# 5/31/ Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.

Save this PDF as:

Size: px
Start display at page:

Download "5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives."

## Transcription

1 The Normal Distribution C H 6A P T E R The Normal Distribution Outline Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution Copyright 2013 The McGraw Hill Companies, Inc. Permission required for reproduction or display. 1 C H 6A P T E R The Normal Distribution Objectives 1 Identify distributions as symmetric or skewed. 2 Identify the properties of a normal distribution. 3 Find the area under the standard normal distribution, given various z values. 4 Find probabilities for a normally distributed variable by transforming it into a standard normal variable. 5 Find specific data values for given percentages, using the standard normal distribution. C H 6A P T E R The Normal Distribution Objectives 6 Use the central limit theorem to solve problems involving sample means for large samples. 7 Use the normal approximation to compute probabilities for a binomial variable. 6.1 Many continuous variables have distributions that are bell-shaped and are called approximately normally distributed variables. The theoretical curve, called the bell curve or the Gaussian distribution, can be used to study many variables that are not normally distributed but are approximately normal. The mathematical equation for the normal distribution is: e y 2 2 ( X ) (2 ) 2 where e population mean population standard deviation Bluman, 5 Bluman, 6 1

2 The shape and position of the normal distribution curve depend on two parameters, the mean and the standard deviation. Each normally distributed variable has its own normal distribution curve, which depends on the values of the variable s mean and standard deviation. Bluman, 7 Bluman, 8 Normal Distribution Properties The normal distribution curve is bell-shaped. The mean, median, and mode are equal and located at the center of the distribution. The normal distribution curve is unimodal (i.e., it has only one mode). The curve is symmetrical about the mean, which is equivalent to saying that its shape is the same on both sides of a vertical line passing through the center. Normal Distribution Properties The curve is continuous i.e., there are no gaps or holes. For each value of X, there is a corresponding value of Y. The curve never touches the x-axis. Theoretically, no matter how far in either direction the curve extends, it never meets the x-axis but it gets increasingly closer. Bluman, 9 Bluman, 10 Normal Distribution Properties The total area under the normal distribution curve is equal to 1.00 or 100%. The area under the normal curve that lies within one standard deviation of the mean is approximately 0.68 (68%). two standard deviations of the mean is approximately 0.95 (95%). three standard deviations of the mean is approximately ( 99.7%). Normal Distribution Properties Bluman, 11 Bluman, 12 2

3 Standard Normal Distribution Since each normally distributed variable has its own mean and standard deviation, the shape and location of these curves will vary. In practical applications, one would have to have a table of areas under the curve for each variable. To simplify this, statisticians use the standard normal distribution. The standard normal distribution is a normal distribution with a mean of 0 and a standard deviation of 1. z value (Standard Value) The z value is the number of standard deviations that a particular X value is away from the mean. The formula for finding the z value is: value mean z standard deviation z X Bluman, 13 Bluman, 14 Area under the Standard Normal Distribution Curve 1. To the left of any z value: Look up the z value in the table and use the area given. Area under the Standard Normal Distribution Curve 2. To the right of any z value: Look up the z value and subtract the area from 1. Bluman, 15 Bluman, 16 Area under the Standard Normal Distribution Curve 3. Between two z values: Look up both z values and subtract the corresponding areas. Section 6-1 Example 6-1 Page #304 Bluman, 17 Bluman, 18 3

4 Example 6-1: Area under the Curve Find the area to the left of z = The value in the 2.0 row and the 0.06 column of Table E is The area is Section 6-1 Example 6-2 Page #304 Bluman, 19 Bluman, 20 Example 6-2: Area under the Curve Find the area to the right of z = The value in the 1.1 row and the.09 column of Table E is The area is = Bluman, 21 Section 6-1 Example 6-3 Page #305 Bluman, 22 Example 6-3: Area under the Curve Find the area between z = and z = The values for z = is and for z = 1.37 is The area is = Bluman, 23 Section 6-1 Example 6-4 Page #306 Bluman, 24 4

