# STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

Size: px
Start display at page:

Download "STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI"

Transcription

1 STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI

2 Introduction After clearly defining the scientific problem, selecting a set of representative members from the population of interest, and collecting data (either through passively observing events or experiments), we usually begin our analysis with data exploration. We start by focusing on data exploration techniques for one variable at a time. Our objective is to develop a high-level understanding of the data, learn about the possible values for each characteristic, and find out how a characteristic varies among individuals in our sample. In short, we want to learn about the distribution of variables.

3 Variable types The visualization techniques and summary statistics we use for a variable depend on its type. Based on the values a variable can take, we can classify them into two general groups: numerical variables and categorical variables. Consider the Pima.tr data available from the MASS library. Variables npreg, age, and bmi in this data set are numerical variables since they take numerical values, and the numbers they take have their usual meaning. The type variable in this data set, on the other hand, is categorical since the set of values it can take consists of a finite number of categories.

4 Variable types Some numerical variables are count variables. For example, number of pregnancies and number of physician visits. For categorical variables, we typically use numerical codings. Categorical variables are either ordinal or nominal depending on the extent of information the numerical coding provides. For nominal variables, such as type, the numbers are simply labels, which are chosen arbitrarily. For ordinal variables, such as disease severity, although the numbers do not have their usual meaning, they preserve a rank ordering.

5 Frequency and relative frequency The number of times a specific category is observed is called frequency. We denote the frequency for category c by n c. The relative frequency is the sample proportion for each possible category. It is obtained by dividing the frequencies n c by the total number of observations n: p c = n c n Relative frequencies are sometimes presented as percentages after multiplying proportions p c by 100. For a categorical variable, the mode of is the most common value, i.e., the value with the highest frequency.

6 Bar graph For categorical variables, bar graphs are one of the simplest ways of visualizing the data. Using a bar graph, we can visualize the possible values (categories) a categorical variable can take, as well as the number of times each category has been observed in our sample. The height of each bar in this graph shows the number of times the corresponding category has been observed.

7 Bar graphs and frequencies Frequency Bar Graph of Disease Status Frequency No Type Yes Figure: Using R-Commander to create and view a frequency bar graph for type in the Pima.tr data set. The heights of the bars sum to the sample size n. Overall, bar graphs show us how the observed values of a categorical variable in our sample are distributed

8 Pie chart We can use a pie chart to visualize the relative frequencies of different categories for a categorical variable. In a pie chart, the area of a circle is divided into sectors, each representing one of the possible categories of the variable. The area of each sector c is proportional to its frequency. race 1 2 3

9 Exploring Numerical Variables For numerical variables, we are especially interested in two key aspects of the distribution: its location and its spread. The location of a distribution refers to the central tendency of values, that is, the point around which most values are gathered. The spread of a distribution refers to the dispersion of possible values, that is, how scattered the values are around the location.

10 Exploring Numerical Variables Sample 1 Sample 2 Sample X Figure: Three separate samples for variable X. Observations in Sample 1 are gathered around 2, whereas observations in Sample 2 and Sample 3 are gathered around 4. Observations in Sample 3 are more dispersed compared to those in Sample 1 and Sample 2

11 Histograms Histograms are commonly used to visualize numerical variables. A histogram is similar to a bar graph after the values of the variable are grouped (binned) into a finite number of intervals (bins). For each interval, the bar height corresponds to the frequency (count) of observation in that interval.

12 Histograms Sample 3 Frequency X Sample 2 Frequency X Sample 1 Frequency X

13 Histograms The bar height for each interval could be set to its relative frequency p c = n c /n, or the percentage p c 100, of observations that fall into that interval. For histograms, however, it is more common to use the density instead of the relative frequency or percentage. The density is the relative frequency for a unit interval. It is obtained by dividing the relative frequency by the interval width: f c = p c w c. Here, p c = n c /n is the relative frequency with n c as the frequency of interval c and n as the total sample size. The width of interval c is denoted w c.

14 Shapes of histograms Besides the location and spread of a distribution, the shape of a histogram also shows us how the observed values spread around the location. We say the following histogram is symmetric around its location (here, zero) since the densities are the [almost] same for any two intervals that are equally distant from the center. Symmetric Density X

15 Skewed histograms In many situations, we find that a histogram is stretched to the left or right. We call such histograms skewed. More specifically, we call them left-skewed if they are stretched to the left, or right-skewed if they are stretched to the right.

