Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)


 Willis Tyler
 2 years ago
 Views:
Transcription
1 Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center of symmetry. We could average the minimum and maximum data values (called the midrange) as a measure of center, but the midrange is very sensitive to skewed distributions and outliers. Center: Finding the Median (cont.) A more reasonable choice for center than the midrange is the value with exactly half the data values below it and half above it. This particular value is called the median. The median is the middle data value (once the data values have been ordered) that divides the histogram into two equal areas. The median has the same units as the data. Slide 51 Slide 5 Median n + 1 The sample median is the largest observation. n +1 If is not a whole number, the median is the average of the two observations on either side. Spread: Home on the Range When describing a distribution numerically, we always report a measure of its spread along with its center. The range of the data is the difference between the maximum and minimum values: Range = max min. A disadvantage of the range is that a single extreme value can make it very large and, thus, not representative of the data overall. Slide 53 Slide 54
2 The Interquartile Range The interquartile range (IQR) allows us to ignore extreme data values and concentrate on the middle of the data. To find the IQR, we first need to know what quartiles are Quartiles Quartiles split the data into quarters Lower quartile (Q 1 ) divides bottom half of data into two median of observations below the median Upper quartile (Q 3 ) divides upper half of data into two median of observations above the median The difference between the quartiles is the IQR, so IQR = upper quartile lower quartile. Slide 55 Slide 56 The Interquartile Range (cont.) The lower and upper quartiles are the 5 th and 75 th percentiles of the data, so The IQR contains the middle 50% of the values of the distribution, as shown in Figure 5.3 from the text: The FiveNumber Summary Five number summary { Min, Q 1, Median, Q 3, Max } Example: Slide 57 Slide 58
3 Boxplots Boxplot A boxplot is a graphical display of the fivenumber summary. The steps involved in constructing a boxplot can also be found on pages of the text. Boxplots are particularly useful when comparing groups. Data 1.5 IQR (pull back until hit observation) Q 1 Med Q IQR (pull back until hit observation) Scale Figure.4.4 Construction of a box plot. From Chance Encounters by C.J. Wild and G.A.F. Seber, John Wiley & Sons, 000. Slide 59 Slide 510 Construction of Boxplot Comparing Groups With Boxplots Data: breaking strength of wire in kilograms The following set of boxplots compares the effectiveness of various coffee containers: Leaf Unit = 1.0 kg (4) Find Median Find Quartiles Q 1 = Q 3 = Calculate Interquartile range Q 3 Q 1 = Calculate whisker length 1.5 x (Q 3 Q 1 ) = What does this graphical display tell you? Slide 511 Slide 51
4 Summarizing Symmetric Distributions Medians do a good job of identifying the center of skewed distributions. When we have symmetric data, the mean is a good measure of center. We find the mean by adding up all of the data values and dividing by n, the number of data values we have. Sample Mean average The sample mean is denoted by The sample mean = x Sum of the observations Number of observations Mean (a) (b) (c) Slide 513 Figure.4.1 Mechanical construction representing a dot plot: (a) shows a balanced rod while (b) and (c) show unbalanced rods. Slide 514 Mean or Median? Regardless of the shape of the distribution, the mean is the point at which a histogram of the data would balance. In symmetric distributions, the mean and median are approximately the same in value, so either measure of center may be used. For skewed data, though, it s better to report the median than the mean as a measure of center. Figure.4. Relationship between mean and median P Med = x (a) Data symmetric about P P Med x (b) Two largest points moved to the right The mean and the median. [Grey disks in (b) are the ``ghosts'' of the points that were moved.] Slide 515 From Chance Encounters by C.J. Wild and G.A.F. Seber, John Wiley & Sons, 000. Slide 516