5 Example 6-4: Probability a. Find the probability: P(0 < z < 2.32) The values for z = 2.32 is and for z = 0 is The probability is = Bluman, 25 Section 6-1 Example 6-5 Page #307 Bluman, 26 Example 6-5: Probability Find the z value such that the area under the standard normal distribution curve between 0 and the z value is Example 6-5: Probability Add.5000 to.2123 to get the cumulative area of Then look for that value inside Table E. Add to to get the cumulative area of Then look for that value inside Table E. Bluman, 27 The z value is Bluman, Applications of the Normal Distributions The standard normal distribution curve can be used to solve a wide variety of practical problems. The only requirement is that the variable be normally or approximately normally distributed. For all the problems presented in this chapter, you can assume that the variable is normally or approximately normally distributed. Applications of the Normal Distributions To solve problems by using the standard normal distribution, transform the original variable to a standard normal distribution variable by using the z value formula. This formula transforms the values of the variable into standard units or z values. Once the variable is transformed, then the Procedure Table (Sec. 6.1) and Table E in Appendix C can be used to solve problems. Bluman, 29 Bluman, 30 5

6 Example 6-6: Summer Spending A survey found that women spend on average \$ on beauty products during the summer months. Assume the standard deviation is \$ Section 6-2 Example 6-6 Page #315 Find the percentage of women who spend less than \$ Assume the variable is normally distributed. Bluman, 31 Bluman, 32 Example 6-6: Summer Spending Step 1: Draw the normal distribution curve. Example 6-6: Summer Spending Step 2: Find the z value corresponding to \$ X z Step 3: Find the area to the left of z = Table E gives us an area of % of women spend less than \$160. Bluman, 33 Bluman, 34 Section 6-2 Example 6-7a Page #315 Example 6-7a: Newspaper Recycling Each month, an American household generates an average of 28 pounds of newspaper for garbage or recycling. Assume the standard deviation is 2 pounds. If a household is selected at random, find the probability of its generating between 27 and 31 pounds per month. Assume the variable is approximately normally distributed. Step 1: Draw the normal distribution curve. Bluman, 35 Bluman, 36 6

7 Example 6-7a: Newspaper Recycling Step 2: Find z values corresponding to 27 and z 0.5 z Step 3: Find the area between z = -0.5 and z = 1.5. Table E gives us an area of = The probability is 62%. Section 6-2 Example 6-8 Page #317 Bluman, 37 Bluman, 38 Example 6-8: Coffee Consumption Americans consume an average of 1.64 cups of coffee per day. Assume the variable is approximately normally distributed with a standard deviation of 0.24 cup. Example 6-8: Coffee Consumption Step 1: Draw the normal distribution curve. If 500 individuals are selected, approximately how many will drink less than 1 cup of coffee per day? Bluman, 39 Bluman, 40 Example 6-8: Coffee Consumption Step 2: Find the z value for z Step 3: Find the area to the left of z = It is Step 4: To find how many people drank less than 1 cup of coffee, multiply the sample size 500 by to get 1.9. Since we are asking about people, round the answer to 2 people. Hence, approximately 2 people will drink less than 1 cup of coffee a day. Section 6-2 Example 6-9 Page #318 Bluman, 41 Bluman, 42 7

8 Example 6-9: Police Academy To qualify for a police academy, candidates must score in the top 10% on a general abilities test. The test has a mean of 200 and a standard deviation of 20. Find the lowest possible score to qualify. Assume the test scores are normally distributed. Step 1: Draw the normal distribution ib ti curve. Example 6-8: Police Academy Step 2: Subtract to find area to the left, Look for the closest value to that in Table E. Step 3: Find X. X z The cutoff, the lowest possible score to qualify, is 226. Bluman, 43 Bluman, 44 Section 6-2 Example 6-10 Page #319 Example 6-10: Systolic Blood Pressure For a medical study, a researcher wishes to select people in the middle 60% of the population based on blood pressure. If the mean systolic blood pressure is 120 and the standard deviation is 8, find the upper and lower readings that would qualify people to participate in the study. Step 1: Draw the normal distribution curve. Bluman, 45 Bluman, 46 Example 6-10: Systolic Blood Pressure Area to the left of the positive z: = Using Table E, z X = (8) = Area to the left of the negative z: = Using Table E, z X = (8) = The middle 60% of readings are between 113 and 127. A normally shaped or bell-shaped distribution is only one of many shapes that a distribution can assume; however, it is very important since many statistical methods require that the distribution of values (shown in subsequent chapters) be normally or approximately normally shaped. There are a number of ways statisticians check for normality. We will focus on three of them. Bluman, 47 Bluman, 48 8