16 Skewed histograms Left Skewed Right Skewed Density Density Y Z

17 Unimodal vs. bimodal The above histograms, whether symmetric or skewed, have one thing in common: they all have one peak (or mode). We call such histograms (and their corresponding distributions) unimodal. Sometimes histograms have multiple modes. The bimodal histogram appears to be a combination of two unimodal histograms. Indeed, in many situations bimodal histograms (and multimodal histograms in general) indicate that the underlying population is not homogeneous and may include two (or more in case of multimodal histograms) subpopulations.

18 Unimodal vs. bimodal Bimodal Distribution Density W

19 Sample mean Histograms are useful for visualizing numerical data and identifying their location and spread. However, we typically use summary statistics for more precise specification of the central tendency and dispersion of observed values. A common summary statistic for location is the sample mean. The sample mean is simply the average of the observed values. For observed values x 1,..., x n, we denote the sample mean as x and calculate it by i x = x i n, where x i is the ith observed value of X, and n is the sample size.

20 Sample mean Sample 1 Sample 2 Sample X

21 Sample mean Sample mean is sensitive to very large or very small values, which might be outliers (unusual values). For instance, suppose that we have measured the resting heart rate (in beats per minute) for five people. x = {74, 80, 79, 85, 81}, x = In this case, the sample mean is 79.8, which seems to be a good representative of the data. = Now suppose that the heart rate for the first individual is recorded as 47 instead of x = {47, 80, 79, 85, 81}, x = 5 = Now, the sample mean does not capture the central tendency.

22 Sample median The sample median is an alternative measure of location, which is less sensitive to outliers. For observed values x 1,..., x n, the median is denoted x and is calculated by first sorting the observed values (i.e., ordering them from the lowest to the highest value) and selecting the middle one. If the sample size n is odd, the median is the number at the middle of the sorted observations. If the sample size is even, the median is the average of the two middle numbers. The sample medians for the above two scenarios are x = {74, 79, 80, 81, 85}, x = 80; x = {47, 79, 80, 81, 85}, x = 80.

23 Variance and standard deviation While summary statistics such as mean and median provide insights into the central tendency of values for a variable, they are rarely enough to fully describe a distribution. We need other summary statistics that capture the dispersion of the distribution. Consider the following measurements of blood pressure (in mmhg) for two patients: Patient A: x = {95, 98, 96, 95, 96}, x = 96, x = 96. Patient B: y = {85, 106, 88, 105, 96}, ȳ = 96, ỹ = 96. While the mean and median for both patients are 96, the readings are more dispersed for Patient B.

24 Variance and standard deviation Two common summary statistics for measuring dispersion are the sample variance and sample standard deviation. These two summary statistics are based on the deviation of observed values from the mean as the center of the distribution. For each observation, the deviation from the mean is calculated as x i x.

25 Variance and standard deviation The sample variance is a common measure of dispersion based on the squared deviations s 2 = n i=1 (x i x) 2. n 1 The square root of the variance is called the sample standard deviation n i=1 s = (x i x) 2, n 1

26 Variance and standard deviation Patient A Patient B x i x i x (x i x) 2 y i y i ȳ (y i ȳ) Σ 0 6 Σ s 2 = 6/4 = 1.5 s 2 = 366/4 = 91.5 s = 1.5 = 1.22 s = 91.5 = 9.56

27 In general, the q quantile is the point that is greater than or equal to at least 100q% of the values and smaller than or equal to at least 100(1 q)% of the values. Quantiles Informally, the sample median could be interpreted as the point that divides the ordered values of the variable into two equal parts. That is, the median is the point that is greater than or equal to at least half of the values and smaller than or equal to at least half of the values. The median is called the 0.5 quantile. Similarly, the 0.25 quantile is the point that is greater than or equal to at least 25% of the values and smaller than or equal to at least 75% of the values.

