and collect data. b) use a computer or a calculator to analyze the data. c) draw conclusions from the data. 2. A statistics professor gives a very easy 100 point test, with the highest score being 98 and the lowest score being 71. We want to divide this data into categories. Then, a reasonable width of categories could be a) 1 b) 5 c) The manager of a computer store wishes to track how many computer monitors of different screen sizes are sold during the week. He tallies the sales by the following categories: less than 15, , , , , and 20 and above. The best way to represent the data is using a a) Histogram. b) Frequency polygon. c) Ogive. d) All of the above. 4. What presents more information, a frequency polygon or an ogive? a) The frequency polygon presents more information. b) The ogive presents more information. c) They have equal amounts of information. 5. If we would like to display all the areas of the states in the Unites States and we only care about the states with the largest areas, then an appropriate graph would be a a) Pareto chart. b) Time series graph. c) Pie graph. 6. The dean of engineering at a school wishes to track the number of students with engineering majors over the past 10 years. An appropriate graph would be a a) Pareto chart. b) Time series graph. c) Pie graph. Dr. Janet Winter, Stat 200 Page 10

11 VI.Summary Histograms, frequency polygons and ogives are used for quantitative data in a grouped frequency distribution. Pareto charts and bar graphs are frequency graphs for qualitative variables. Time series graphs are used to show a pattern or trend that occurs over time. Pie graphs are used to show the relationship between the parts and the whole for qualitative or categorical data. Data can be organized in meaningful ways using frequency distributions and graphs. VII. ANSWERS: Chapter Review Questions 1. One of the early steps a researcher must do when conducting a statistical study is to a) gather and collect data. 2. A statistics professor gives a very easy 100 point test, with the highest score being a 98 and the lowest score being 71. We want to divide this data into categories. Then, a reasonable width of categories could be b) 5 3. The manager of a computer store wishes to track how many computer monitors of different screen sizes are sold during the week. He tallies the sales by the following categories: less than 15, , , , , and 20 and above. The best way to represent the data is using a d) All of the above. 4. Which presents more information, a frequency polygon or an ogive? c) They have equal amounts of information. 5. If we would like to display the areas of the states in the United States and we only care about the states with the largest areas, then an appropriate graph would be a a) Pareto chart. 6. The dean of engineering at a school wishes to track the number of students with engineering majors over the past 10 years. An appropriate graph would be a b) Time series graph. Dr. Janet Winter, Stat 200 Page 11

Darton College Online Math Center Statistics. Chapter 2: Frequency Distributions and Graphs. Presenting frequency distributions as graphs

Darton College Online Math Center Statistics. Chapter 2: Frequency Distributions and Graphs. Presenting frequency distributions as graphs Chapter : Frequency Distributions and Graphs 1 Presenting frequency distributions as graphs In a statistical study, researchers gather data that describe the particular variable under study. To present

More information

Statistics Chapter 2

Statistics Chapter 2 Statistics Chapter 2 Frequency Tables A frequency table organizes quantitative data. partitions data into classes (intervals). shows how many data values are in each class. Test Score Number of Students

More information

Sta 309 (Statistics And Probability for Engineers)

Sta 309 (Statistics And Probability for Engineers) Instructor: Prof. Mike Nasab Sta 309 (Statistics And Probability for Engineers) Chapter 2 Organizing and Summarizing Data Raw Data: When data are collected in original form, they are called raw data. The

More information

Summarizing and Displaying Categorical Data

Summarizing and Displaying Categorical Data Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency

More information

Visualizing Data. Contents. 1 Visualizing Data. Anthony Tanbakuchi Department of Mathematics Pima Community College. Introductory Statistics Lectures

Visualizing Data. Contents. 1 Visualizing Data. Anthony Tanbakuchi Department of Mathematics Pima Community College. Introductory Statistics Lectures Introductory Statistics Lectures Visualizing Data Descriptive Statistics I Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission of the

