First Midterm Exam (MATH1070 Spring 2012)


 Amanda Felicity Jones
 2 years ago
 Views:
Transcription
1 First Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [40pts] Multiple Choice Problems In a statistics class with 136 students, the professor records how much money each student has in his or her possession during the first class of the semester. The following histogram is of the data collected. Based on this histogram, answer questions 1) 3). 1) The number of students with under USD 10 in their possession is closest to C A. 50. B. 70. C. 60. D ) The percent of students with over USD 20 in their possession is about B A. 10%. B. 20%. C. 30%. D. 40%. 3) From the histogram, which of the following is true? A A. The mean is much larger than the median. B. The mean is much smaller than the median. C. It is impossible to compare the mean and median for these data. D. The mean and median are approximately equal.
2 A sample was taken of the verbal SAT scores of applicants to a California State College. The following is a boxplot of the scores. Based on this histogram, answer questions 4) and 5). 4) Based on this boxplot, the interquartile range is closest to B A B C D ) If 25 points were added to each score, then interquartile range of the new scores would A A. remain unchanged. B. be increased by 5. C. be increased by 25. D. be increased by ) A Normal density curve has which of the following properties? D A. It has a peak centered above its mean. B. It is symmetric. C. The spread of the curve is proportional to the standard deviation. D. All of the above.
3 Refer to the following scatterplot For each menu item at a fast food restaurant, fat content (in grams) and number of calories were recorded. A scatterplot of these data is given below. 7) A plausible value for the correlation between calories and fat is A A B C D ) Which of the following is not true of the correlation coefficient r? D A. 1 r 1. B. If r = 0, then there is no relationship between x and y. C. If r is the correlation between x and y, then r is also the correlation between y and x. D. Multiplying all data values (x s and y s) by 10 will have no impact on r.
4 2. [12pts] A company produces packets of soap powder labeled Giant Size 32 Ounces. The actual weight of soap powder in such a box has a Normal distribution with a mean of 33 oz and a standard deviation of 0.7 oz. To avoid having dissatisfied customers, the company says a box of soap is considered underweight if it weighs less than 32 oz. To avoid losing money, it labels the top 5% (the heaviest 5%) overweight. 1). What proportion of boxes is underweight (i.e., weigh less than 32 oz)? 2). How heavy does a box have to be for it to be labeled overweight? 1. Let X denote the weight of a box. Then we want to know the proportion of boxes such that X < 32. The corresponding z score is Z = X = = From the table of the standard normal cumulative proportions, we find that the proportion for X < 32 is Let x 0 be the threshold of overweight. Then the proportion corresponding to X x 0 is 5%, or equivalently the proportion corresponding to X < x 0 is 95%. From the table of the standard normal cumulative proportions, we find that the zscore corresponding to 0.95 is (both 1.64 and 1.65 are O.K.). Therefore x 0 = 0.7(1.645) + 33 =
5 3. [10pts] The following are the heights (in inches) of 25 students in a given class. Draw the histogram Since there are 25 observations, it is suggested to use 25 = 5 bins for our histogram. (It s O.K. to use different number of bins as long as that number is neither too big nor too small.) The range is = 27. Thus the bin size should be around 6. In fact, it is more natural to use 6 bins and use bin size 5 here. The following is the frequency table Here is the histogram: bins frequency 50 x < x < x < x < x < x < 80 1
6 4. The following are the grades of 18 students in a given exam. (a) [4pts] Make a stemplot. Here we draw a stemplot with split stems, i.e., the stem 6 represents and the stem 6 + represents The stemplot is given as follows: (b) [10pts] Find the fivenumber summary (min, Q1, median, Q3, max). Since there are 18 observations, the median is the average of the 9th and 10th observation, i.e. ( )/2 = Since the median is not an observation in the data set, the lower half is the 9 observation from 60 to 79. Then the first quartile which is the median of the lower half is the 5th observation, which is 76. Similarly, the third quartile is 88. Therefore the five number summary is min Q1 median Q3 max (c) [6pts] Are there any potential outlier(s) according to the 1.5 IQR rule? We have IQR = Q3 Q1 = = 12, and 1.5 IQR = 12(1.5) = 18. Since Q1 18 = 58 < 60 and Q = 106 > 99, there is no outlier according to the 1.5 IQR rule.