5 What About Spread? A more powerful measure of spread than the IQR is the standard deviation, which takes into account how far each data value is from the mean. A deviation is the distance that a data value is from the mean. Since adding all deviations together would total zero, we square each deviation and find an average of sorts for the deviations. Variance The sample variance, denoted by s, is found using the formula s = ( x1 x) + ( x x) ( xn x) 1 = ( x x) i Slide 517 Slide 518 Sample Standard Deviation Shape, Center, and Spread s x = ( x1 x) + ( x x) ( xn x) 1 = ( x x) In same units as data So preferable to sample variance Equals zero only if all observations identical Sensitive to outliers (extreme observations) Button on calculator learn to use it! Much simpler than applying formula i When telling about a quantitative variable, always report the shape of its distribution, along with a center and a spread. If the shape is skewed, report the median and IQR. If the shape is symmetric, report the mean and standard deviation and possibly the median and IQR as well. Slide 519 Slide 50
6 What About Outliers? If there are any clear outliers and you are reporting the mean and standard deviation, report them with the outliers present and with the outliers removed. The differences may be quite revealing. Note: The median and IQR are not likely to be affected by the outliers. What Can Go Wrong? Do a reality check don t let technology do your thinking for you. Don t forget to sort the values before finding the median or percentiles. Don t compute numerical summaries of a categorical variable. Watch out for multiple modes multiple modes might indicate multiple groups in your data. Slide 51 Slide 5 What Can Go Wrong? (cont.) Be aware of slightly different methods different statistics packages and calculators may give you different answers for the same data. Beware of outliers. Make a picture (make a picture, make a picture). Be careful when comparing groups that have very different spreads. So What Do We Know? We describe distributions in terms of shape, center, and spread. For symmetric distributions, it s safe to use the mean and standard deviation; for skewed distributions, it s better to use the median and interquartile range. Always make a picture don t make judgments about which measures of center and spread to use by just looking at the data. Slide 53 Slide 54
Data Mining Part 2. Data Understanding and Preparation 2.1 Data Understanding Spring 2010
Data Mining Part 2. and Preparation 2.1 Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Outline Introduction Measuring the Central Tendency Measuring the Dispersion of Data Graphic Displays References
More informationExploratory data analysis (Chapter 2) Fall 2011
Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,
More informationWe will use the following data sets to illustrate measures of center. DATA SET 1 The following are test scores from a class of 20 students:
MODE The mode of the sample is the value of the variable having the greatest frequency. Example: Obtain the mode for Data Set 1 77 For a grouped frequency distribution, the modal class is the class having
More information1.3 Measuring Center & Spread, The Five Number Summary & Boxplots. Describing Quantitative Data with Numbers
1.3 Measuring Center & Spread, The Five Number Summary & Boxplots Describing Quantitative Data with Numbers 1.3 I can n Calculate and interpret measures of center (mean, median) in context. n Calculate
More information3: Summary Statistics
3: Summary Statistics Notation Let s start by introducing some notation. Consider the following small data set: 4 5 30 50 8 7 4 5 The symbol n represents the sample size (n = 0). The capital letter X denotes
More informationSTATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI
STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members
More information103 Measures of Central Tendency and Variation
103 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.
More information1.5 NUMERICAL REPRESENTATION OF DATA (Sample Statistics)
1.5 NUMERICAL REPRESENTATION OF DATA (Sample Statistics) As well as displaying data graphically we will often wish to summarise it numerically particularly if we wish to compare two or more data sets.