More information

Statistics Revision Sheet Question 6 of Paper 2

Statistics Revision Sheet Question 6 of Paper 2 Statistics Revision Sheet Question 6 of Paper The Statistics question is concerned mainly with the following terms. The Mean and the Median and are two ways of measuring the average. sumof values no. of

More information

2 Describing, Exploring, and

2 Describing, Exploring, and 2 Describing, Exploring, and Comparing Data This chapter introduces the graphical plotting and summary statistics capabilities of the TI- 83 Plus. First row keys like \ R (67$73/276 are used to obtain

More information

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

More information

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

More information

Appendix 2.1 Tabular and Graphical Methods Using Excel

Appendix 2.1 Tabular and Graphical Methods Using Excel Appendix 2.1 Tabular and Graphical Methods Using Excel 1 Appendix 2.1 Tabular and Graphical Methods Using Excel The instructions in this section begin by describing the entry of data into an Excel spreadsheet.

More information

MODUL 8 MATEMATIK SPM ENRICHMENT TOPIC : STATISTICS TIME : 2 HOURS

MODUL 8 MATEMATIK SPM ENRICHMENT TOPIC : STATISTICS TIME : 2 HOURS MODUL 8 MATEMATIK SPM ENRICHMENT TOPIC : STATISTICS TIME : 2 HOURS 1. The data in Diagram 1 shows the body masses, in kg, of 40 children in a kindergarten. 16 24 34 26 30 40 35 30 26 33 18 20 29 31 30

More information

Bar Charts, Histograms, Line Graphs & Pie Charts

Bar Charts, Histograms, Line Graphs & Pie Charts Bar Charts and Histograms Bar charts and histograms are commonly used to represent data since they allow quick assimilation and immediate comparison of information. Normally the bars are vertical, but

More information

0.10 10% 40 = = M 28 28

0.10 10% 40 = = M 28 28 Math 227 Elementary Statistics: A Brief Version, 5/e Bluman Section 2-1 # s 3, 7, 8, 11 3) Find the class boundaries, midpoints, and widths for each class. a) 12 18 b) 56 74 c) 695 705 d) 13.6 14.7 e)

More information

Diagrams and Graphs of Statistical Data

Diagrams and Graphs of Statistical Data Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in

More information

Descriptive Statistics

Descriptive Statistics CHAPTER Descriptive Statistics.1 Distributions and Their Graphs. More Graphs and Displays.3 Measures of Central Tendency. Measures of Variation Case Study. Measures of Position Uses and Abuses Real Statistics

More information

Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

More information

Describing, Exploring, and Comparing Data

Describing, Exploring, and Comparing Data 24 Chapter 2. Describing, Exploring, and Comparing Data Chapter 2. Describing, Exploring, and Comparing Data There are many tools used in Statistics to visualize, summarize, and describe data. This chapter

More information

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

More information

Descriptive Statistics

Descriptive Statistics Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

More information

SECTION 2-1: OVERVIEW SECTION 2-2: FREQUENCY DISTRIBUTIONS

SECTION 2-1: OVERVIEW SECTION 2-2: FREQUENCY DISTRIBUTIONS SECTION 2-1: OVERVIEW Chapter 2 Describing, Exploring and Comparing Data 19 In this chapter, we will use the capabilities of Excel to help us look more carefully at sets of data. We can do this by re-organizing

More information

AP * Statistics Review. Descriptive Statistics

AP * Statistics Review. Descriptive Statistics AP * Statistics Review Descriptive Statistics Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production

More information

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

More information

Probability Distributions

Probability Distributions CHAPTER 5 Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Probability Distribution 5.3 The Binomial Distribution

More information

Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple.

Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple. Graphical Representations of Data, Mean, Median and Standard Deviation In this class we will consider graphical representations of the distribution of a set of data. The goal is to identify the range of

More information

MATH 103/GRACEY PRACTICE EXAM/CHAPTERS 2-3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 103/GRACEY PRACTICE EXAM/CHAPTERS 2-3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MATH 3/GRACEY PRACTICE EXAM/CHAPTERS 2-3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) The frequency distribution

More information

Directions for Frequency Tables, Histograms, and Frequency Bar Charts

Directions for Frequency Tables, Histograms, and Frequency Bar Charts Directions for Frequency Tables, Histograms, and Frequency Bar Charts Frequency Distribution Quantitative Ungrouped Data Dataset: Frequency_Distributions_Graphs-Quantitative.sav 1. Open the dataset containing

More information

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

More information

Lesson 2: Constructing Line Graphs and Bar Graphs

Lesson 2: Constructing Line Graphs and Bar Graphs Lesson 2: Constructing Line Graphs and Bar Graphs Selected Content Standards Benchmarks Assessed: D.1 Designing and conducting statistical experiments that involve the collection, representation, and analysis

More information

Drawing a histogram using Excel

Drawing a histogram using Excel Drawing a histogram using Excel STEP 1: Examine the data to decide how many class intervals you need and what the class boundaries should be. (In an assignment you may be told what class boundaries to

More information

Common Tools for Displaying and Communicating Data for Process Improvement

Common Tools for Displaying and Communicating Data for Process Improvement Common Tools for Displaying and Communicating Data for Process Improvement Packet includes: Tool Use Page # Box and Whisker Plot Check Sheet Control Chart Histogram Pareto Diagram Run Chart Scatter Plot

More information

(1): 50 minutes None Whole Class N/A 03.SC.TE.04 3-5.TE.2.2 Bar Graph, Graph, Line graph, Pie Graph

(1): 50 minutes None Whole Class N/A 03.SC.TE.04 3-5.TE.2.2 Bar Graph, Graph, Line graph, Pie Graph 3.G.1 What is a Graph? Creation and interpretation of various graph types Grade Level 3 Sessions Seasonality Instructional Mode(s) Team Size WPS Benchmarks MA Frameworks Key Words (1): 50 minutes Whole

More information

Northumberland Knowledge

Northumberland Knowledge Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about

More information

Variables. Exploratory Data Analysis

Variables. Exploratory Data Analysis Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is

More information

Exercise 1.12 (Pg. 22-23)

Exercise 1.12 (Pg. 22-23) Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

More information

MBA 611 STATISTICS AND QUANTITATIVE METHODS

MBA 611 STATISTICS AND QUANTITATIVE METHODS MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain

More information

Describing Data: Frequency Distributions and Graphic Presentation

Describing Data: Frequency Distributions and Graphic Presentation Chapter 2 Describing Data: Frequency Distributions and Graphic Presentation GOALS When you have completed this chapter, you will be able to: Organize raw data into a frequency distribution Produce a histogram,

More information

A Picture Really Is Worth a Thousand Words

A Picture Really Is Worth a Thousand Words 4 A Picture Really Is Worth a Thousand Words Difficulty Scale (pretty easy, but not a cinch) What you ll learn about in this chapter Why a picture is really worth a thousand words How to create a histogram

More information

Valor Christian High School Mrs. Bogar Biology Graphing Fun with a Paper Towel Lab

Valor Christian High School Mrs. Bogar Biology Graphing Fun with a Paper Towel Lab 1 Valor Christian High School Mrs. Bogar Biology Graphing Fun with a Paper Towel Lab I m sure you ve wondered about the absorbency of paper towel brands as you ve quickly tried to mop up spilled soda from

More information

Dimension: Data Handling Module: Organization and Representation of data Unit: Construction and Interpretation of Simple Diagrams and Graphs

Dimension: Data Handling Module: Organization and Representation of data Unit: Construction and Interpretation of Simple Diagrams and Graphs Topic: Stem and Leaf Diagrams S1 Topic 13 Level: Key Stage 3 Dimension: Data Handling Module: Organization and Representation of data Unit: Construction and Interpretation of Simple Diagrams and Graphs