7 5. A student wonders if people of similar heights tend to date each other. She measures herself, her dormitory roommate, and the women in the adjoining rooms; then she measures the next man each woman dates. Here are the data (heights in inches). Women x Men y (a) [4pts] What is the mean of the heights of these three women? What about men? We have x = = and ȳ = = 70 (b) [8pts] Compute the standard deviation of the height for these 3 men by complete the following table. Use your calculator only to add, subtract, multiply, divide, square or take the square root of numbers. y i y i ȳ (y i ȳ) Therefore the standard deviation of y is s y = 1 n 1 (y i ȳ) n 1 2 = ( ) = i=1 Now find the standard deviation of the height for these 3 women by the same procedure. x i x i x (x i x) Therefore the standard deviation of x is s x = 1 n 1 (x i x) n 1 2 = ( ) = i=1
8 (c) [6pts] Find the correlation coefficient r between the height of men and women. r = 1 n 1 = = n ( ) xi x i=1 [( s x ) ( ) yi ȳ ( ) s y ( ) ( ) ( ) ( )] 0 2 8
Chapter 1: Exploring Data
Chapter 1: Exploring Data Chapter 1 Review 1. As part of survey of college students a researcher is interested in the variable class standing. She records a 1 if the student is a freshman, a 2 if the student
More informationChapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs
Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)
More informationName: Date: Use the following to answer questions 23:
Name: Date: 1. A study is conducted on students taking a statistics class. Several variables are recorded in the survey. Identify each variable as categorical or quantitative. A) Type of car the student
More informationAP * Statistics Review. Descriptive Statistics
AP * Statistics Review Descriptive Statistics Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production
More informationStatistics 151 Practice Midterm 1 Mike Kowalski
Statistics 151 Practice Midterm 1 Mike Kowalski Statistics 151 Practice Midterm 1 Multiple Choice (50 minutes) Instructions: 1. This is a closed book exam. 2. You may use the STAT 151 formula sheets and
More informationSTAT 155 Introductory Statistics. Lecture 5: Density Curves and Normal Distributions (I)
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 5: Density Curves and Normal Distributions (I) 9/12/06 Lecture 5 1 A problem about Standard Deviation A variable
More informationSTATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI
STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members
More informationFinal Review Sheet. Mod 2: Distributions for Quantitative Data
Things to Remember from this Module: Final Review Sheet Mod : Distributions for Quantitative Data How to calculate and write sentences to explain the Mean, Median, Mode, IQR, Range, Standard Deviation,
More informationExercise 1.12 (Pg. 2223)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
More informationSecond Midterm Exam (MATH1070 Spring 2012)
Second Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [60pts] Multiple Choice Problems
More informationNumerical Summaries. Chapter 2. Mean or Average. Median (M) Basic Practice of Statistics  3rd Edition
Numerical Summaries Chapter 2 Describing Distributions with Numbers Center of the data mean median Variation range quartiles (interquartile range) variance standard deviation BPS  5th Ed. Chapter 2 1
More information2. Here is a small part of a data set that describes the fuel economy (in miles per gallon) of 2006 model motor vehicles.
Math 1530017 Exam 1 February 19, 2009 Name Student Number E There are five possible responses to each of the following multiple choice questions. There is only on BEST answer. Be sure to read all possible
More information1.3 Measuring Center & Spread, The Five Number Summary & Boxplots. Describing Quantitative Data with Numbers
1.3 Measuring Center & Spread, The Five Number Summary & Boxplots Describing Quantitative Data with Numbers 1.3 I can n Calculate and interpret measures of center (mean, median) in context. n Calculate
More informationUNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test March 2014
UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test March 2014 STAB22H3 Statistics I Duration: 1 hour and 45 minutes Last Name: First Name: Student number: Aids
More information6.2 Normal distribution. Standard Normal Distribution:
6.2 Normal distribution Slide Heights of Adult Men and Women Slide 2 Area= Mean = µ Standard Deviation = σ Donation: X ~ N(µ,σ 2 ) Standard Normal Distribution: Slide 3 Slide 4 a normal probability distribution
More informationAP Statistics Chapter 1 Test  Multiple Choice
AP Statistics Chapter 1 Test  Multiple Choice Name: 1. The following bar graph gives the percent of owners of three brands of trucks who are satisfied with their truck. From this graph, we may conclude
More informationSection 1.3 Exercises (Solutions)
Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146148. 1.109 Sketch some normal curves. (a) Sketch
More informationChapter 2: Exploring Data with Graphs and Numerical Summaries. Graphical Measures Graphs are used to describe the shape of a data set.