28 Quartiles We can divide the ordered values of a variable into four equal parts using 0.25, 0.5, and 0.75 quantiles. The corresponding points are denoted Q 1, Q 2, and Q 3, respectively. We refer to these three points as quartiles, of which Q 1 is called the first quartile or the lower quartile, Q 2 (i.e., median) is called the second quartile, and Q 3 is called the third quartile or upper quartile. The interval from Q 1 (0.25 quantile) to Q 3 (0.75 quantile) covers the middle 50% of the ordered data.

29 Five-number summary and boxplot The minimum (min), which is the smallest value of the variable in our sample, is in fact the 0 quantile. On the other hand, the maximum (max), which is the largest value of the variable in our sample, is the 1 quantile. The minimum and maximum along with quartiles (Q 1, Q 2, and Q 3 ) are known as five-number summary. These are usually presented in the increasing order: min, first quartile, median, third quartile, max. This way, the five-number summary provides 0, 0.25, 0.50, 0.75, and 1 quantiles.

30 Five-number summary and boxplot The five-number summary can be used to derive two measures of dispersion: the range and the interquartile range. The range is the difference between the maximum observed value and the minimum observed value. The interquartile range (IQR) is the difference between the third quartile (Q 3 ) and the first quartile (Q 1 ).

31 Five-number summary and boxplot To visualize the five-number summary, the range and the IQR, we often use a boxplot (a.k.a. box and whisker plot). Min Q 1 Q 2 Q 3 Max bwt Very often, boxplots are drawn vertically.

32 Five-number summary and boxplot The thick line at the middle of the box shows the median. The left side of the box shows the lower quartile. Likewise, the right side of the box is the upper quartile. The dashed lines are known as the whiskers. The whisker on the right of the box extends to the largest observed value or Q IQR, whichever it reaches first. The whisker on the left extends to the lowest value or Q IQR, whichever it reaches first. Data points beyond the whiskers are shown as circles and considered as possible outliers.

33 Data preprocessing Data we collect for scientific studies are rarely ready for analysis; they often require preprocessing. This typically involve handling missing information identifying outliers and possibly removing them (ONLY WHEN THEY ARE DEEMED TO BE DATA ENTERY MISTAKES) data transformation creating new variables based on the existing ones

34 Coefficient of variation Suppose that we want to compare the dispersion of bwt to that of lwt using their standard deviations based on the birthwt data. It seems that bwt is more dispersed than lwt since it has higher standard deviation compared to lwt. However, the two variables are not comparable; they have different units.

35 Coefficient of variation In many situations, we can avoid these issues by using another measure of variation called the coefficient of variation instead of standard deviation. To quantify dispersion independently from units, we use the coefficient of variation, which is the standard deviation divided by the sample mean (assuming that the mean is a positive number): CV = s x The coefficient of variation for bwt (birth weight in grams) is 729.2/ = 0.25 and for bwt.lb (birth weight in pounds) is 1.6/6.5 = 0.25.

36 Scaling and shifting variables Why the coefficient of variation (CV = s/ x) is independent of measurement units in the above example? In general, when we multiply the observed values of a variable by a constant a, its mean, standard deviation, and variance are multiplied by a, a, and a 2, respectively. That is, if y = ax, then Therefore, ȳ = a x, s y = a s x, s 2 y = a 2 s 2 x, CV y = s y ȳ = as x a x = s x x = CV x.

37 Scaling and shifting variables If instead of scaling the observed value, we shift them by a constant b, the sample mean shifts by b units. However, since the difference between observed values and the mean do not change, the standard deviation and variance remain unchanged. In general, if we shift the observed values by b, i.e., y = x + b, then ȳ = x + b, s y = s x, s 2 y = s 2 x.

38 Variable standardization Variable standardization is a common linear transformation, where we subtract the sample mean x from the observed values and divide the result by the sample standard deviation s: y i = x i x. s Subtracting x from the observations shifts the sample mean to zero. This, however, does not change the standard deviation. Dividing by s, on the other hand, changes the sample standard deviation to 1. by s. Therefore, variable standardization creates a new variable with mean 0 and standard deviation 1.

