Means, standard deviations and. and standard errors

Save this PDF as:

Size: px
Start display at page:

Transcription

1 CHAPTER 4 Means, standard deviations and standard errors 4.1 Introduction Change of units 4.2 Mean, median and mode Coefficient of variation 4.3 Measures of variation 4.4 Calculating the mean and standard Range and interquartile range deviation from a frequency Variance distribution Degrees of freedom 4.5 Sampling variation and Standard deviation standard error Interpretation of the standard Understanding standard deviations deviation and standard errors 4.1 INTRODUCTION A frequency distribution (see Section 3.2) gives a general picture of the distribution of a variable. It is often convenient, however, to summarize a numerical variable still further by giving just two measurements, one indicating the average value and the other the spread of the values. 4.2 MEAN, MEDIAN AND MODE The average value is usually represented by the arithmetic mean, customarily just called the mean. This is simply the sum of the values divided by the number of values. Mean, x ˆ x n where x denotes the values of the variable, (the Greek capital letter sigma) means `the sum of' and n is the number of observations. The mean is denoted by x (spoken `x bar'). Other measures of the average value are the median and the mode. The median was defined in Section 3.3 as the value that divides the distribution in half. If the observations are arranged in increasing order, the median is the middle observation. Median ˆ (n 1) th value of ordered observations 2

2 34 Chapter 4: Means, standard deviations and standard errors If there is an even number of observations, there is no middle one and the average of the two `middle' ones is taken. The mode is the value which occurs most often. Example 4.1 The following are the plasma volumes of eight healthy adult males: 2:75, 2:86, 3:37, 2:76, 2:62, 3:49, 3:05, 3:12 litres (a) n ˆ 8 x ˆ 2:75 2:86 3:37 2:76 2:62 3:49 3:05 3:12 ˆ 24:02 litres Mean, x ˆ x=n ˆ 24:02=8 ˆ 3:00 litres (b) Rearranging the measurements in increasing order gives: 2:62, 2:75, 2:76, 2:86, 3:05, 3:12, 3:37, 3:49 litres Median ˆ (n 1)=2 ˆ 9=2 ˆ 43th value ˆ average of 4th and 5th values ˆ (2:86 3:05)=2 ˆ 2:96 litres (c) There is no estimate of the mode, since all the values are different. The mean is usually the preferred measure since it takes into account each individual observation and is most amenable to statistical analysis. The median is a useful descriptive measure if there are one or two extremely high or low values, which would make the mean unrepresentative of the majority of the data. The mode is seldom used. If the sample is small, either it may not be possible to estimate the mode (as in Example 4.1c), or the estimate obtained may be misleading. The mean, median and mode are, on average, equal when the distribution is symmetrical and unimodal. When the distribution is positively skewed, a geometric mean may be more appropriate than the arithmetic mean. This is discussed in Chapter MEASURES OF VARIATION Range and interquartile range Two measures of the amount of variation in a data set, the range and the interquartile range, were introduced in Section 3.3. The range is the simplest measure, and is the difference between the largest and smallest values. Its disadvantage is that it is based on only two of the observations and gives no idea of how the other observations are arranged between these two. Also, it tends to be larger, the larger the size of the sample. The interquartile range indicates the spread of the middle 50% of the distribution, and together with the median is a useful adjunct to the range. It is less sensitive to the size of the sample, providing that this is not too

3 4.3 Measures of variation 35 small;the lower and upper quartiles tend to be more stable than the extreme values that determine the range. These two ranges form the basis of the box and whiskers plot, described in Sections 3.3 and 3.4. Range ˆ highest value lowest value Interquartile range ˆ upper quartile lower quartile Variance For most statistical analyses the preferred measure of variation is the variance (or the standard deviation, which is derived from the variance, see below). This uses all the observations, and is defined in terms of the deviations (x x) of the observations from the mean, since the variation is small if the observations are bunched closely about their mean, and large if they are scattered over considerable distances. It is not possible simply to average the deviations, as this average will always be zero; the positive deviations corresponding to values above the mean will balance out the negative deviations from values below the mean. An obvious way of overcoming this difficulty would be simply to average the sizes of the deviations, ignoring their sign. However, this measure is not mathematically very tractable, and so instead we average the squares of the deviations, since the square of a number is always positive. Variance, s 2 ˆ (x x)2 (n 1) Degrees of freedom Note that the sum of squared deviations is divided by (n 1) rather than n, because it can be shown mathematically that this gives a better estimate of the variance of the underlying population. The denominator (n 1) is called the number of degrees of freedom of the variance. This number is (n 1) rather than n, since only (n 1) of the deviations (x x) are independent from each other. The last one can always be calculated from the others because all n of them must add up to zero. Standard deviation A disadvantage of the variance is that it is measured in the square of the units used for the observations. For example, if the observations are weights in grams, the