More informationF. Farrokhyar, MPhil, PhD, PDoc
Learning objectives Descriptive Statistics F. Farrokhyar, MPhil, PhD, PDoc To recognize different types of variables To learn how to appropriately explore your data How to display data using graphs How
More informationNumerical Measures of Central Tendency
Numerical Measures of Central Tendency Often, it is useful to have special numbers which summarize characteristics of a data set These numbers are called descriptive statistics or summary statistics. A
More informationChapter 3: Data Description Numerical Methods
Chapter 3: Data Description Numerical Methods Learning Objectives Upon successful completion of Chapter 3, you will be able to: Summarize data using measures of central tendency, such as the mean, median,
More informationData Exploration Data Visualization
Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select
More informationx Measures of Central Tendency for Ungrouped Data Chapter 3 Numerical Descriptive Measures Example 31 Example 31: Solution
Chapter 3 umerical Descriptive Measures 3.1 Measures of Central Tendency for Ungrouped Data 3. Measures of Dispersion for Ungrouped Data 3.3 Mean, Variance, and Standard Deviation for Grouped Data 3.4
More informationExercise 1.12 (Pg. 2223)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
More informationChapter 3 Descriptive Statistics: Numerical Measures. Learning objectives
Chapter 3 Descriptive Statistics: Numerical Measures Slide 1 Learning objectives 1. Single variable Part I (Basic) 1.1. How to calculate and use the measures of location 1.. How to calculate and use the
More informationDescriptive Statistics. Understanding Data: Categorical Variables. Descriptive Statistics. Dataset: Shellfish Contamination
Descriptive Statistics Understanding Data: Dataset: Shellfish Contamination Location Year Species Species2 Method Metals Cadmium (mg kg  ) Chromium (mg kg  ) Copper (mg kg  ) Lead (mg kg  ) Mercury
More informationa. mean b. interquartile range c. range d. median
3. Since 4. The HOMEWORK 3 Due: Feb.3 1. A set of data are put in numerical order, and a statistic is calculated that divides the data set into two equal parts with one part below it and the other part
More informationThe right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median
CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box
More informationVariables. Exploratory Data Analysis
Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is
More information1 Measures for location and dispersion of a sample
Statistical Geophysics WS 2008/09 7..2008 Christian Heumann und Helmut Küchenhoff Measures for location and dispersion of a sample Measures for location and dispersion of a sample In the following: Variable
More informationMeans, standard deviations and. and standard errors
CHAPTER 4 Means, standard deviations and standard errors 4.1 Introduction Change of units 4.2 Mean, median and mode Coefficient of variation 4.3 Measures of variation 4.4 Calculating the mean and standard
More information1. 2. 3. 4. Find the mean and median. 5. 1, 2, 87 6. 3, 2, 1, 10. Bellwork 32315 Simplify each expression.
Bellwork 32315 Simplify each expression. 1. 2. 3. 4. Find the mean and median. 5. 1, 2, 87 6. 3, 2, 1, 10 1 Objectives Find measures of central tendency and measures of variation for statistical data.
More informationLecture 1: Review and Exploratory Data Analysis (EDA)
Lecture 1: Review and Exploratory Data Analysis (EDA) Sandy Eckel seckel@jhsph.edu Department of Biostatistics, The Johns Hopkins University, Baltimore USA 21 April 2008 1 / 40 Course Information I Course
More informationCHINHOYI UNIVERSITY OF TECHNOLOGY
CHINHOYI UNIVERSITY OF TECHNOLOGY SCHOOL OF NATURAL SCIENCES AND MATHEMATICS DEPARTMENT OF MATHEMATICS MEASURES OF CENTRAL TENDENCY AND DISPERSION INTRODUCTION From the previous unit, the Graphical displays
More informationTopic 9 ~ Measures of Spread
AP Statistics Topic 9 ~ Measures of Spread Activity 9 : Baseball Lineups The table to the right contains data on the ages of the two teams involved in game of the 200 National League Division Series. Is
More informationIntroduction to Statistics for Psychology. Quantitative Methods for Human Sciences
Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html
More informationHistogram. Graphs, and measures of central tendency and spread. Alternative: density (or relative frequency ) plot /13/2004
Graphs, and measures of central tendency and spread 9.07 9/13/004 Histogram If discrete or categorical, bars don t touch. If continuous, can touch, should if there are lots of bins. Sum of bin heights
More informationSTAT355  Probability & Statistics