More information

Part 1: Background - Graphing

Part 1: Background - Graphing Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background - Graphing In science it is very important to find and

More information

CAMI Education linked to CAPS: Mathematics

CAMI Education linked to CAPS: Mathematics - 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to

More information

CHAPTER 14 STATISTICS. 14.1 Introduction

CHAPTER 14 STATISTICS. 14.1 Introduction 238 MATHEMATICS STATISTICS CHAPTER 14 14.1 Introduction Everyday we come across a lot of information in the form of facts, numerical figures, tables, graphs, etc. These are provided by newspapers, televisions,

More information

Examples of Data Representation using Tables, Graphs and Charts

Examples of Data Representation using Tables, Graphs and Charts Examples of Data Representation using Tables, Graphs and Charts This document discusses how to properly display numerical data. It discusses the differences between tables and graphs and it discusses various

More information

Charlesworth School Year Group Maths Targets

Charlesworth School Year Group Maths Targets Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve

More information

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques

More information

Numeracy and mathematics Experiences and outcomes

Numeracy and mathematics Experiences and outcomes Numeracy and mathematics Experiences and outcomes My learning in mathematics enables me to: develop a secure understanding of the concepts, principles and processes of mathematics and apply these in different

More information

Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

More information

Consolidation of Grade 3 EQAO Questions Data Management & Probability

Consolidation of Grade 3 EQAO Questions Data Management & Probability Consolidation of Grade 3 EQAO Questions Data Management & Probability Compiled by Devika William-Yu (SE2 Math Coach) GRADE THREE EQAO QUESTIONS: Data Management and Probability Overall Expectations DV1

More information

Section 1.1 Exercises (Solutions)

Section 1.1 Exercises (Solutions) Section 1.1 Exercises (Solutions) HW: 1.14, 1.16, 1.19, 1.21, 1.24, 1.25*, 1.31*, 1.33, 1.34, 1.35, 1.38*, 1.39, 1.41* 1.14 Employee application data. The personnel department keeps records on all employees

More information

Bar Graphs and Dot Plots

Bar Graphs and Dot Plots CONDENSED L E S S O N 1.1 Bar Graphs and Dot Plots In this lesson you will interpret and create a variety of graphs find some summary values for a data set draw conclusions about a data set based on graphs

More information

The Big Picture. Describing Data: Categorical and Quantitative Variables Population. Descriptive Statistics. Community Coalitions (n = 175)

The Big Picture. Describing Data: Categorical and Quantitative Variables Population. Descriptive Statistics. Community Coalitions (n = 175) Describing Data: Categorical and Quantitative Variables Population The Big Picture Sampling Statistical Inference Sample Exploratory Data Analysis Descriptive Statistics In order to make sense of data,

More information

What Does the Normal Distribution Sound Like?

What Does the Normal Distribution Sound Like? What Does the Normal Distribution Sound Like? Ananda Jayawardhana Pittsburg State University ananda@pittstate.edu Published: June 2013 Overview of Lesson In this activity, students conduct an investigation

More information

Creating Charts in Microsoft Excel A supplement to Chapter 5 of Quantitative Approaches in Business Studies

Creating Charts in Microsoft Excel A supplement to Chapter 5 of Quantitative Approaches in Business Studies Creating Charts in Microsoft Excel A supplement to Chapter 5 of Quantitative Approaches in Business Studies Components of a Chart 1 Chart types 2 Data tables 4 The Chart Wizard 5 Column Charts 7 Line charts

More information

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9 Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

More information

Unit 9 Describing Relationships in Scatter Plots and Line Graphs

Unit 9 Describing Relationships in Scatter Plots and Line Graphs Unit 9 Describing Relationships in Scatter Plots and Line Graphs Objectives: To construct and interpret a scatter plot or line graph for two quantitative variables To recognize linear relationships, non-linear

More information

MATHS LEVEL DESCRIPTORS

MATHS LEVEL DESCRIPTORS MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and