9 Checking for Normality Histogram Pearson s Index PI of Skewness Outliers Other Tests Normal Quantile Plot Chi-Square Goodness-of-Fit Test Kolmogorov-Smikirov Test Lilliefors Test Section 6-2 Example 6-11 Page #320 Bluman, 49 Bluman, 50 Example 6-11: Technology Inventories A survey of 18 high-technology firms showed the number of days inventory they had on hand. Determine if the data are approximately normally distributed Method 1: Construct a Histogram. The histogram is approximately bell-shaped. Example 6-11: Technology Inventories Method 2: Check for Skewness. X 79.5, MD 77.5, s ( X MD) PI s 40.5 The PI is not greater than 1 or less than 1, so it can be concluded d that t the distribution ib ti is not significantly ifi skewed. Method 3: Check for Outliers. Five-Number Summary: Q1 1.5(IQR) = (53) = 34.5 Q (IQR) = (53) = No data below 34.5 or above 177.5, so no outliers. Bluman, 51 Bluman, 52 Example 6-11: Technology Inventories A survey of 18 high-technology firms showed the number of days inventory they had on hand. Determine if the data are approximately normally distributed Conclusion: The histogram is approximately bell-shaped. The data are not significantly skewed. There are no outliers. Thus, it can be concluded that the distribution is approximately normally distributed. 6.3 The Central Limit Theorem In addition to knowing how individual data values vary about the mean for a population, statisticians are interested in knowing how the means of samples of the same size taken from the same population vary about the population mean. Bluman, 53 Bluman, 54 9

10 Distribution of Sample Means A sampling distribution of sample means is a distribution obtained by using the means computed from random samples of a specific size taken from a population. Sampling error is the difference between the sample measure and the corresponding population measure due to the fact that the sample is not a perfect representation of the population. Properties of the Distribution of Sample Means The mean of the sample means will be the same as the population mean. The standard deviation of the sample means will be smaller than the standard d deviation of the population, and will be equal to the population standard deviation divided by the square root of the sample size. Bluman, 55 Bluman, 56 The Central Limit Theorem As the sample size n increases, the shape of the distribution of the sample means taken with replacement from a population with mean and standard deviation will approach a normal distribution. The mean of the sample means equals the population mean. X. The standard deviation of the sample means is called the standard error of the mean. n. X The Central Limit Theorem The central limit theorem can be used to answer questions about sample means in the same manner that the normal distribution can be used to answer questions about individual values. A new formula must be used for the z values: X X z X n X Bluman, 57 Bluman, 58 Section 6-3 Example 6-13 Page #332 Example 6-13: Hours of Television A. C. Neilsen reported that children between the ages of 2 and 5 watch an average of 25 hours of television per week. Assume the variable is normally distributed and the standard deviation is 3 hours. If 20 children between the ages of 2 and 5 are randomly selected, find the probability that the mean of the number of hours they watch television will be greater than 26.3 hours. Bluman, 59 Bluman, 60 10

11 Example 6-13: Hours of Television Since we are calculating probability for a sample mean, we need the Central Limit Theorem formula X z 1.94 n 3 20 The area is = The probability of obtaining a sample mean larger than 26.3 hours is 2.62%. Section 6-3 Example 6-14 Page #333 Bluman, 61 Bluman, 62 Example 6-14: Vehicle Age The average age of a vehicle registered in the United States is 8 years, or 96 months. Assume the standard deviation is 16 months. If a random sample of 36 vehicles is selected, find the probability that the mean of their age is between 90 and 100 months. Since the sample is 30 or larger, the normality assumption is not necessary. Example 6-14: Vehicle Age z 2.25 z Table E gives us areas and , respectively. The desired area is = The probability of obtaining a sample mean between 90 and 100 months is 92.1%. Bluman, 63 Bluman, 64 Section 6-3 Example 6-15 Page #334 Example 6-15: Meat Consumption The average number of pounds of meat that a person consumes per year is pounds. Assume that the standard deviation is 25 pounds and the distribution is approximately normal. a. Find the probability that a person selected at random consumes less than 224 pounds per year. Bluman, 65 Bluman, 66 11