STAT355  Probability & Statistics Instructor: Kofi Placid Adragni Fall 2011 Chap 1  Overview and Descriptive Statistics 1.1 Populations, Samples, and Processes 1.2 Pictorial and Tabular Methods in Descriptive
More information13.2 Measures of Central Tendency
13.2 Measures of Central Tendency Measures of Central Tendency For a given set of numbers, it may be desirable to have a single number to serve as a kind of representative value around which all the numbers
More informationBNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I
BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential
More informationDescriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion
Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research
More informationChapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs
Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)
More informationLecture 2: Descriptive Statistics and Exploratory Data Analysis
Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals
More informationChapter 1: Exploring Data
Chapter 1: Exploring Data Chapter 1 Review 1. As part of survey of college students a researcher is interested in the variable class standing. She records a 1 if the student is a freshman, a 2 if the student
More informationBrief Review of Median
Session 36 FiveNumber Summary and Box Plots Interpret the information given in the following boxandwhisker plot. The results from a pretest for students for the year 2000 and the year 2010 are illustrated
More informationDescribing Data. We find the position of the central observation using the formula: position number =
HOSP 1207 (Business Stats) Learning Centre Describing Data This worksheet focuses on describing data through measuring its central tendency and variability. These measurements will give us an idea of what
More informationExploratory Data Analysis
Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction
More informationA frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes
A frequency distribution is a table used to describe a data set. A frequency table lists intervals or ranges of data values called data classes together with the number of data values from the set that
More informationHome Runs, Statistics, and Probability
NATIONAL MATH + SCIENCE INITIATIVE Mathematics American League AL Central AL West AL East National League NL West NL East Level 7 th grade in a unit on graphical displays Connection to AP* Graphical Display
More informationIntroduction to Environmental Statistics. The Big Picture. Populations and Samples. Sample Data. Examples of sample data
A Few Sources for Data Examples Used Introduction to Environmental Statistics Professor Jessica Utts University of California, Irvine jutts@uci.edu 1. Statistical Methods in Water Resources by D.R. Helsel
More informationCopyright 2013 by Laura Schultz. All rights reserved. Page 1 of 7
Using Your TINSpire Calculator: Descriptive Statistics Dr. Laura Schultz Statistics I This handout is intended to get you started using your TINspire graphing calculator for statistical applications.
More informationDescriptive Statistics
Descriptive Statistics Suppose following data have been collected (heights of 99 fiveyearold boys) 117.9 11.2 112.9 115.9 18. 14.6 17.1 117.9 111.8 16.3 111. 1.4 112.1 19.2 11. 15.4 99.4 11.1 13.3 16.9
More informationExploratory Data Analysis. Psychology 3256
Exploratory Data Analysis Psychology 3256 1 Introduction If you are going to find out anything about a data set you must first understand the data Basically getting a feel for you numbers Easier to find
More informationAP * Statistics Review. Descriptive Statistics
AP * Statistics Review Descriptive Statistics Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production
More informationStatistics 101 Homework 2
Statistics 101 Homework 2 Solution Reading: January 23 January 25 Chapter 4 January 28 Chapter 5 Assignment: 1. As part of a physiology study participants had their heart rate (beats per minute) taken
More informationSTAT 155 Introductory Statistics. Lecture 5: Density Curves and Normal Distributions (I)
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 5: Density Curves and Normal Distributions (I) 9/12/06 Lecture 5 1 A problem about Standard Deviation A variable
More informationGeostatistics Exploratory Analysis
Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt
More informationDiagrams and Graphs of Statistical Data
Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in
More information3.1 Measures of central tendency: mode, median, mean, midrange Dana Lee Ling (2012)
3.1 Measures of central tendency: mode, median, mean, midrange Dana Lee Ling (2012) Mode The mode is the value that occurs most frequently in the data. Spreadsheet programs such as Microsoft Excel or OpenOffice.org