### Chapter 2 Data Exploration

Chapter 2 Data Exploration 2.1 Data Visualization and Summary Statistics After clearly defining the scientific question we try to answer, selecting a set of representative members from the population of

### Data Exploration Data Visualization

Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select

### Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

### Summarizing and Displaying Categorical Data

Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency

### Diagrams and Graphs of Statistical Data

Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in

### Lecture 1: Review and Exploratory Data Analysis (EDA)

Lecture 1: Review and Exploratory Data Analysis (EDA) Sandy Eckel seckel@jhsph.edu Department of Biostatistics, The Johns Hopkins University, Baltimore USA 21 April 2008 1 / 40 Course Information I Course

### Center: Finding the Median. Median. Spread: Home on the Range. Center: Finding the Median (cont.)

Center: Finding the Median When we think of a typical value, we usually look for the center of the distribution. For a unimodal, symmetric distribution, it s easy to find the center it s just the center

### Means, standard deviations and. and standard errors

CHAPTER 4 Means, standard deviations and standard errors 4.1 Introduction Change of units 4.2 Mean, median and mode Coefficient of variation 4.3 Measures of variation 4.4 Calculating the mean and standard

### Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences

Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html

### Descriptive Statistics

Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

### Module 4: Data Exploration

Module 4: Data Exploration Now that you have your data downloaded from the Streams Project database, the detective work can begin! Before computing any advanced statistics, we will first use descriptive

### Northumberland Knowledge

Northumberland Knowledge Know Guide How to Analyse Data - November 2012 - This page has been left blank 2 About this guide The Know Guides are a suite of documents that provide useful information about

### Exploratory Data Analysis

Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

### Exploratory Data Analysis. Psychology 3256

Exploratory Data Analysis Psychology 3256 1 Introduction If you are going to find out anything about a data set you must first understand the data Basically getting a feel for you numbers Easier to find

### The right edge of the box is the third quartile, Q 3, which is the median of the data values above the median. Maximum Median

CONDENSED LESSON 2.1 Box Plots In this lesson you will create and interpret box plots for sets of data use the interquartile range (IQR) to identify potential outliers and graph them on a modified box

### Lecture 2: Descriptive Statistics and Exploratory Data Analysis

Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

### Variables. Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is

### First Midterm Exam (MATH1070 Spring 2012)

First Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [40pts] Multiple Choice Problems

### Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

### Dongfeng Li. Autumn 2010

Autumn 2010 Chapter Contents Some statistics background; ; Comparing means and proportions; variance. Students should master the basic concepts, descriptive statistics measures and graphs, basic hypothesis

### Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

### Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion

Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research

### Chapter 1: Exploring Data

Chapter 1: Exploring Data Chapter 1 Review 1. As part of survey of college students a researcher is interested in the variable class standing. She records a 1 if the student is a freshman, a 2 if the student

### 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

### AP * Statistics Review. Descriptive Statistics

AP * Statistics Review Descriptive Statistics Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production

### DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS

DESCRIPTIVE STATISTICS AND EXPLORATORY DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 110 012 seema@iasri.res.in 1. Descriptive Statistics Statistics

### Introduction to Environmental Statistics. The Big Picture. Populations and Samples. Sample Data. Examples of sample data

A Few Sources for Data Examples Used Introduction to Environmental Statistics Professor Jessica Utts University of California, Irvine jutts@uci.edu 1. Statistical Methods in Water Resources by D.R. Helsel

### Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012

Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts

### 3: Summary Statistics

3: Summary Statistics Notation Let s start by introducing some notation. Consider the following small data set: 4 5 30 50 8 7 4 5 The symbol n represents the sample size (n = 0). The capital letter X denotes

### The Big Picture. Describing Data: Categorical and Quantitative Variables Population. Descriptive Statistics. Community Coalitions (n = 175)

Describing Data: Categorical and Quantitative Variables Population The Big Picture Sampling Statistical Inference Sample Exploratory Data Analysis Descriptive Statistics In order to make sense of data,

### Lecture 2. Summarizing the Sample

Lecture 2 Summarizing the Sample WARNING: Today s lecture may bore some of you It s (sort of) not my fault I m required to teach you about what we re going to cover today. I ll try to make it as exciting

### 1.3 Measuring Center & Spread, The Five Number Summary & Boxplots. Describing Quantitative Data with Numbers

1.3 Measuring Center & Spread, The Five Number Summary & Boxplots Describing Quantitative Data with Numbers 1.3 I can n Calculate and interpret measures of center (mean, median) in context. n Calculate