12 Example 6-15: Meat Consumption z X The area to the left of z = 0.22 is Hence, the probability of selecting an individual who consumes less than 224 pounds of meat per year is , or 58.71%. Example 6-15: Meat Consumption The average number of pounds of meat that a person consumes per year is pounds. Assume that the standard deviation is 25 pounds and the distribution is approximately normal. b. If a sample of 40 individuals is selected, find the probability the sample mean will be less than 224 pounds per year. Bluman, 67 Bluman, 68 Example 6-15: Meat Consumption X z 1.42 n The area to the left of z = 1.42 is Hence, the probability that the mean of a sample of 40 individuals is less than 224 pounds per year is , or 92.22%. Finite Population Correction Factor The formula for standard error of the mean is accurate when the samples are drawn with replacement or are drawn without replacement from a very large or infinite population. A correction factor is necessary for computing the standard error of the mean for samples drawn without replacement from a finite population. Bluman, 69 Bluman, 70 Finite Population Correction Factor The correction factor is computed using the following formula: N n N 1 where N is the population size and n is the sample size. The standard error of the mean must be multiplied by the correction factor to adjust it for large samples taken from a small population. Finite Population Correction Factor n N n N 1 The standard error for the mean must be adjusted when it is included in the formula for calculating the z values. X N n n N 1 Bluman, 71 Bluman, 72 12

13 6.4 The Normal Approximation to the Binomial Distribution A normal distribution is often used to solve problems that involve the binomial distribution since when n is large (say, 100), the calculations are too difficult to do by hand using the binomial i distribution. The Normal Approximation to the Binomial Distribution The normal approximation to the binomial is appropriate when np > 5 and nq > 5. In addition, a correction for continuity may be used in the normal approximation to the binomial. The continuity correction means that for any specific value of X, say 8, the boundaries of X in the binomial distribution (in this case, 7.5 to 8.5) must be used. Bluman, 73 Bluman, 74 The Normal Approximation to the Binomial Distribution Binomial When finding: P(X = a) P(X a) P(X > a) P(X a) P(X < a) Normal Use: P(a 0.5 < X < a +0.5) P(X > a 0.5) P(X > a + 0.5) P(X < a + 0.5) P(X < a 0.5) For all cases, np, npq, np 5, nq 5 Procedure Table Procedure for the Normal Approximation to the Binomial Distribution Step 1 Check to see whether the normal approximation can be used. Step 2 Find the mean and the standard deviation. Step 3 Write the problem in probability notation, using X. Step 4 Rewrite the problem by using the continuity correction factor, and show the corresponding area under the normal distribution. Bluman, 75 Procedure Table Procedure for the Normal Approximation to the Binomial Distribution Step 5 Find the corresponding z values. Step 6 Find the solution. Section 6-4 Example 6-16 Page #341 Bluman, 78 13

14 Example 6-16: Reading While Driving A magazine reported that 6% of American drivers read the newspaper while driving. If 300 drivers are selected at random, find the probability that exactly 25 say they read the newspaper while driving. Here, p = 0.06, q = 0.94, and n = 300. Step 1: Check to see whether a normal approximation can be used. np = (300)(0.06) = 18 and nq = (300)(0.94) = 282 Since np 5 and nq 5, we can use the normal distribution. Step 2: Find the mean and standard deviation. µ = np = (300)(0.06) = npq Example 6-16: Reading While Driving Step 3: Write in probability notation. P(X = 25) Step 4: Rewrite using the continuity correction factor. P(24.5 < X < 25.5) Step 5: Find the corresponding z values z 1.58, z Step 6: Find the solution The area between the two z values is = , or 2.27%. Hence, the probability that exactly 25 people read the newspaper while driving is 2.27%. Bluman, 79 Bluman, 80 Section 6-4 Example 6-17 Page #341 Example 6-17: Widowed Bowlers Of the members of a bowling league, 10% are widowed. If 200 bowling league members are selected at random, find the probability that 10 or more will be widowed. Here, p = 0.10, q = 0.90, and n = 200. Step 1: Check to see whether a normal approximation can be used. np = (200)(0.10) = 20 and nq = (200)(0.90) = 180 Since np 5 and nq 5, we can use the normal distribution. Step 2: Find the mean and standard deviation. µ = np = (200)(0.06) = npq Bluman, 81 Bluman, 82 Example 6-17: Widowed Bowlers Step 3: Write in probability notation. P(X 10) Step 4: Rewrite using the continuity correction factor. P(X > 9.5) Step 5: Find the corresponding z values z Step 6: Find the solution The area to the right of the z value is = , or 99.34%. The probability of 10 or more widowed people in a random sample of 200 bowling league members is 99.34%. Bluman, 83 14