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) (a) 3 (b) 51
Chapter 2 Problems to look at Use the given frequency distribution to find the (a) class width. (b) class midpoints of the first class. (c) class boundaries of the first class. 1) Height (in inches) 1)
More informationBASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS
BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi110 012 seema@iasri.res.in Genomics A genome is an organism s
More informationModule 4: Data Exploration
Module 4: Data Exploration Now that you have your data downloaded from the Streams Project database, the detective work can begin! Before computing any advanced statistics, we will first use descriptive
More informationGCSE HIGHER Statistics Key Facts
GCSE HIGHER Statistics Key Facts Collecting Data When writing questions for questionnaires, always ensure that: 1. the question is worded so that it will allow the recipient to give you the information
More informationHomework 3. Part 1. Name: Score: / null
Name: Score: / Homework 3 Part 1 null 1 For the following sample of scores, the standard deviation is. Scores: 7, 2, 4, 6, 4, 7, 3, 7 Answer Key: 2 2 For any set of data, the sum of the deviation scores
More informationSection 3.1 Measures of Central Tendency: Mode, Median, and Mean
Section 3.1 Measures of Central Tendency: Mode, Median, and Mean One number can be used to describe the entire sample or population. Such a number is called an average. There are many ways to compute averages,
More informationDescriptive Statistics
Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web
More informationLecture 2. Summarizing the Sample
Lecture 2 Summarizing the Sample WARNING: Today s lecture may bore some of you It s (sort of) not my fault I m required to teach you about what we re going to cover today. I ll try to make it as exciting
More informationSession 1.6 Measures of Central Tendency
Session 1.6 Measures of Central Tendency Measures of location (Indices of central tendency) These indices locate the center of the frequency distribution curve. The mode, median, and mean are three indices
More informationUsing SPSS, Chapter 2: Descriptive Statistics
1 Using SPSS, Chapter 2: Descriptive Statistics Chapters 2.1 & 2.2 Descriptive Statistics 2 Mean, Standard Deviation, Variance, Range, Minimum, Maximum 2 Mean, Median, Mode, Standard Deviation, Variance,
More informationFirst Midterm Exam (MATH1070 Spring 2012)
First Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [40pts] Multiple Choice Problems
More informationWeek 1. Exploratory Data Analysis
Week 1 Exploratory Data Analysis Practicalities This course ST903 has students from both the MSc in Financial Mathematics and the MSc in Statistics. Two lectures and one seminar/tutorial per week. Exam
More information2 Describing, Exploring, and
2 Describing, Exploring, and Comparing Data This chapter introduces the graphical plotting and summary statistics capabilities of the TI 83 Plus. First row keys like \ R (67$73/276 are used to obtain
More informationShape of Data Distributions
Lesson 13 Main Idea Describe a data distribution by its center, spread, and overall shape. Relate the choice of center and spread to the shape of the distribution. New Vocabulary distribution symmetric
More informationClassify the data as either discrete or continuous. 2) An athlete runs 100 meters in 10.5 seconds. 2) A) Discrete B) Continuous
Chapter 2 Overview Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Classify as categorical or qualitative data. 1) A survey of autos parked in
More informationCh. 3.1 # 3, 4, 7, 30, 31, 32
Math Elementary Statistics: A Brief Version, 5/e Bluman Ch. 3. # 3, 4,, 30, 3, 3 Find (a) the mean, (b) the median, (c) the mode, and (d) the midrange. 3) High Temperatures The reported high temperatures
More information2. Filling Data Gaps, Data validation & Descriptive Statistics
2. Filling Data Gaps, Data validation & Descriptive Statistics Dr. Prasad Modak Background Data collected from field may suffer from these problems Data may contain gaps ( = no readings during this period)
More information+ Chapter 1 Exploring Data
Chapter 1 Exploring Data Introduction: Data Analysis: Making Sense of Data 1.1 Analyzing Categorical Data 1.2 Displaying Quantitative Data with Graphs 1.3 Describing Quantitative Data with Numbers Introduction
More informationMean = (sum of the values / the number of the value) if probabilities are equal
Population Mean Mean = (sum of the values / the number of the value) if probabilities are equal Compute the population mean Population/Sample mean: 1. Collect the data 2. sum all the values in the population/sample.
More informationDescriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics
Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),
More informationBiostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to
More informationReport of for Chapter 2 pretest
Report of for Chapter 2 pretest Exam: Chapter 2 pretest Category: Organizing and Graphing Data 1. "For our study of driving habits, we recorded the speed of every fifth vehicle on Drury Lane. Nearly every
More informationChapter 2 Data Exploration
Chapter 2 Data Exploration 2.1 Data Visualization and Summary Statistics After clearly defining the scientific question we try to answer, selecting a set of representative members from the population of
More informationMEI Statistics 1. Exploring data. Section 1: Introduction. Looking at data
MEI Statistics Exploring data Section : Introduction Notes and Examples These notes have subsections on: Looking at data Stemandleaf diagrams Types of data Measures of central tendency Comparison of
More informationFrequency distributions, central tendency & variability. Displaying data
Frequency distributions, central tendency & variability Displaying data Software SPSS Excel/Numbers/Google sheets Social Science Statistics website (socscistatistics.com) Creating and SPSS file Open the
More informationNorthumberland Knowledge
Northumberland Knowledge Know Guide How to Analyse Data  November 2012  This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about
More information2. A is a subset of the population. 3. Construct a frequency distribution for the data of the grades of 25 students taking Math 11 last
Math 111 Chapter 12 Practice Test 1. If I wanted to survey 50 Cabrini College students about where they prefer to eat on campus, which would be the most appropriate way to conduct my survey? a. Find 50
More informationconsider the number of math classes taken by math 150 students. how can we represent the results in one number?
ch 3: numerically summarizing data  center, spread, shape 3.1 measure of central tendency or, give me one number that represents all the data consider the number of math classes taken by math 150 students.
More informationSPSS for Exploratory Data Analysis Data used in this guide: studentp.sav (http://people.ysu.edu/~gchang/stat/studentp.sav)
Data used in this guide: studentp.sav (http://people.ysu.edu/~gchang/stat/studentp.sav) Organize and Display One Quantitative Variable (Descriptive Statistics, Boxplot & Histogram) 1. Move the mouse pointer
More informationA Correlation of. to the. South Carolina Data Analysis and Probability Standards
A Correlation of to the South Carolina Data Analysis and Probability Standards INTRODUCTION This document demonstrates how Stats in Your World 2012 meets the indicators of the South Carolina Academic Standards
More informationMEASURES OF CENTER AND SPREAD MEASURES OF CENTER 11/20/2014. What is a measure of center? a value at the center or middle of a data set
MEASURES OF CENTER AND SPREAD Mean and Median MEASURES OF CENTER What is a measure of center? a value at the center or middle of a data set Several different ways to determine the center: Mode Median Mean
More informationAMS 7L LAB #2 Spring, 2009. Exploratory Data Analysis
AMS 7L LAB #2 Spring, 2009 Exploratory Data Analysis Name: Lab Section: Instructions: The TAs/lab assistants are available to help you if you have any questions about this lab exercise. If you have any
More informationT O P I C 1 2 Techniques and tools for data analysis Preview Introduction In chapter 3 of Statistics In A Day different combinations of numbers and types of variables are presented. We go through these
More informationRECOMMENDED COURSE(S): Algebra I or II, Integrated Math I, II, or III, Statistics/Probability; Introduction to Health Science
This task was developed by high school and postsecondary mathematics and health sciences educators, and validated by content experts in the Common Core State Standards in mathematics and the National Career
More informationWeek 11 Lecture 2: Analyze your data: Descriptive Statistics, Correct by Taking Log
Week 11 Lecture 2: Analyze your data: Descriptive Statistics, Correct by Taking Log Instructor: Eakta Jain CIS 6930, Research Methods for Humancentered Computing Scribe: Chris(Yunhao) Wan, UFID: 16773116
More informationMeasures of Central Tendency. There are different types of averages, each has its own advantages and disadvantages.