Page 1 of 16 Chapter 2: Exploring Data with Graphs and Numerical Summaries Graphical Measures Graphs are used to describe the shape of a data set. Section 1: Types of Variables In general, variable can
More informationa. mean b. interquartile range c. range d. median
3. Since 4. The HOMEWORK 3 Due: Feb.3 1. A set of data are put in numerical order, and a statistic is calculated that divides the data set into two equal parts with one part below it and the other part
More informationChapter 10  Practice Problems 1
Chapter 10  Practice Problems 1 1. A researcher is interested in determining if one could predict the score on a statistics exam from the amount of time spent studying for the exam. In this study, the
More informationRescaling and shifting
Rescaling and shifting A fancy way of changing one variable to another Main concepts involve: Adding or subtracting a number (shifting) Multiplying or dividing by a number (rescaling) Where have you seen
More informationAP Statistics Solutions to Packet 2
AP Statistics Solutions to Packet 2 The Normal Distributions Density Curves and the Normal Distribution Standard Normal Calculations HW #9 1, 2, 4, 68 2.1 DENSITY CURVES (a) Sketch a density curve that
More informationChapter 3. The Normal Distribution
Chapter 3. The Normal Distribution Topics covered in this chapter: Zscores Normal Probabilities Normal Percentiles Zscores Example 3.6: The standard normal table The Problem: What proportion of observations
More informationM 225 Test 1 A Name (1 point) SHOW YOUR WORK FOR FULL CREDIT!
M 225 Test 1 A Name (1 point) SHOW YOUR WORK FOR FULL CREDIT! Problem Max. Points Your Points 114 14 15 3 16 5 17 4 18 4 19 11 20 9 21 8 22 16 Total 75 1 Multiple choice questions (1 point each) 1. Look
More informationNumerical Measures of Central Tendency
Numerical Measures of Central Tendency Often, it is useful to have special numbers which summarize characteristics of a data set These numbers are called descriptive statistics or summary statistics. A
More informationStatistics Chapter 3 Averages and Variations
Statistics Chapter 3 Averages and Variations Measures of Central Tendency Average a measure of the center value or central tendency of a distribution of values. Three types of average: Mode Median Mean
More informationMEASURES OF VARIATION
NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are
More informationData Mining Part 2. Data Understanding and Preparation 2.1 Data Understanding Spring 2010
Data Mining Part 2. and Preparation 2.1 Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Outline Introduction Measuring the Central Tendency Measuring the Dispersion of Data Graphic Displays References
More informationAP Statistics Semester Exam Review Chapters 13
AP Statistics Semester Exam Review Chapters 13 1. Here are the IQ test scores of 10 randomly chosen fifthgrade students: 145 139 126 122 125 130 96 110 118 118 To make a stemplot of these scores, you
More informationCenter: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)
Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center
More informationVisual Display of Data in Stata
Lab 2 Visual Display of Data in Stata In this lab we will try to understand data not only through numerical summaries, but also through graphical summaries. The data set consists of a number of variables
More informationThe right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median
CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box
More informationExploratory data analysis (Chapter 2) Fall 2011
Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,
More informationDescriptive Statistics
Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web
More informationStats Review Chapters 34
Stats Review Chapters 34 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test
More informationThe Normal Distribution
Chapter 6 The Normal Distribution 6.1 The Normal Distribution 1 6.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize the normal probability distribution
More informationComplement: 0.4 x 0.8 = =.6
Homework Chapter 5 Name: 1. Use the graph below 1 a) Why is the total area under this curve equal to 1? Rectangle; A = LW A = 1(1) = 1 b) What percent of the observations lie above 0.8? 1 .8 =.2; A =
More informationF. Farrokhyar, MPhil, PhD, PDoc
Learning objectives Descriptive Statistics F. Farrokhyar, MPhil, PhD, PDoc To recognize different types of variables To learn how to appropriately explore your data How to display data using graphs How
More informationChapter 3: Data Description Numerical Methods
Chapter 3: Data Description Numerical Methods Learning Objectives Upon successful completion of Chapter 3, you will be able to: Summarize data using measures of central tendency, such as the mean, median,
More informationIntroduction to Environmental Statistics. The Big Picture. Populations and Samples. Sample Data. Examples of sample data
A Few Sources for Data Examples Used Introduction to Environmental Statistics Professor Jessica Utts University of California, Irvine jutts@uci.edu 1. Statistical Methods in Water Resources by D.R. Helsel
More informationa) Find the five point summary for the home runs of the National League teams. b) What is the mean number of home runs by the American League teams?