More information

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

More information

Mathematics. Probability and Statistics Curriculum Guide. Revised 2010

Mathematics. Probability and Statistics Curriculum Guide. Revised 2010 Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction

More information

6. Decide which method of data collection you would use to collect data for the study (observational study, experiment, simulation, or survey):

6. Decide which method of data collection you would use to collect data for the study (observational study, experiment, simulation, or survey): MATH 1040 REVIEW (EXAM I) Chapter 1 1. For the studies described, identify the population, sample, population parameters, and sample statistics: a) The Gallup Organization conducted a poll of 1003 Americans

More information

CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are

More information

Measurement with Ratios

Measurement with Ratios Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

More information

Math Journal HMH Mega Math. itools Number

Math Journal HMH Mega Math. itools Number Lesson 1.1 Algebra Number Patterns CC.3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. Identify and

More information

Using SPSS, Chapter 2: Descriptive Statistics

Using SPSS, Chapter 2: Descriptive Statistics 1 Using SPSS, Chapter 2: Descriptive Statistics Chapters 2.1 & 2.2 Descriptive Statistics 2 Mean, Standard Deviation, Variance, Range, Minimum, Maximum 2 Mean, Median, Mode, Standard Deviation, Variance,

More information

Module 2: Introduction to Quantitative Data Analysis

Module 2: Introduction to Quantitative Data Analysis Module 2: Introduction to Quantitative Data Analysis Contents Antony Fielding 1 University of Birmingham & Centre for Multilevel Modelling Rebecca Pillinger Centre for Multilevel Modelling Introduction...

More information

TECHNIQUES OF DATA PRESENTATION, INTERPRETATION AND ANALYSIS

TECHNIQUES OF DATA PRESENTATION, INTERPRETATION AND ANALYSIS TECHNIQUES OF DATA PRESENTATION, INTERPRETATION AND ANALYSIS BY DR. (MRS) A.T. ALABI DEPARTMENT OF EDUCATIONAL MANAGEMENT, UNIVERSITY OF ILORIN, ILORIN. Introduction In the management of educational institutions

More information

Practice#1(chapter1,2) Name

Practice#1(chapter1,2) Name Practice#1(chapter1,2) Name Solve the problem. 1) The average age of the students in a statistics class is 22 years. Does this statement describe descriptive or inferential statistics? A) inferential statistics

More information

Key Topics What will ALL students learn? What will the most able students learn?

Key Topics What will ALL students learn? What will the most able students learn? 2013 2014 Scheme of Work Subject MATHS Year 9 Course/ Year Term 1 Key Topics What will ALL students learn? What will the most able students learn? Number Written methods of calculations Decimals Rounding

More information

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

More information

THE BINOMIAL DISTRIBUTION & PROBABILITY

THE BINOMIAL DISTRIBUTION & PROBABILITY REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution

More information

Gage Studies for Continuous Data

Gage Studies for Continuous Data 1 Gage Studies for Continuous Data Objectives Determine the adequacy of measurement systems. Calculate statistics to assess the linearity and bias of a measurement system. 1-1 Contents Contents Examples

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapter 2: Descriptive Statistics **This chapter corresponds to chapters 2 ( Means to an End ) and 3 ( Vive la Difference ) of your book. What it is: Descriptive statistics are values that describe the

More information

R Graphics Cookbook. Chang O'REILLY. Winston. Tokyo. Beijing Cambridge. Farnham Koln Sebastopol

R Graphics Cookbook. Chang O'REILLY. Winston. Tokyo. Beijing Cambridge. Farnham Koln Sebastopol R Graphics Cookbook Winston Chang Beijing Cambridge Farnham Koln Sebastopol O'REILLY Tokyo Table of Contents Preface ix 1. R Basics 1 1.1. Installing a Package 1 1.2. Loading a Package 2 1.3. Loading a

More information

Basic Tools for Process Improvement

Basic Tools for Process Improvement What is a Histogram? A Histogram is a vertical bar chart that depicts the distribution of a set of data. Unlike Run Charts or Control Charts, which are discussed in other modules, a Histogram does not