### Normal distribution. ) 2 /2σ. 2π σ

Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

### The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

### Chapter 5: Normal Probability Distributions - Solutions

Chapter 5: Normal Probability Distributions - Solutions Note: All areas and z-scores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that

### Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

### Descriptive Statistics

Descriptive Statistics Suppose following data have been collected (heights of 99 five-year-old boys) 117.9 11.2 112.9 115.9 18. 14.6 17.1 117.9 111.8 16.3 111. 1.4 112.1 19.2 11. 15.4 99.4 11.1 13.3 16.9

### Key Concept. Density Curve

MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

### Variables. Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is

### Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

### Probability Distributions

CHAPTER 5 Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Probability Distribution 5.3 The Binomial Distribution

### THE BINOMIAL DISTRIBUTION & PROBABILITY

REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution

### Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture

Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Pre-lecture iclicker Question 4.4 Pre-lecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing

### 16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of

### Mathematics. Probability and Statistics Curriculum Guide. Revised 2010

Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction

### Exploratory Data Analysis

Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

### Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

### Characteristics of Binomial Distributions

Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

### EMPIRICAL FREQUENCY DISTRIBUTION

INTRODUCTION TO MEDICAL STATISTICS: Mirjana Kujundžić Tiljak EMPIRICAL FREQUENCY DISTRIBUTION observed data DISTRIBUTION - described by mathematical models 2 1 when some empirical distribution approximates

### CHI-SQUARE: TESTING FOR GOODNESS OF FIT

CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity

### You flip a fair coin four times, what is the probability that you obtain three heads.

Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

### Ch. 3.1 # 3, 4, 7, 30, 31, 32

Math Elementary Statistics: A Brief Version, 5/e Bluman Ch. 3. # 3, 4,, 30, 3, 3 Find (a) the mean, (b) the median, (c) the mode, and (d) the midrange. 3) High Temperatures The reported high temperatures

### Chapter 4. Probability Distributions

Chapter 4 Probability Distributions Lesson 4-1/4-2 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive

### 12.5: CHI-SQUARE GOODNESS OF FIT TESTS

125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

### SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2

### Bar Graphs and Dot Plots

CONDENSED L E S S O N 1.1 Bar Graphs and Dot Plots In this lesson you will interpret and create a variety of graphs find some summary values for a data set draw conclusions about a data set based on graphs

### STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

### DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables

1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random

### AP * Statistics Review. Descriptive Statistics

AP * Statistics Review Descriptive Statistics Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production

### Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

### Ch. 6.1 #7-49 odd. The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.7734-0.5= 0.2734

Ch. 6.1 #7-49 odd The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.7734-0.5= 0.2734 The area is found by looking up z= 2.07 in Table E and subtracting from 0.5. Area = 0.5-0.0192

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### Sample Term Test 2A. 1. A variable X has a distribution which is described by the density curve shown below:

Sample Term Test 2A 1. A variable X has a distribution which is described by the density curve shown below: What proportion of values of X fall between 1 and 6? (A) 0.550 (B) 0.575 (C) 0.600 (D) 0.625

### ELEMENTARY STATISTICS

ELEMENTARY STATISTICS Study Guide Dr. Shinemin Lin Table of Contents 1. Introduction to Statistics. Descriptive Statistics 3. Probabilities and Standard Normal Distribution 4. Estimates and Sample Sizes

### Chi Square Tests. Chapter 10. 10.1 Introduction

Contents 10 Chi Square Tests 703 10.1 Introduction............................ 703 10.2 The Chi Square Distribution.................. 704 10.3 Goodness of Fit Test....................... 709 10.4 Chi Square

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### The Chi-Square Test. STAT E-50 Introduction to Statistics

STAT -50 Introduction to Statistics The Chi-Square Test The Chi-square test is a nonparametric test that is used to compare experimental results with theoretical models. That is, we will be comparing observed

### How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

### 7. Normal Distributions

7. Normal Distributions A. Introduction B. History C. Areas of Normal Distributions D. Standard Normal E. Exercises Most of the statistical analyses presented in this book are based on the bell-shaped

### Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2

Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables

### MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

### Standard Deviation Estimator

CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

### Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)

Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center

### Mathematics and Statistics: Apply probability methods in solving problems (91267)

NCEA Level 2 Mathematics (91267) 2013 page 1 of 5 Assessment Schedule 2013 Mathematics and Statistics: Apply probability methods in solving problems (91267) Evidence Statement with Merit Apply probability

### STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

### Mind on Statistics. Chapter 2

Mind on Statistics Chapter 2 Sections 2.1 2.3 1. Tallies and cross-tabulations are used to summarize which of these variable types? A. Quantitative B. Mathematical C. Continuous D. Categorical 2. The table

### Geostatistics Exploratory Analysis

Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt

### Descriptive statistics; Correlation and regression

Descriptive statistics; and regression Patrick Breheny September 16 Patrick Breheny STA 580: Biostatistics I 1/59 Tables and figures Descriptive statistics Histograms Numerical summaries Percentiles Human

### Classify the data as either discrete or continuous. 2) An athlete runs 100 meters in 10.5 seconds. 2) A) Discrete B) Continuous

Chapter 2 Overview Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Classify as categorical or qualitative data. 1) A survey of autos parked in

### Normality Testing in Excel

Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

### Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

### Statistics 104: Section 6!

Page 1 Statistics 104: Section 6! TF: Deirdre (say: Dear-dra) Bloome Email: dbloome@fas.harvard.edu Section Times Thursday 2pm-3pm in SC 109, Thursday 5pm-6pm in SC 705 Office Hours: Thursday 6pm-7pm SC

### AP STATISTICS REVIEW (YMS Chapters 1-8)

AP STATISTICS REVIEW (YMS Chapters 1-8) Exploring Data (Chapter 1) Categorical Data nominal scale, names e.g. male/female or eye color or breeds of dogs Quantitative Data rational scale (can +,,, with

### Section 1.3 Exercises (Solutions)

Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146-148. 1.109 Sketch some normal curves. (a) Sketch

### Binomial Distribution n = 20, p = 0.3

This document will describe how to use R to calculate probabilities associated with common distributions as well as to graph probability distributions. R has a number of built in functions for calculations

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### 3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

### Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

### The normal approximation to the binomial

The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There

### Calculation example mean, median, midrange, mode, variance, and standard deviation for raw and grouped data

Calculation example mean, median, midrange, mode, variance, and standard deviation for raw and grouped data Raw data: 7, 8, 6, 3, 5, 5, 1, 6, 4, 10 Sorted data: 1, 3, 4, 5, 5, 6, 6, 7, 8, 10 Number of

### Hypothesis Testing: Two Means, Paired Data, Two Proportions

Chapter 10 Hypothesis Testing: Two Means, Paired Data, Two Proportions 10.1 Hypothesis Testing: Two Population Means and Two Population Proportions 1 10.1.1 Student Learning Objectives By the end of this

### 7 Confidence Intervals

blu49076_ch07.qxd 5/20/2003 3:15 PM Page 325 c h a p t e r 7 7 Confidence Intervals and Sample Size Outline 7 1 Introduction 7 2 Confidence Intervals for the Mean (s Known or n 30) and Sample Size 7 3

### Box-and-Whisker Plots

Mathematics Box-and-Whisker Plots About this Lesson This is a foundational lesson for box-and-whisker plots (boxplots), a graphical tool used throughout statistics for displaying data. During the lesson,

### Grade 4 - Module 5: Fraction Equivalence, Ordering, and Operations

Grade 4 - Module 5: Fraction Equivalence, Ordering, and Operations Benchmark (standard or reference point by which something is measured) Common denominator (when two or more fractions have the same denominator)

### HYPOTHESIS TESTING WITH SPSS:

HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER

### Binomial Random Variables

Binomial Random Variables Dr Tom Ilvento Department of Food and Resource Economics Overview A special case of a Discrete Random Variable is the Binomial This happens when the result of the eperiment is

### REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

### Section 5 Part 2. Probability Distributions for Discrete Random Variables

Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability

### 5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives

C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.

### Measurement & Data Analysis. On the importance of math & measurement. Steps Involved in Doing Scientific Research. Measurement

Measurement & Data Analysis Overview of Measurement. Variability & Measurement Error.. Descriptive vs. Inferential Statistics. Descriptive Statistics. Distributions. Standardized Scores. Graphing Data.