4 36 Chapter 4: Means, standard deviations and standard errors variance is in grams squared. For many purposes it is more convenient to express the variation in the original units by taking the square root of the variance. This is called the standard deviation (s.d.). s (x x)2 s:d:, s ˆ (n 1) or equivalently s s ˆ x2 (x) 2 =n (n 1) When using a calculator, the second formula is more convenient for calculation, since the mean does not have to be calculated first and then subtracted from each of the observations. The equivalence of the two formulae is demonstrated in Example 4.2. (Note: Many calculators have built-in functions for the mean and standard deviation. The keys are commonly labelled x and n 1, respectively, where is the lower case Greek letter sigma.) Example 4.2 Table 4.1 shows the steps for the calculation of the standard deviation of the eight plasma volume measurements of Example 4.1. x 2 (x) 2 =n ˆ 72:7980 (24:02) 2 =8 ˆ 0:6780 gives the same answer as (x x) 2, and p s ˆ ( 0:6780=7) ˆ 0:31 litres Table 4.1 Calculation of the standard deviation of the plasma volumes (in litres) of eight healthy adult males (same data as in Example 4.1). Mean, x ˆ 3:00 litres. Plasma volume x Deviation from the mean x x Squared deviation Squared observation (x x) 2 x Totals

6 38 Chapter 4: Means, standard deviations and standard errors Table 4.2 Distribution of the number of previous pregnancies of a group of women aged 30±34attending an antenatal clinic. No. of previous pregnancies Total No. of women equivalent to adding the product (2 31), the total number of previous pregnancies is calculated by: x ˆ (0 18) (1 27) (2 31) (3 19) (4 5) ˆ ˆ 166 The average number of previous pregnancies is, therefore: x ˆ 166=100 ˆ 1:66 In the same way: x 2 ˆ (0 2 18) (1 2 27) (2 2 31) (3 2 19) (4 2 5) ˆ ˆ 402 The standard deviation is, therefore: r s ˆ ( =100) 99 r ˆ 126:44 99 ˆ 1:13 If a variable has been grouped when constructing a frequency distribution, its mean and standard deviation should be calculated using the original values, not the frequency distribution. There are occasions, however, when only the frequency distribution is available. In such a case, approximate values for the mean and standard deviation can be calculated by using the values of the mid-points of the groups and proceeding as above. 4.5 SAMPLING VARIATION ANDSTANDARDERROR As discussed in Chapter 2, the sample is of interest not in its own right, but for what it tells the investigator about the population which it represents. The sample mean, x, and standard deviation, s, are used to estimate the mean and standard deviation of the population, denoted by the Greek letters (mu) and (sigma) respectively. The sample mean is unlikely to be exactly equal to the population mean. A different sample would give a different estimate, the difference being due to

7 4.5 Sampling variation and standard error 39 sampling variation. Imagine collecting many independent samples of the same size from the same population, and calculating the sample mean of each of them. A frequency distribution of these means (called the sampling distribution) could then be formed. It can be shown that: 1 the mean of this frequency distribution would be the population mean, and p 2 the standard deviation would equal = n. This is called the standard error of the sample mean, and it measures how precisely the population mean is estimated by the sample mean. The size of the standard error depends both on how much variation there is in the population and on the size of the sample. The larger the sample size n, the smaller is the standard error. We seldom know the population standard deviation,, however, and so we use the sample standard deviation, s, in its place to estimate the standard error. s:e: ˆ p s n Example 4.3 The mean of the eight plasma volumes shown in Table 4.1 is 3.00 litres (Example 4.1) and the standard deviation is 0.31 litres (Example 4.2). The standard error of the mean is therefore estimated as: p p s= n ˆ 0:31= 8 ˆ 0:11 litres Understanding standard deviations and standard errors Example 4.4 Figure 4.1 shows the results of a game played with a class of 30 students to illustrate the concepts of sampling variation, the sampling distribution, and standard error. Blood pressure measurements for 250 airline pilots were used, and served as the population in the game. The distribution of these measurements is shown in Figure 4.1(a). The population mean,, was 78.2 mmhg, and the population standard deviation,, was 9.4 mmhg. Each value was written on a small disc and the 250 discs put into a bag. Each student was asked to shake the bag, select ten discs, write down the ten diastolic blood pressures, work out their mean, x, and return the discs to the bag. In this way 30 different samples were obtained, with 30 different sample means, each estimating the same population mean. The mean of these sample means was mmhg, close to the population mean. Their distribution is shown in Figure 4.1(b). The standard deviation of the sample means was 3.01 mmhg, which agreed p p well with the theoretical value, = n ˆ 9:4= 10 ˆ 2:97 mmhg, for the standard error of the mean of a sample of size ten.