More information

Exploratory Data Analysis. Psychology 3256

Exploratory Data Analysis. Psychology 3256 Exploratory Data Analysis Psychology 3256 1 Introduction If you are going to find out anything about a data set you must first understand the data Basically getting a feel for you numbers Easier to find

More information

ITS Training Class Charts and PivotTables Using Excel 2007

ITS Training Class Charts and PivotTables Using Excel 2007 When you have a large amount of data and you need to get summary information and graph it, the PivotTable and PivotChart tools in Microsoft Excel will be the answer. The data does not need to be in one

More information

Unit 13 Handling data. Year 4. Five daily lessons. Autumn term. Unit Objectives. Link Objectives

Unit 13 Handling data. Year 4. Five daily lessons. Autumn term. Unit Objectives. Link Objectives Unit 13 Handling data Five daily lessons Year 4 Autumn term (Key objectives in bold) Unit Objectives Year 4 Solve a problem by collecting quickly, organising, Pages 114-117 representing and interpreting

More information

Chapter 1: The Nature of Probability and Statistics

Chapter 1: The Nature of Probability and Statistics Chapter 1: The Nature of Probability and Statistics Learning Objectives Upon successful completion of Chapter 1, you will have applicable knowledge of the following concepts: Statistics: An Overview and

More information

Primary Curriculum 2014

Primary Curriculum 2014 Primary Curriculum 2014 Suggested Key Objectives for Mathematics at Key Stages 1 and 2 Year 1 Maths Key Objectives Taken from the National Curriculum 1 Count to and across 100, forwards and backwards,

More information

Excel -- Creating Charts

Excel -- Creating Charts Excel -- Creating Charts The saying goes, A picture is worth a thousand words, and so true. Professional looking charts give visual enhancement to your statistics, fiscal reports or presentation. Excel

More information

Week 1. Exploratory Data Analysis

Week 1. Exploratory Data Analysis Week 1 Exploratory Data Analysis Practicalities This course ST903 has students from both the MSc in Financial Mathematics and the MSc in Statistics. Two lectures and one seminar/tutorial per week. Exam

More information

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

More information

Modifying Colors and Symbols in ArcMap

Modifying Colors and Symbols in ArcMap Modifying Colors and Symbols in ArcMap Contents Introduction... 1 Displaying Categorical Data... 3 Creating New Categories... 5 Displaying Numeric Data... 6 Graduated Colors... 6 Graduated Symbols... 9

More information

STAB22 section 1.1. total = 88(200/100) + 85(200/100) + 77(300/100) + 90(200/100) + 80(100/100) = 176 + 170 + 231 + 180 + 80 = 837,

STAB22 section 1.1. total = 88(200/100) + 85(200/100) + 77(300/100) + 90(200/100) + 80(100/100) = 176 + 170 + 231 + 180 + 80 = 837, STAB22 section 1.1 1.1 Find the student with ID 104, who is in row 5. For this student, Exam1 is 95, Exam2 is 98, and Final is 96, reading along the row. 1.2 This one involves a careful reading of the

More information

Creating Graphs. Learning Objective-To create graphs that show data.

Creating Graphs. Learning Objective-To create graphs that show data. Creating Graphs Summary- Key Words- Students will be able to identify graphs, components of graphs, interpret graphs, and construct various types of graphs. Pictograph Bar Graph Circle Graph Background

More information

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing!