### DATA INTERPRETATION AND STATISTICS

PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE

### MBA 611 STATISTICS AND QUANTITATIVE METHODS

MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain

### STAT355 - Probability & Statistics

STAT355 - Probability & Statistics Instructor: Kofi Placid Adragni Fall 2011 Chap 1 - Overview and Descriptive Statistics 1.1 Populations, Samples, and Processes 1.2 Pictorial and Tabular Methods in Descriptive

### Week 1. Exploratory Data Analysis

Week 1 Exploratory Data Analysis Practicalities This course ST903 has students from both the MSc in Financial Mathematics and the MSc in Statistics. Two lectures and one seminar/tutorial per week. Exam

### Foundation of Quantitative Data Analysis

Foundation of Quantitative Data Analysis Part 1: Data manipulation and descriptive statistics with SPSS/Excel HSRS #10 - October 17, 2013 Reference : A. Aczel, Complete Business Statistics. Chapters 1

T O P I C 1 2 Techniques and tools for data analysis Preview Introduction In chapter 3 of Statistics In A Day different combinations of numbers and types of variables are presented. We go through these

### Demographics of Atlanta, Georgia:

Demographics of Atlanta, Georgia: A Visual Analysis of the 2000 and 2010 Census Data 36-315 Final Project Rachel Cohen, Kathryn McKeough, Minnar Xie & David Zimmerman Ethnicities of Atlanta Figure 1: From

### Using SPSS, Chapter 2: Descriptive Statistics

1 Using SPSS, Chapter 2: Descriptive Statistics Chapters 2.1 & 2.2 Descriptive Statistics 2 Mean, Standard Deviation, Variance, Range, Minimum, Maximum 2 Mean, Median, Mode, Standard Deviation, Variance,

### List of Examples. Examples 319

Examples 319 List of Examples DiMaggio and Mantle. 6 Weed seeds. 6, 23, 37, 38 Vole reproduction. 7, 24, 37 Wooly bear caterpillar cocoons. 7 Homophone confusion and Alzheimer s disease. 8 Gear tooth strength.

### Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

### Pie Charts. proportion of ice-cream flavors sold annually by a given brand. AMS-5: Statistics. Cherry. Cherry. Blueberry. Blueberry. Apple.

Graphical Representations of Data, Mean, Median and Standard Deviation In this class we will consider graphical representations of the distribution of a set of data. The goal is to identify the range of

### MEASURES OF VARIATION

NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

### Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller

Tutorial 3: Graphics and Exploratory Data Analysis in R Jason Pienaar and Tom Miller Getting to know the data An important first step before performing any kind of statistical analysis is to familiarize

### Exploratory Data Analysis

Exploratory Data Analysis Learning Objectives: 1. After completion of this module, the student will be able to explore data graphically in Excel using histogram boxplot bar chart scatter plot 2. After

### Descriptive statistics parameters: Measures of centrality

Descriptive statistics parameters: Measures of centrality Contents Definitions... 3 Classification of descriptive statistics parameters... 4 More about central tendency estimators... 5 Relationship between

### BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS

BASIC STATISTICAL METHODS FOR GENOMIC DATA ANALYSIS SEEMA JAGGI Indian Agricultural Statistics Research Institute Library Avenue, New Delhi-110 012 seema@iasri.res.in Genomics A genome is an organism s

### 2. Filling Data Gaps, Data validation & Descriptive Statistics

2. Filling Data Gaps, Data validation & Descriptive Statistics Dr. Prasad Modak Background Data collected from field may suffer from these problems Data may contain gaps ( = no readings during this period)

### Intro to Statistics 8 Curriculum

Intro to Statistics 8 Curriculum Unit 1 Bar, Line and Circle Graphs Estimated time frame for unit Big Ideas 8 Days... Essential Question Concepts Competencies Lesson Plans and Suggested Resources Bar graphs

### How To Write A Data Analysis

Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction

### UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test March 2014

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test March 2014 STAB22H3 Statistics I Duration: 1 hour and 45 minutes Last Name: First Name: Student number: Aids

### 2. Here is a small part of a data set that describes the fuel economy (in miles per gallon) of 2006 model motor vehicles.