8 40 Chapter 4: Means, standard deviations and standard errors Fig. 4.1 Results of a game played to illustrate the concepts of sampling variation, the sampling distribution, and the standard error. The exercise was repeated taking samples of size 20. The results are shown in Figure 4.1(c). The reduced variation in the sample means resulting from increasing the sample size from 10 to 20 can be clearly seen. The mean of the sample means was mmhg, again close to the population mean. The standard deviation p was 2.07 mmhg, again in good agreement with the theoretical value, 9:4= 20 ˆ 2:10 mmhg, for the standard error of the mean of a sample of size 20.

9 4.5 Sampling variation and standard error 41 In this game, we had the luxury of results from several different samples, and could draw the sampling distribution. Usually we are not in this position: we have just one sample that we wish to use to estimate the mean of a larger population, which it represents. We can draw the frequency distribution of the values in our sample (see, for example, Figure 3.3 of the histogram of haemoglobin levels of 70 women). Providing the sample size is not too small, this frequency distribution will be similar in appearance to the frequency distribution of the underlying population, with a similar spread of values. In particular, the sample standard deviation will be a fairly accurate estimate of the population standard deviation. As stated in Section 4.2, approximately, 95% of the sample values will lie within two standard deviations of the sample mean. Similarly, approximately 95% of all the values in the population will lie within this same amount of the population mean. The sample mean will not be exactly equal to the population mean. The theoretical distribution called the sampling distribution gives us the spread of values we would get if we took a large number of additional samples;this spread depends on the amount of variation in the underlying population and on our sample size. The standard deviation of the sampling distribution is called the standard error and is equal to the standard deviation of the population, divided by the square root of n. This means that approximately 95% of the values in this theoretical sampling distribution of sample means lie within two standard errors of the population mean. This fact can be used to construct a range of likely values for the (unknown) population mean, based on the observed sample mean and its standard error. Such a range is called a confidence interval. Its method of construction is not described until Chapter 6 since it depends on using the normal distribution, described in Chapter 5. In summary: The standard deviation measures the amount of variability in the population. p The standard error (ˆ standard deviation / n ) measures the amount of variability in the sample mean;it indicates how closely the population mean is likely to be estimated by the sample mean. Because standard deviations and standard errors are often confused it is very important that they are clearly labelled when presented in tables of results.

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

Northumberland Knowledge

Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about

A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes

A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes together with the number of data values from the set that

Summarizing Data: Measures of Variation

Summarizing Data: Measures of Variation One aspect of most sets of data is that the values are not all alike; indeed, the extent to which they are unalike, or vary among themselves, is of basic importance

Chapter 3 Descriptive Statistics: Numerical Measures. Learning objectives

Chapter 3 Descriptive Statistics: Numerical Measures Slide 1 Learning objectives 1. Single variable Part I (Basic) 1.1. How to calculate and use the measures of location 1.. How to calculate and use the

We will use the following data sets to illustrate measures of center. DATA SET 1 The following are test scores from a class of 20 students:

MODE The mode of the sample is the value of the variable having the greatest frequency. Example: Obtain the mode for Data Set 1 77 For a grouped frequency distribution, the modal class is the class having

Numerical Summarization of Data OPRE 6301

Numerical Summarization of Data OPRE 6301 Motivation... In the previous session, we used graphical techniques to describe data. For example: While this histogram provides useful insight, other interesting

4. Introduction to Statistics

Statistics for Engineers 4-1 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation

Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)

Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center

Introduction to Descriptive Statistics

Mathematics Learning Centre Introduction to Descriptive Statistics Jackie Nicholas c 1999 University of Sydney Acknowledgements Parts of this booklet were previously published in a booklet of the same