1. Phone surveys are sometimes used to rate TV shows. Such a survey records several variables listed below. Which ones of them are categorical and which are quantitative?  the number of people watching
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) (a) 3 (b) 51
Chapter 2 Problems to look at Use the given frequency distribution to find the (a) class width. (b) class midpoints of the first class. (c) class boundaries of the first class. 1) Height (in inches) 1)
More informationGCSE HIGHER Statistics Key Facts
GCSE HIGHER Statistics Key Facts Collecting Data When writing questions for questionnaires, always ensure that: 1. the question is worded so that it will allow the recipient to give you the information
More informationLecture 1: Review and Exploratory Data Analysis (EDA)
Lecture 1: Review and Exploratory Data Analysis (EDA) Sandy Eckel seckel@jhsph.edu Department of Biostatistics, The Johns Hopkins University, Baltimore USA 21 April 2008 1 / 40 Course Information I Course
More informationIntroduction to the Practice of Statistics Fifth Edition Moore, McCabe
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 1.3 Homework Answers 1.80 If you ask a computer to generate "random numbers between 0 and 1, you uniform will get observations
More information13.2 Measures of Central Tendency
13.2 Measures of Central Tendency Measures of Central Tendency For a given set of numbers, it may be desirable to have a single number to serve as a kind of representative value around which all the numbers
More information10/2/ Variable Statistics. Find the correlation Coefficient: Find the correlation Coefficient: Find the correlation Coefficient:
Variable Statistics Now that we have used one variable statistics to store our necessar numbers, let s learn another wa that s even better Find the mean and standard deviation of the s and s using var
More informationChapter 3 Descriptive Statistics: Numerical Measures. Learning objectives
Chapter 3 Descriptive Statistics: Numerical Measures Slide 1 Learning objectives 1. Single variable Part I (Basic) 1.1. How to calculate and use the measures of location 1.. How to calculate and use the
More informationconsider the number of math classes taken by math 150 students. how can we represent the results in one number?
ch 3: numerically summarizing data  center, spread, shape 3.1 measure of central tendency or, give me one number that represents all the data consider the number of math classes taken by math 150 students.
More informationBrief Review of Median
Session 36 FiveNumber Summary and Box Plots Interpret the information given in the following boxandwhisker plot. The results from a pretest for students for the year 2000 and the year 2010 are illustrated
More informationIII. GRAPHICAL METHODS
Pie Charts and Bar Charts: III. GRAPHICAL METHODS Pie charts and bar charts are used for depicting frequencies or relative frequencies. We compare examples of each using the same data. Sources: AT&T (1961)
More informationUnivariate Descriptive Statistics
Univariate Descriptive Statistics Displays: pie charts, bar graphs, box plots, histograms, density estimates, dot plots, stemleaf plots, tables, lists. Example: sea urchin sizes Boxplot Histogram Urchin
More informationVariables. Exploratory Data Analysis
Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is
More informationChapter 2. Objectives. Tabulate Qualitative Data. Frequency Table. Descriptive Statistics: Organizing, Displaying and Summarizing Data.
Objectives Chapter Descriptive Statistics: Organizing, Displaying and Summarizing Data Student should be able to Organize data Tabulate data into frequency/relative frequency tables Display data graphically
More informationDescribing Data. Carolyn J. Anderson EdPsych 580 Fall Describing Data p. 1/42
Describing Data Carolyn J. Anderson EdPsych 580 Fall 2005 Describing Data p. 1/42 Describing Data Numerical Descriptions Single Variable Relationship Graphical displays Single variable. Relationships in
More informationGCSE Statistics Revision notes
GCSE Statistics Revision notes Collecting data Sample This is when data is collected from part of the population. There are different methods for sampling Random sampling, Stratified sampling, Systematic
More informationvs. relative cumulative frequency
Variable  what we are measuring Quantitative  numerical where mathematical operations make sense. These have UNITS Categorical  puts individuals into categories Numbers don't always mean Quantitative...