MATH BOOK OF PROBLEMS SERIES. New from Pearson Custom Publishing! MATH BOOK OF PROBLEMS SERIES New from Pearson Custom Publishing! The Math Book of Problems Series is a database of math problems for the following courses: Pre-algebra Algebra Pre-calculus Calculus Statistics

More information

Statistics and Probability

Statistics and Probability Statistics and Probability TABLE OF CONTENTS 1 Posing Questions and Gathering Data. 2 2 Representing Data. 7 3 Interpreting and Evaluating Data 13 4 Exploring Probability..17 5 Games of Chance 20 6 Ideas

More information

Intro to Statistics 8 Curriculum

Intro to Statistics 8 Curriculum Intro to Statistics 8 Curriculum Unit 1 Bar, Line and Circle Graphs Estimated time frame for unit Big Ideas 8 Days... Essential Question Concepts Competencies Lesson Plans and Suggested Resources Bar graphs

More information

Licensed to: CengageBrain User

Licensed to: CengageBrain User This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not

More information

Calculation example mean, median, midrange, mode, variance, and standard deviation for raw and grouped data

Calculation example mean, median, midrange, mode, variance, and standard deviation for raw and grouped data Calculation example mean, median, midrange, mode, variance, and standard deviation for raw and grouped data Raw data: 7, 8, 6, 3, 5, 5, 1, 6, 4, 10 Sorted data: 1, 3, 4, 5, 5, 6, 6, 7, 8, 10 Number of

More information

a. mean b. interquartile range c. range d. median

a. mean b. interquartile range c. range d. median 3. Since 4. The HOMEWORK 3 Due: Feb.3 1. A set of data are put in numerical order, and a statistic is calculated that divides the data set into two equal parts with one part below it and the other part

More information

Procedure for Graphing Polynomial Functions

Procedure for Graphing Polynomial Functions Procedure for Graphing Polynomial Functions P(x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine

More information

Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217

Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217 Part 3 Comparing Groups Chapter 7 Comparing Paired Groups 189 Chapter 8 Comparing Two Independent Groups 217 Chapter 9 Comparing More Than Two Groups 257 188 Elementary Statistics Using SAS Chapter 7 Comparing

More information

Formulas, Functions and Charts

Formulas, Functions and Charts Formulas, Functions and Charts :: 167 8 Formulas, Functions and Charts 8.1 INTRODUCTION In this leson you can enter formula and functions and perform mathematical calcualtions. You will also be able to

More information

DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS

DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 110 012 seema@iasri.res.in 1. Descriptive Statistics Statistics

More information

Basic Understandings

Basic Understandings Activity: TEKS: Exploring Transformations Basic understandings. (5) Tools for geometric thinking. Techniques for working with spatial figures and their properties are essential to understanding underlying

More information

Paper 1. Calculator not allowed. Mathematics test. First name. Last name. School. Remember KEY STAGE 3 TIER 6 8

Paper 1. Calculator not allowed. Mathematics test. First name. Last name. School. Remember KEY STAGE 3 TIER 6 8 Ma KEY STAGE 3 Mathematics test TIER 6 8 Paper 1 Calculator not allowed First name Last name School 2009 Remember The test is 1 hour long. You must not use a calculator for any question in this test. You

More information

Years after 2000. US Student to Teacher Ratio 0 16.048 1 15.893 2 15.900 3 15.900 4 15.800 5 15.657 6 15.540

Years after 2000. US Student to Teacher Ratio 0 16.048 1 15.893 2 15.900 3 15.900 4 15.800 5 15.657 6 15.540 To complete this technology assignment, you should already have created a scatter plot for your data on your calculator and/or in Excel. You could do this with any two columns of data, but for demonstration

More information

DesCartes (Combined) Subject: Mathematics Goal: Statistics and Probability

DesCartes (Combined) Subject: Mathematics Goal: Statistics and Probability DesCartes (Combined) Subject: Mathematics Goal: Statistics and Probability RIT Score Range: Below 171 Below 171 Data Analysis and Statistics Solves simple problems based on data from tables* Compares

More information

Graphing Quadratic Functions

Graphing Quadratic Functions Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the

More information

Exploratory Spatial Data Analysis

Exploratory Spatial Data Analysis Exploratory Spatial Data Analysis Part II Dynamically Linked Views 1 Contents Introduction: why to use non-cartographic data displays Display linking by object highlighting Dynamic Query Object classification

More information