Data Analysis: Describing Data - Descriptive Statistics

WHAT IT IS Return to Table of ontents Descriptive statistics include the numbers, tables, charts, and graphs used to describe, organize, summarize, and present raw data. Descriptive statistics are most

Chapter 3: Central Tendency

Chapter 3: Central Tendency Central Tendency In general terms, central tendency is a statistical measure that determines a single value that accurately describes the center of the distribution and represents

MEASURES OF VARIATION

NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

3: Summary Statistics

3: Summary Statistics Notation Let s start by introducing some notation. Consider the following small data set: 4 5 30 50 8 7 4 5 The symbol n represents the sample size (n = 0). The capital letter X denotes

STATISTICS FOR PSYCH MATH REVIEW GUIDE

STATISTICS FOR PSYCH MATH REVIEW GUIDE ORDER OF OPERATIONS Although remembering the order of operations as BEDMAS may seem simple, it is definitely worth reviewing in a new context such as statistics formulae.

10-3 Measures of Central Tendency and Variation

10-3 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.

2.0 Lesson Plan. Answer Questions. Summary Statistics. Histograms. The Normal Distribution. Using the Standard Normal Table

2.0 Lesson Plan Answer Questions 1 Summary Statistics Histograms The Normal Distribution Using the Standard Normal Table 2. Summary Statistics Given a collection of data, one needs to find representations

not to be republished NCERT Measures of Central Tendency

You have learnt in previous chapter that organising and presenting data makes them comprehensible. It facilitates data processing. A number of statistical techniques are used to analyse the data. In this

Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences

Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html

Data Mining Part 2. Data Understanding and Preparation 2.1 Data Understanding Spring 2010

Data Mining Part 2. and Preparation 2.1 Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Outline Introduction Measuring the Central Tendency Measuring the Dispersion of Data Graphic Displays References

CHINHOYI UNIVERSITY OF TECHNOLOGY

CHINHOYI UNIVERSITY OF TECHNOLOGY SCHOOL OF NATURAL SCIENCES AND MATHEMATICS DEPARTMENT OF MATHEMATICS MEASURES OF CENTRAL TENDENCY AND DISPERSION INTRODUCTION From the previous unit, the Graphical displays

Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1:

Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 000: Page 1: DESCRIPTIVE STATISTICS - FREQUENCY DISTRIBUTIONS AND AVERAGES: Inferential and Descriptive Statistics: There are four

Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion

Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

32 Measures of Central Tendency and Dispersion

32 Measures of Central Tendency and Dispersion In this section we discuss two important aspects of data which are its center and its spread. The mean, median, and the mode are measures of central tendency

x Measures of Central Tendency for Ungrouped Data Chapter 3 Numerical Descriptive Measures Example 3-1 Example 3-1: Solution

Chapter 3 umerical Descriptive Measures 3.1 Measures of Central Tendency for Ungrouped Data 3. Measures of Dispersion for Ungrouped Data 3.3 Mean, Variance, and Standard Deviation for Grouped Data 3.4

13.2 Measures of Central Tendency

13.2 Measures of Central Tendency Measures of Central Tendency For a given set of numbers, it may be desirable to have a single number to serve as a kind of representative value around which all the numbers

Measures of Central Tendency and Variability: Summarizing your Data for Others

Measures of Central Tendency and Variability: Summarizing your Data for Others 1 I. Measures of Central Tendency: -Allow us to summarize an entire data set with a single value (the midpoint). 1. Mode :

MEASURES OF DISPERSION

MEASURES OF DISPERSION Measures of Dispersion While measures of central tendency indicate what value of a variable is (in one sense or other) average or central or typical in a set of data, measures of

GCSE HIGHER Statistics Key Facts

GCSE HIGHER Statistics Key Facts Collecting Data When writing questions for questionnaires, always ensure that: 1. the question is worded so that it will allow the recipient to give you the information

F. Farrokhyar, MPhil, PhD, PDoc

Learning objectives Descriptive Statistics F. Farrokhyar, MPhil, PhD, PDoc To recognize different types of variables To learn how to appropriately explore your data How to display data using graphs How

Homework 3. Part 1. Name: Score: / null

Name: Score: / Homework 3 Part 1 null 1 For the following sample of scores, the standard deviation is. Scores: 7, 2, 4, 6, 4, 7, 3, 7 Answer Key: 2 2 For any set of data, the sum of the deviation scores