More informationMind on Statistics. Chapter 8
Mind on Statistics Chapter 8 Sections 8.18.2 Questions 1 to 4: For each situation, decide if the random variable described is a discrete random variable or a continuous random variable. 1. Random variable
More information3.1. Sketches will vary. Use them to confirm that students understand the meaning of (a) symmetric and (b) skewed to the left.
Chapter Solutions.1. Sketches will vary. Use them to confirm that students understand the meaning of (a) symmetric and (b) skewed to the left..2. (a) It is on or above the horizontal axis everywhere, and
More informationMTH 140 Statistics Videos
MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative
More informationFind the median temperature. A) 33 F B) 59 F C) 51 F D) 67 F Answer: B
Review for TEST 2 STA 2023 FALL 2013 Name Find the mean of the data summarized in the given frequency distribution. 1) A company had 80 employees whose salaries are summarized in the frequency distribution
More informationLAMC Math 137 Test 1 Module 12 Yun 10/1/2014
LAMC Math 137 Test 1 Module 12 Yun 10/1/2014 Last name First name You may use a calculator but not a cellphone, tablet or an ipod. Please clearly mark your choices on multiple choice questions and box
More information103 Measures of Central Tendency and Variation
103 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.
More informationDescriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics
Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),
More informationEXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck!
STP 231 EXAM #1 (Example) Instructor: Ela Jackiewicz Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned.
More informationExploratory Data Analysis
Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction
More informationFormat: 20 True or False (1 pts each), 30 Multiple Choice (2 pts each), 4 Open Ended (5 pts each).
AP Statistics Review for Midterm Format: 20 True or False (1 pts each), 30 Multiple Choice (2 pts each), 4 Open Ended (5 pts each). These are some main topics you should know: True or False & Multiple
More informationChapter 2. The Normal Distribution
Chapter 2 The Normal Distribution Lesson 21 Density Curve Review Graph the data Calculate a numerical summary of the data Describe the shape, center, spread and outliers of the data Histogram with Curve
More informationMath 1011 Homework Set 2
Math 1011 Homework Set 2 Due February 12, 2014 1. Suppose we have two lists: (i) 1, 3, 5, 7, 9, 11; and (ii) 1001, 1003, 1005, 1007, 1009, 1011. (a) Find the average and standard deviation for each of
More informationEach exam covers lectures from since the previous exam and up to the exam date.
Sociology 301 Exam Review Liying Luo 03.22 Exam Review: Logistics Exams must be taken at the scheduled date and time unless 1. You provide verifiable documents of unforeseen illness or family emergency,
More informationUnit 16 Normal Distributions
Unit 16 Normal Distributions Objectives: To obtain relative frequencies (probabilities) and percentiles with a population having a normal distribution While there are many different types of distributions
More informationMind on Statistics. Chapter 2
Mind on Statistics Chapter 2 Sections 2.1 2.3 1. Tallies and crosstabulations are used to summarize which of these variable types? A. Quantitative B. Mathematical C. Continuous D. Categorical 2. The table
More informationAP Statistics 2001 Solutions and Scoring Guidelines
AP Statistics 2001 Solutions and Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use
More informationCH.6 Random Sampling and Descriptive Statistics
CH.6 Random Sampling and Descriptive Statistics Population vs Sample Random sampling Numerical summaries : sample mean, sample variance, sample range StemandLeaf Diagrams Median, quartiles, percentiles,
More informationDesciptive Statistics Qualitative data Quantitative data Graphical methods Numerical methods
Desciptive Statistics Qualitative data Quantitative data Graphical methods Numerical methods Qualitative data Data are classified in categories Non numerical (although may be numerically codified) Elements
More informationMath 243, Practice Exam 1
Math 243, Practice Exam 1 Questions 1 through 5 are multiple choice questions. In each case, circle the correct answer. 1. (5 points) A state university wishes to learn how happy its students are with
More informationModule 2 Project Maths Development Team Draft (Version 2)
5 Week Modular Course in Statistics & Probability Strand 1 Module 2 Analysing Data Numerically Measures of Central Tendency Mean Median Mode Measures of Spread Range Standard Deviation InterQuartile Range
More information1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x  x) B. x 3 x C. 3x  x D. x  3x 2) Write the following as an algebraic expression
More informationSTP 226 Example EXAM #1 (from chapters 13, 5 and 6)