### Introduction to Hypothesis Testing

I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true

### 3: Summary Statistics

3: Summary Statistics Notation Let s start by introducing some notation. Consider the following small data set: 4 5 30 50 8 7 4 5 The symbol n represents the sample size (n = 0). The capital letter X denotes

### BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

### Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory

LA-UR-12-24572 Approved for public release; distribution is unlimited Statistical Impact of Slip Simulator Training at Los Alamos National Laboratory Alicia Garcia-Lopez Steven R. Booth September 2012

### Common Core State Standards for Mathematics Accelerated 7th Grade

A Correlation of 2013 To the to the Introduction This document demonstrates how Mathematics Accelerated Grade 7, 2013, meets the. Correlation references are to the pages within the Student Edition. Meeting

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### CHAPTER 15 NOMINAL MEASURES OF CORRELATION: PHI, THE CONTINGENCY COEFFICIENT, AND CRAMER'S V

CHAPTER 15 NOMINAL MEASURES OF CORRELATION: PHI, THE CONTINGENCY COEFFICIENT, AND CRAMER'S V Chapters 13 and 14 introduced and explained the use of a set of statistical tools that researchers use to measure

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

### Pr(X = x) = f(x) = λe λx

Old Business - variance/std. dev. of binomial distribution - mid-term (day, policies) - class strategies (problems, etc.) - exponential distributions New Business - Central Limit Theorem, standard error

### 1 Error in Euler s Method

1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of

### Comparing Means in Two Populations

Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we

### Statistics E100 Fall 2013 Practice Midterm I - A Solutions

STATISTICS E100 FALL 2013 PRACTICE MIDTERM I - A SOLUTIONS PAGE 1 OF 5 Statistics E100 Fall 2013 Practice Midterm I - A Solutions 1. (16 points total) Below is the histogram for the number of medals won

### Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk

Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:

### The normal approximation to the binomial

The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A researcher for an airline interviews all of the passengers on five randomly

### Continuous Random Variables

Chapter 5 Continuous Random Variables 5.1 Continuous Random Variables 1 5.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize and understand continuous

### Mental Questions. Day 1. 1. What number is five cubed? 2. A circle has radius r. What is the formula for the area of the circle?

Mental Questions 1. What number is five cubed? KS3 MATHEMATICS 10 4 10 Level 8 Questions Day 1 2. A circle has radius r. What is the formula for the area of the circle? 3. Jenny and Mark share some money

3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately

### 1 Sufficient statistics

1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

### First Midterm Exam (MATH1070 Spring 2012)

First Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [40pts] Multiple Choice Problems

### Statistics Revision Sheet Question 6 of Paper 2

Statistics Revision Sheet Question 6 of Paper The Statistics question is concerned mainly with the following terms. The Mean and the Median and are two ways of measuring the average. sumof values no. of

### Normal and Binomial. Distributions

Normal and Binomial Distributions Library, Teaching and Learning 14 By now, you know about averages means in particular and are familiar with words like data, standard deviation, variance, probability,

### Education & Training Plan. Accounting Math Professional Certificate Program with Externship

Office of Professional & Continuing Education 301 OD Smith Hall Auburn, AL 36849 http://www.auburn.edu/mycaa Contact: Shavon Williams 334-844-3108; szw0063@auburn.edu Auburn University is an equal opportunity

### Probability Distributions

CHAPTER 6 Probability Distributions Calculator Note 6A: Computing Expected Value, Variance, and Standard Deviation from a Probability Distribution Table Using Lists to Compute Expected Value, Variance,

### Module 4: Data Exploration

Module 4: Data Exploration Now that you have your data downloaded from the Streams Project database, the detective work can begin! Before computing any advanced statistics, we will first use descriptive

### One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) ±1.88 B) ±1.645 C) ±1.96 D) ±2.

Ch. 6 Confidence Intervals 6.1 Confidence Intervals for the Mean (Large Samples) 1 Find a Critical Value 1) Find the critical value zc that corresponds to a 94% confidence level. A) ±1.88 B) ±1.645 C)

### 5.1 Radical Notation and Rational Exponents

Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

OREGON FOCUS ON MATH OAKS HOT TOPICS TEST PREPARATION WORKBOOK 200-204 8 th Grade TO BE USED AS A SUPPLEMENT FOR THE OREGON FOCUS ON MATH MIDDLE SCHOOL CURRICULUM FOR THE 200-204 SCHOOL YEARS WHEN THE

### 6 PROBABILITY GENERATING FUNCTIONS

6 PROBABILITY GENERATING FUNCTIONS Certain derivations presented in this course have been somewhat heavy on algebra. For example, determining the expectation of the Binomial distribution (page 5.1 turned