The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

Descriptive Statistics

Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

Describing Data. We find the position of the central observation using the formula: position number =

HOSP 1207 (Business Stats) Learning Centre Describing Data This worksheet focuses on describing data through measuring its central tendency and variability. These measurements will give us an idea of what

Glossary of numeracy terms

Glossary of numeracy terms These terms are used in numeracy. You can use them as part of your preparation for the numeracy professional skills test. You will not be assessed on definitions of terms during

Session 1.6 Measures of Central Tendency

Session 1.6 Measures of Central Tendency Measures of location (Indices of central tendency) These indices locate the center of the frequency distribution curve. The mode, median, and mean are three indices

Content DESCRIPTIVE STATISTICS. Data & Statistic. Statistics. Example: DATA VS. STATISTIC VS. STATISTICS

Content DESCRIPTIVE STATISTICS Dr Najib Majdi bin Yaacob MD, MPH, DrPH (Epidemiology) USM Unit of Biostatistics & Research Methodology School of Medical Sciences Universiti Sains Malaysia. Introduction

! x sum of the entries

3.1 Measures of Central Tendency (Page 1 of 16) 3.1 Measures of Central Tendency Mean, Median and Mode! x sum of the entries a. mean, x = = n number of entries Example 1 Find the mean of 26, 18, 12, 31,

3.2 Measures of Spread In some data sets the observations are close together, while in others they are more spread out. In addition to measures of the center, it's often important to measure the spread

Comments 2 For Discussion Sheet 2 and Worksheet 2 Frequency Distributions and Histograms

Comments 2 For Discussion Sheet 2 and Worksheet 2 Frequency Distributions and Histograms Discussion Sheet 2 We have studied graphs (charts) used to represent categorical data. We now want to look at a

CHAPTER 3 CENTRAL TENDENCY ANALYSES

CHAPTER 3 CENTRAL TENDENCY ANALYSES The next concept in the sequential statistical steps approach is calculating measures of central tendency. Measures of central tendency represent some of the most simple

( ) ( ) Central Tendency. Central Tendency

1 Central Tendency CENTRAL TENDENCY: A statistical measure that identifies a single score that is most typical or representative of the entire group Usually, a value that reflects the middle of the distribution

1.5 NUMERICAL REPRESENTATION OF DATA (Sample Statistics)

1.5 NUMERICAL REPRESENTATION OF DATA (Sample Statistics) As well as displaying data graphically we will often wish to summarise it numerically particularly if we wish to compare two or more data sets.

Table 2-1. Sucrose concentration (% fresh wt.) of 100 sugar beet roots. Beet No. % Sucrose. Beet No.

Chapter 2. DATA EXPLORATION AND SUMMARIZATION 2.1 Frequency Distributions Commonly, people refer to a population as the number of individuals in a city or county, for example, all the people in California.

Descriptive Statistics. Frequency Distributions and Their Graphs 2.1. Frequency Distributions. Chapter 2

Chapter Descriptive Statistics.1 Frequency Distributions and Their Graphs Frequency Distributions A frequency distribution is a table that shows classes or intervals of data with a count of the number

Standard Deviation Calculator

CSS.com Chapter 35 Standard Deviation Calculator Introduction The is a tool to calculate the standard deviation from the data, the standard error, the range, percentiles, the COV, confidence limits, or

Brief Review of Median

Session 36 Five-Number Summary and Box Plots Interpret the information given in the following box-and-whisker plot. The results from a pre-test for students for the year 2000 and the year 2010 are illustrated

CHAPTER THREE COMMON DESCRIPTIVE STATISTICS COMMON DESCRIPTIVE STATISTICS / 13

COMMON DESCRIPTIVE STATISTICS / 13 CHAPTER THREE COMMON DESCRIPTIVE STATISTICS The analysis of data begins with descriptive statistics such as the mean, median, mode, range, standard deviation, variance,

Sampling, frequency distribution, graphs, measures of central tendency, measures of dispersion

Statistics Basics Sampling, frequency distribution, graphs, measures of central tendency, measures of dispersion Part 1: Sampling, Frequency Distributions, and Graphs The method of collecting, organizing,

Descriptive Statistics and Measurement Scales

Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample

Describing and presenting data

Describing and presenting data All epidemiological studies involve the collection of data on the exposures and outcomes of interest. In a well planned study, the raw observations that constitute the data