Math 1530-017 Exam 1 February 19, 2009 Name Student Number E There are five possible responses to each of the following multiple choice questions. There is only on BEST answer. Be sure to read all possible

### Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

### Final Exam Practice Problem Answers

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

### CHAPTER THREE COMMON DESCRIPTIVE STATISTICS COMMON DESCRIPTIVE STATISTICS / 13

COMMON DESCRIPTIVE STATISTICS / 13 CHAPTER THREE COMMON DESCRIPTIVE STATISTICS The analysis of data begins with descriptive statistics such as the mean, median, mode, range, standard deviation, variance,

### THE BINOMIAL DISTRIBUTION & PROBABILITY

REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution

### Describing, Exploring, and Comparing Data

24 Chapter 2. Describing, Exploring, and Comparing Data Chapter 2. Describing, Exploring, and Comparing Data There are many tools used in Statistics to visualize, summarize, and describe data. This chapter

### Geostatistics Exploratory Analysis

Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt

### a. mean b. interquartile range c. range d. median

3. Since 4. The HOMEWORK 3 Due: Feb.3 1. A set of data are put in numerical order, and a statistic is calculated that divides the data set into two equal parts with one part below it and the other part

### Mind on Statistics. Chapter 2

Mind on Statistics Chapter 2 Sections 2.1 2.3 1. Tallies and cross-tabulations are used to summarize which of these variable types? A. Quantitative B. Mathematical C. Continuous D. Categorical 2. The table

### business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

### Shape of Data Distributions

Lesson 13 Main Idea Describe a data distribution by its center, spread, and overall shape. Relate the choice of center and spread to the shape of the distribution. New Vocabulary distribution symmetric

### 430 Statistics and Financial Mathematics for Business

Prescription: 430 Statistics and Financial Mathematics for Business Elective prescription Level 4 Credit 20 Version 2 Aim Students will be able to summarise, analyse, interpret and present data, make predictions

### seven Statistical Analysis with Excel chapter OVERVIEW CHAPTER

seven Statistical Analysis with Excel CHAPTER chapter OVERVIEW 7.1 Introduction 7.2 Understanding Data 7.3 Relationships in Data 7.4 Distributions 7.5 Summary 7.6 Exercises 147 148 CHAPTER 7 Statistical

### Basics of Statistics

Basics of Statistics Jarkko Isotalo 30 20 10 Std. Dev = 486.32 Mean = 3553.8 0 N = 120.00 2400.0 2800.0 3200.0 3600.0 4000.0 4400.0 4800.0 2600.0 3000.0 3400.0 3800.0 4200.0 4600.0 5000.0 Birthweights

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Lesson 4 Measures of Central Tendency

Outline Measures of a distribution s shape -modality and skewness -the normal distribution Measures of central tendency -mean, median, and mode Skewness and Central Tendency Lesson 4 Measures of Central

### Statistics Revision Sheet Question 6 of Paper 2

Statistics Revision Sheet Question 6 of Paper The Statistics question is concerned mainly with the following terms. The Mean and the Median and are two ways of measuring the average. sumof values no. of

### CHAPTER THREE. Key Concepts

CHAPTER THREE Key Concepts interval, ordinal, and nominal scale quantitative, qualitative continuous data, categorical or discrete data table, frequency distribution histogram, bar graph, frequency polygon,

### Measurement & Data Analysis. On the importance of math & measurement. Steps Involved in Doing Scientific Research. Measurement

Measurement & Data Analysis Overview of Measurement. Variability & Measurement Error.. Descriptive vs. Inferential Statistics. Descriptive Statistics. Distributions. Standardized Scores. Graphing Data.

### Classify the data as either discrete or continuous. 2) An athlete runs 100 meters in 10.5 seconds. 2) A) Discrete B) Continuous

Chapter 2 Overview Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Classify as categorical or qualitative data. 1) A survey of autos parked in

### MTH 140 Statistics Videos

MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative

### Mean = (sum of the values / the number of the value) if probabilities are equal

Population Mean Mean = (sum of the values / the number of the value) if probabilities are equal Compute the population mean Population/Sample mean: 1. Collect the data 2. sum all the values in the population/sample.