Measures of Central Tendency According to Prof Bowley Measures of central tendency (averages) are statistical constants which enable us to comprehend in a single effort the significance of the whole. The
More informationMathematics. Probability and Statistics Curriculum Guide. Revised 2010
Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction
More information2 Descriptive statistics with R
Biological data analysis, Tartu 2006/2007 1 2 Descriptive statistics with R Before starting with basic concepts of data analysis, one should be aware of different types of data and ways to organize data
More informationSummary of Formulas and Concepts. Descriptive Statistics (Ch. 14)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 14) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
More informationdetermining relationships among the explanatory variables, and
Chapter 4 Exploratory Data Analysis A first look at the data. As mentioned in Chapter 1, exploratory data analysis or EDA is a critical first step in analyzing the data from an experiment. Here are the
More informationSPSS Manual for Introductory Applied Statistics: A Variable Approach
SPSS Manual for Introductory Applied Statistics: A Variable Approach John Gabrosek Department of Statistics Grand Valley State University Allendale, MI USA August 2013 2 Copyright 2013 John Gabrosek. All
More informationETL PROCESS IN DATA WAREHOUSE
ETL PROCESS IN DATA WAREHOUSE OUTLINE ETL : Extraction, Transformation, Loading Capture/Extract Scrub or data cleansing Transform Load and Index ETL OVERVIEW Extraction Transformation Loading ETL ETL is
More informationList of Examples. Examples 319
Examples 319 List of Examples DiMaggio and Mantle. 6 Weed seeds. 6, 23, 37, 38 Vole reproduction. 7, 24, 37 Wooly bear caterpillar cocoons. 7 Homophone confusion and Alzheimer s disease. 8 Gear tooth strength.
More information6 th Grade Math 4 th Quarter Unit 5: Geometry Topic C: Volume of Right Rectangular Prisms
HIGLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL ALIGNMENT 6 th Grade Math 4 th Quarter Unit 5: Geometry Topic C: Volume of Right Rectangular Prisms In Grade 5, students recognized volume as an attribute of
More information! x sum of the entries
3.1 Measures of Central Tendency (Page 1 of 16) 3.1 Measures of Central Tendency Mean, Median and Mode! x sum of the entries a. mean, x = = n number of entries Example 1 Find the mean of 26, 18, 12, 31,
More informationTHE BINOMIAL DISTRIBUTION & PROBABILITY
REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution
More informationLesson Plan. Mean Count
S.ID.: Central Tendency and Dispersion S.ID.: Central Tendency and Dispersion Summarize, represent, and interpret data on a single count or measurement variable. Use statistics appropriate to the shape
More information2.0 Lesson Plan. Answer Questions. Summary Statistics. Histograms. The Normal Distribution. Using the Standard Normal Table
2.0 Lesson Plan Answer Questions 1 Summary Statistics Histograms The Normal Distribution Using the Standard Normal Table 2. Summary Statistics Given a collection of data, one needs to find representations
More informationCS6220: DATA MINING TECHNIQUES
CS6220: DATA MINING TECHNIQUES 2: Data PreProcessing Instructor: Yizhou Sun yzsun@ccs.neu.edu September 7, 2014 2: Data PreProcessing Getting to know your data Basic Statistical Descriptions of Data
More informationStats Review Chapters 34
Stats Review Chapters 34 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test
More information4. DESCRIPTIVE STATISTICS. Measures of Central Tendency (Location) Sample Mean
4. DESCRIPTIVE STATISTICS Descriptive Statistics is a body of techniques for summarizing and presenting the essential information in a data set. Eg: Here are daily high temperatures for Jan 6, 29 in U.S.
More information