Numerical Measures of Central Tendency

Numerical Measures of Central Tendency Often, it is useful to have special numbers which summarize characteristics of a data set These numbers are called descriptive statistics or summary statistics. A

Chapter 3: Data Description Numerical Methods

Chapter 3: Data Description Numerical Methods Learning Objectives Upon successful completion of Chapter 3, you will be able to: Summarize data using measures of central tendency, such as the mean, median,

Standard Deviation Estimator

CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

MBA 611 STATISTICS AND QUANTITATIVE METHODS

MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain

CA200 Quantitative Analysis for Business Decisions. File name: CA200_Section_04A_StatisticsIntroduction

CA200 Quantitative Analysis for Business Decisions File name: CA200_Section_04A_StatisticsIntroduction Table of Contents 4. Introduction to Statistics... 1 4.1 Overview... 3 4.2 Discrete or continuous

1 Measures for location and dispersion of a sample

Statistical Geophysics WS 2008/09 7..2008 Christian Heumann und Helmut Küchenhoff Measures for location and dispersion of a sample Measures for location and dispersion of a sample In the following: Variable

Introduction; Descriptive & Univariate Statistics

Introduction; Descriptive & Univariate Statistics I. KEY COCEPTS A. Population. Definitions:. The entire set of members in a group. EXAMPLES: All U.S. citizens; all otre Dame Students. 2. All values of

Seminar paper Statistics

Seminar paper Statistics The seminar paper must contain: - the title page - the characterization of the data (origin, reason why you have chosen this analysis,...) - the list of the data (in the table)

Chapter 15 Multiple Choice Questions (The answers are provided after the last question.)

Chapter 15 Multiple Choice Questions (The answers are provided after the last question.) 1. What is the median of the following set of scores? 18, 6, 12, 10, 14? a. 10 b. 14 c. 18 d. 12 2. Approximately

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

Section 3.1 Measures of Central Tendency: Mode, Median, and Mean

Section 3.1 Measures of Central Tendency: Mode, Median, and Mean One number can be used to describe the entire sample or population. Such a number is called an average. There are many ways to compute averages,

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

ALGEBRA 1/ALGEBRA 1 HONORS

ALGEBRA 1/ALGEBRA 1 HONORS CREDIT HOURS: 1.0 COURSE LENGTH: 2 Semesters COURSE DESCRIPTION The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical

Central Tendency and Variation

Contents 5 Central Tendency and Variation 161 5.1 Introduction............................ 161 5.2 The Mode............................. 163 5.2.1 Mode for Ungrouped Data................ 163 5.2.2 Mode

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

2. Filling Data Gaps, Data validation & Descriptive Statistics

2. Filling Data Gaps, Data validation & Descriptive Statistics Dr. Prasad Modak Background Data collected from field may suffer from these problems Data may contain gaps ( = no readings during this period)

Histogram. Graphs, and measures of central tendency and spread. Alternative: density (or relative frequency ) plot /13/2004

Graphs, and measures of central tendency and spread 9.07 9/13/004 Histogram If discrete or categorical, bars don t touch. If continuous, can touch, should if there are lots of bins. Sum of bin heights

Chapter 2: Exploring Data with Graphs and Numerical Summaries. Graphical Measures- Graphs are used to describe the shape of a data set.

Page 1 of 16 Chapter 2: Exploring Data with Graphs and Numerical Summaries Graphical Measures- Graphs are used to describe the shape of a data set. Section 1: Types of Variables In general, variable can

College of the Canyons Math 140 Exam 1 Amy Morrow. Name:

Name: Answer the following questions NEATLY. Show all necessary work directly on the exam. Scratch paper will be discarded unread. One point each part unless otherwise marked. 1. Owners of an exercise

Report of for Chapter 2 pretest

Report of for Chapter 2 pretest Exam: Chapter 2 pretest Category: Organizing and Graphing Data 1. "For our study of driving habits, we recorded the speed of every fifth vehicle on Drury Lane. Nearly every

Module 2 Project Maths Development Team Draft (Version 2)

5 Week Modular Course in Statistics & Probability Strand 1 Module 2 Analysing Data Numerically Measures of Central Tendency Mean Median Mode Measures of Spread Range Standard Deviation Inter-Quartile Range

Week 4: Standard Error and Confidence Intervals

Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.

Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo

Readings: Ha and Ha Textbook - Chapters 1 8 Appendix D & E (online) Plous - Chapters 10, 11, 12 and 14 Chapter 10: The Representativeness Heuristic Chapter 11: The Availability Heuristic Chapter 12: Probability

Frequency distributions, central tendency & variability. Displaying data

Frequency distributions, central tendency & variability Displaying data Software SPSS Excel/Numbers/Google sheets Social Science Statistics website (socscistatistics.com) Creating and SPSS file Open the

Introduction to Statistics for Computer Science Projects

Introduction Introduction to Statistics for Computer Science Projects Peter Coxhead Whole modules are devoted to statistics and related topics in many degree programmes, so in this short session all I

Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

Mathematics. Probability and Statistics Curriculum Guide. Revised 2010

Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction

Descriptive Statistics. Understanding Data: Categorical Variables. Descriptive Statistics. Dataset: Shellfish Contamination

Descriptive Statistics Understanding Data: Dataset: Shellfish Contamination Location Year Species Species2 Method Metals Cadmium (mg kg - ) Chromium (mg kg - ) Copper (mg kg - ) Lead (mg kg - ) Mercury

Topic 9 ~ Measures of Spread

AP Statistics Topic 9 ~ Measures of Spread Activity 9 : Baseball Lineups The table to the right contains data on the ages of the two teams involved in game of the 200 National League Division Series. Is

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

MCQ S OF MEASURES OF CENTRAL TENDENCY

MCQ S OF MEASURES OF CENTRAL TENDENCY MCQ No 3.1 Any measure indicating the centre of a set of data, arranged in an increasing or decreasing order of magnitude, is called a measure of: (a) Skewness (b)

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

Statistics GCSE Higher Revision Sheet

Statistics GCSE Higher Revision Sheet This document attempts to sum up the contents of the Higher Tier Statistics GCSE. There is one exam, two hours long. A calculator is allowed. It is worth 75% of the

Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam. Software Profiling Seminar, Statistics 101

Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam Software Profiling Seminar, 2013 Statistics 101 Descriptive Statistics Population Object Object Object Sample numerical description Object

1. 2. 3. 4. Find the mean and median. 5. 1, 2, 87 6. 3, 2, 1, 10. Bellwork 3-23-15 Simplify each expression.

Bellwork 3-23-15 Simplify each expression. 1. 2. 3. 4. Find the mean and median. 5. 1, 2, 87 6. 3, 2, 1, 10 1 Objectives Find measures of central tendency and measures of variation for statistical data.

Models for Discrete Variables

Probability Models for Discrete Variables Our study of probability begins much as any data analysis does: What is the distribution of the data? Histograms, boxplots, percentiles, means, standard deviations

Descriptive Data Summarization

Descriptive Data Summarization (Understanding Data) First: Some data preprocessing problems... 1 Missing Values The approach of the problem of missing values adopted in SQL is based on nulls and three-valued

can be denoted Σx = x + x 2 x 2 ,..., x n is calculated as follows: x = Σx n

Unit 2 Part 1: Measures of Central Tendency A small video recycling business had the following daily sales over a six- day period: \$305, \$285, \$240, \$376, \$198, \$264 A single number that is, in some sense

YEAR 8 SCHEME OF WORK - SECURE

YEAR 8 SCHEME OF WORK - SECURE Autumn Term 1 Number Spring Term 1 Real-life graphs Summer Term 1 Calculating with fractions Area and volume Decimals and ratio Straight-line graphs Half Term: Assessment

In this chapter, you will learn to use descriptive statistics to organize, summarize, analyze, and interpret data for contract pricing.

3.0 - Chapter Introduction In this chapter, you will learn to use descriptive statistics to organize, summarize, analyze, and interpret data for contract pricing. Categories of Statistics. Statistics is

Comment on the Tree Diagrams Section

Comment on the Tree Diagrams Section The reversal of conditional probabilities when using tree diagrams (calculating P (B A) from P (A B) and P (A B c )) is an example of Bayes formula, named after the

the number of organisms in the squares of a haemocytometer? the number of goals scored by a football team in a match?

Poisson Random Variables (Rees: 6.8 6.14) Examples: What is the distribution of: the number of organisms in the squares of a haemocytometer? the number of hits on a web site in one hour? the number of

3.1 Measures of central tendency: mode, median, mean, midrange Dana Lee Ling (2012)

3.1 Measures of central tendency: mode, median, mean, midrange Dana Lee Ling (2012) Mode The mode is the value that occurs most frequently in the data. Spreadsheet programs such as Microsoft Excel or OpenOffice.org