STP 226 Example EXAM #1 (from chapters 13, 5 and 6) Instructor: ELA JACKIEWICZ Student's name (PRINT): Class time: Honor Statement: I have neither given nor received information regarding this exam, and
More informationFinal Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
More informationData Exploration Data Visualization
Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select
More informationHistogram. Graphs, and measures of central tendency and spread. Alternative: density (or relative frequency ) plot /13/2004
Graphs, and measures of central tendency and spread 9.07 9/13/004 Histogram If discrete or categorical, bars don t touch. If continuous, can touch, should if there are lots of bins. Sum of bin heights
More informationAnswers Investigation 4
Applications 1. a. Median height is 15.7 cm. Order the 1 heights from shortest to tallest. Since 1 is even, average the two middle numbers, 15.6 cm and 15.8 cm. b. Median stride distance is 124.8 cm. Order
More informationGeostatistics Exploratory Analysis
Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt
More informationCh. 3.1 # 3, 4, 7, 30, 31, 32
Math Elementary Statistics: A Brief Version, 5/e Bluman Ch. 3. # 3, 4,, 30, 3, 3 Find (a) the mean, (b) the median, (c) the mode, and (d) the midrange. 3) High Temperatures The reported high temperatures
More informationHints for Success on the AP Statistics Exam. (Compiled by Zack Bigner)
Hints for Success on the AP Statistics Exam. (Compiled by Zack Bigner) The Exam The AP Stat exam has 2 sections that take 90 minutes each. The first section is 40 multiple choice questions, and the second
More informationObtaining Summary Statistics with SPSS. Math 260
Obtaining Summary Statistics with SPSS Math 260 Open the New York Travel Times data from Exercise 2.2 File eg0203.sav. Your data should have n=20 rows Explore Procedure Select Analyze Descriptive Statistics
More informationDescriptive Statistics. Frequency Distributions and Their Graphs 2.1. Frequency Distributions. Chapter 2
Chapter Descriptive Statistics.1 Frequency Distributions and Their Graphs Frequency Distributions A frequency distribution is a table that shows classes or intervals of data with a count of the number
More informationMath Lesson 3: Displaying Data Graphically
Math Lesson 3: Displaying Data Graphically Hawaii DOE Content Standards: Math standard: [Data Analysis, Statistics, and Probability]Pose questions and collect, organize, and represent data to answer those
More informationDiagrams and Graphs of Statistical Data
Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in
More informationThursday, November 13: 6.1 Discrete Random Variables
Thursday, November 13: 6.1 Discrete Random Variables Read 347 350 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
More informationChapter 5: The normal approximation for data
Chapter 5: The normal approximation for data Context................................................................... 2 Normal curve 3 Normal curve.............................................................
More informationChapter 6. The Standard Deviation as a Ruler and the Normal Model. Copyright 2012, 2008, 2005 Pearson Education, Inc.
Chapter 6 The Standard Deviation as a Ruler and the Normal Model Copyright 2012, 2008, 2005 Pearson Education, Inc. The Standard Deviation as a Ruler The trick in comparing very differentlooking values
More informationMATH 103/GRACEY PRACTICE EXAM/CHAPTERS 23. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MATH 3/GRACEY PRACTICE EXAM/CHAPTERS 23 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) The frequency distribution
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More informationDescriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion
Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research
More information3: Summary Statistics
3: Summary Statistics Notation Let s start by introducing some notation. Consider the following small data set: 4 5 30 50 8 7 4 5 The symbol n represents the sample size (n = 0). The capital letter X denotes
More information(d) 20, 28, 23, 25, 3, 5, 30, 22, 18, 40, 16, 35, 1, 33, 12
Section 2 Answer Key: 0) Find the median and quartiles of each of the following sets of numbers. These represent the four cases that you should be able to compute using the rules in this course. (a) 23,
More informationRegression. In this class we will:
AMS 5 REGRESSION Regression The idea behind the calculation of the coefficient of correlation is that the scatter plot of the data corresponds to a cloud that follows a straight line. This idea can be
More informationStatistics E100 Fall 2013 Practice Midterm I  A Solutions
STATISTICS E100 FALL 2013 PRACTICE MIDTERM I  A SOLUTIONS PAGE 1 OF 5 Statistics E100 Fall 2013 Practice Midterm I  A Solutions 1. (16 points total) Below is the histogram for the number of medals won
More information