### Part II Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Part II

Part II covers diagnostic evaluations of historical facility data for checking key assumptions implicit in the recommended statistical tests and for making appropriate adjustments to the data (e.g., consideration

### A Correlation of. to the. South Carolina Data Analysis and Probability Standards

A Correlation of to the South Carolina Data Analysis and Probability Standards INTRODUCTION This document demonstrates how Stats in Your World 2012 meets the indicators of the South Carolina Academic Standards

### EXPLORING SPATIAL PATTERNS IN YOUR DATA

EXPLORING SPATIAL PATTERNS IN YOUR DATA OBJECTIVES Learn how to examine your data using the Geostatistical Analysis tools in ArcMap. Learn how to use descriptive statistics in ArcMap and Geoda to analyze

### Statistics Chapter 2

Statistics Chapter 2 Frequency Tables A frequency table organizes quantitative data. partitions data into classes (intervals). shows how many data values are in each class. Test Score Number of Students

### AMS 7L LAB #2 Spring, 2009. Exploratory Data Analysis

AMS 7L LAB #2 Spring, 2009 Exploratory Data Analysis Name: Lab Section: Instructions: The TAs/lab assistants are available to help you if you have any questions about this lab exercise. If you have any

### Box-and-Whisker Plots

Mathematics Box-and-Whisker Plots About this Lesson This is a foundational lesson for box-and-whisker plots (boxplots), a graphical tool used throughout statistics for displaying data. During the lesson,

### Bar Graphs and Dot Plots

CONDENSED L E S S O N 1.1 Bar Graphs and Dot Plots In this lesson you will interpret and create a variety of graphs find some summary values for a data set draw conclusions about a data set based on graphs

### determining relationships among the explanatory variables, and

Chapter 4 Exploratory Data Analysis A first look at the data. As mentioned in Chapter 1, exploratory data analysis or EDA is a critical first step in analyzing the data from an experiment. Here are the

### HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

### Section 1.3 Exercises (Solutions)

Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146-148. 1.109 Sketch some normal curves. (a) Sketch

### Descriptive Statistics and Measurement Scales

Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample

### Descriptive Statistics: Summary Statistics

Tutorial for the integration of the software R with introductory statistics Copyright Grethe Hystad Chapter 2 Descriptive Statistics: Summary Statistics In this chapter we will discuss the following topics:

### Common Tools for Displaying and Communicating Data for Process Improvement

Common Tools for Displaying and Communicating Data for Process Improvement Packet includes: Tool Use Page # Box and Whisker Plot Check Sheet Control Chart Histogram Pareto Diagram Run Chart Scatter Plot

### Iris Sample Data Set. Basic Visualization Techniques: Charts, Graphs and Maps. Summary Statistics. Frequency and Mode

Iris Sample Data Set Basic Visualization Techniques: Charts, Graphs and Maps CS598 Information Visualization Spring 2010 Many of the exploratory data techniques are illustrated with the Iris Plant data

### Descriptive statistics

Overview Descriptive statistics 1. Classification of observational values 2. Visualisation methods 3. Guidelines for good visualisation c Maarten Jansen STAT-F-413 Descriptive statistics p.1 1.Classification

### + Chapter 1 Exploring Data

Chapter 1 Exploring Data Introduction: Data Analysis: Making Sense of Data 1.1 Analyzing Categorical Data 1.2 Displaying Quantitative Data with Graphs 1.3 Describing Quantitative Data with Numbers Introduction

### Introduction; Descriptive & Univariate Statistics

Introduction; Descriptive & Univariate Statistics I. KEY COCEPTS A. Population. Definitions:. The entire set of members in a group. EXAMPLES: All U.S. citizens; all otre Dame Students. 2. All values of

### MAS131: Introduction to Probability and Statistics Semester 1: Introduction to Probability Lecturer: Dr D J Wilkinson

MAS131: Introduction to Probability and Statistics Semester 1: Introduction to Probability Lecturer: Dr D J Wilkinson Statistics is concerned with making inferences about the way the world is, based upon

### DESCRIPTIVE STATISTICS - CHAPTERS 1 & 2 1

DESCRIPTIVE STATISTICS - CHAPTERS 1 & 2 1 OVERVIEW STATISTICS PANIK...THE THEORY AND METHODS OF COLLECTING, ORGANIZING, PRESENTING, ANALYZING, AND INTERPRETING DATA SETS SO AS TO DETERMINE THEIR ESSENTIAL

### Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume