Lecture 5 Hypothesis Testing in Multiple Linear Regression

Size: px
Start display at page:

Download "Lecture 5 Hypothesis Testing in Multiple Linear Regression"

Transcription

1 Lecture 5 Hypothesis Testing in Multiple Linear Regression BIOST 515 January 20, 2004

2 Types of tests 1 Overall test Test for addition of a single variable Test for addition of a group of variables

3 Overall test 2 y i = β 0 + x i1 β x ip β p + ɛ i Does the entire set of independent variables contribute significantly to the prediction of y?

4 Test for an addition of a single variable 3 Does the addition of one particular variable of interest add significantly to the prediction of y acheived by the other independent variables already in the model? y i = β 0 + x i1 β x ip β p + ɛ i

5 Test for addition of a group of variables 4 Does the addition of some group of independent variables of interest add significantly to the prediction of y obtained through other independent variables already in the model? y i = β 0 + x i1 β x i,p 1 β p 1 + x ip β p + ɛ i

6 The ANOVA table 5 Source of Sums of squares Degrees of Mean E[Mean square] variation freedom square Regression SSR = ˆβ X y nȳ 2 SSR p p pσ 2 + β R X C X Cβ R Error SSE = y y ˆβ X SSE y n (p + 1) n (p+1) σ 2 Total SST O = y y nȳ 2 n 1 X C is the matrix of centered predictors: X C = 0 x 11 x 1 x 12 x 2 x 1p x p x 21 x 1. x 22 x 2. x 2p x p. x n1 x 1 x n2 x 2 x np x p 1 C A and β R = (β 1,, β p ).

7 The ANOVA table for 6 y i = β 0 + x i1 β1 + x i2 β2 + + x ip β p + ɛ i is often provided in the output from statistical software as Source of Sums of squares Degrees of F variation freedom Regression x 1 1 x 2 x 1. 1 x p x p 1, x p 2,, x 1 1 Error SSE n (p + 1) Total SST O n 1 where SSR = SSR(x 1 ) + SSR(x 2 x 1 ) + + SSR(x p x p 1, x p 2,..., x 1 ) and has p degrees of freedom.

8 Overall test 7 H 0 : β 1 = β 2 = = β p = 0 H 1 : β j 0 for at least one j, j = 1,..., p Rejection of H 0 implies that at least one of the regressors, x 1, x 2,..., x p, contributes significantly to the model. We will use a generalization of the F-test in simple linear regression to test this hypothesis.

9 Under the null hypothesis, SSR/σ 2 χ 2 p and SSE/σ 2 χ 2 n (p+1) are independent. Therefore, we have 8 F 0 = SSR/p SSE/(n p 1) = MSR MSE F p,n p 1 Note: as in simple linear regression, we are assuming that ɛ i N(0, σ 2 ) or relying on large sample theory.

10 CHS example, cont. 9 > anova(lmwtht) Analysis of Variance Table y i = β 0 + weight i β 1 + height i β 2 + ɛ i Response: DIABP Df Sum Sq Mean Sq F value Pr(>F) WEIGHT ** HEIGHT Residuals Signif. codes: 0 *** ** 0.01 * ( )/2 F 0 = = 5.59 > F 2,495,.95 = /495 We reject the null hypothesis at α =.05 and conclude that at least one of β 1 or β 2 is not equal to 0.

11 The overall F statistic is also available from the output of summary(). 10 > summary(lmwtht) Call: lm(formula = DIABP ~ WEIGHT + HEIGHT, data = chs) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-10 *** WEIGHT * HEIGHT Signif. codes: 0 *** ** 0.01 * Residual standard error: on 495 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 2 and 495 DF, p-value:

12 Tests on individual regression coefficients 11 Once we have determined that at least one of the regressors is important, a natural next question might be which one(s)? Important considerations: Is the increase in the regression sums of squares sufficient to warrant an additional predictor in the model? Additional predictors will increase the variance of ŷ - include only predictors that explain the response (note: we may not know this through hypothesis testing as confounders may not test significant but would still be necessary in the regression model). Adding an unimportant predictor may increase the residual mean square thereby reducing the usefulness of the model.

13 12 y i = β 0 + x i1 β x ij β j + + x ip β p + ɛ i H 0 : β j = 0 H 1 : β j 0 As in simple linear regression, under the null hypothesis t 0 = ˆβ j ŝe( ˆβ j ) t n p 1. We reject H 0 if t 0 > t n p 1,1 α/2. This is a partial test because ˆβ j depends on all of the other predictors x i, i j that are in the model. Thus, this is a test of the contribution of x j given the other predictors in the model.

14 CHS example, cont. 13 y i = β 0 + weight i β 1 + height i β 2 + ɛ i H 0 : β 2 = 0 vs H 1 : β 2 0, given that weight is in the model. From the ANOVA table, ˆσ2 = C = (X X) 1 = t 0 = / = < t 495,.975 = 1.96 Therefore, we fail to reject the null hypothesis.

15 Tests for groups of predictors 14 Often it is of interest to determine whether a group of predictors contribute to predicting y given another predictor or group of predictors are in the model. In CHS example, we may want to know if age, height and sex are important predictors given weight is in the model when predicting blood pressure. We may want to know if additional powers of some predictor are important in the model given the linear term is already in the model. Given a predictor of interest, are interactions with other confounders of interest as well?

16 Using sums of squares to test for groups of predictors 15 Determine the contribution of a predictor or group of predictors to SSR given that the other regressors are in the model using the extra-sums-of-squares method. Consider the regression model with p predictors y = Xβ + ɛ. We would like to determine if some subset of r < p predictors contributes significantly to the regression model.

17 Partition the vector of regression coefficients as β = [ ] β 1 β 2 16 where β 1 is (p + 1 r) 1 and β 2 is r 1. We want to test the hypothesis H 0 : β 2 = 0 Rewrite the model as where X = [X 1 X 2 ]. H 1 : β 2 0 y = Xβ + ɛ = X 1 β 1 + X 2 β 2 + ɛ, (1)

18 Equation (1) is the full model with SSR expressed as 17 SSR(X) = ˆβ X y (p+1 degrees of freedom) and MSE = y y ˆβ X y n p 1. To find the contribution of the predictors in X 2, fit the model assuming H 0 is true. This reduced model is y = X 1 β 1 + ɛ, where ˆβ 1 = (X 1 X 1 ) ( 1) X 1 y

19 and 18 SSR(X 1 ) = ˆβ 1 X 1 y (p+1-r degrees of freedom). The regression sums of squares due to X 2 when X 1 is already in the model is SSR(X 2 X 1 ) = SSR(X) SSR(X 1 ) with r degrees of freedom. This is also known as the extra sum of squares due to X 2. SSR(X 2 X 1 ) is independent of MSE. We can test H 0 : β 2 = 0 with the statistic F 0 = SSR(X2 X 1 )/r MSE F r,n p 1.

20 CHS example, cont. 19 Full model: y i = β 0 + weight i β 1 + height i β 2 H 0 : β 2 = 0 Df Sum Sq Mean Sq F value Pr(>F) WEIGHT HEIGHT Residuals F 0 = / = 0.95 < F 1,495,0.95 = 3.86 This should look very similar to the t-test for H 0.

21 20 BP i = β 0 + weight i β 1 + height i β 2 + age i β 3 + gender i β 4 + ɛ > summary(lm(diabp~weight+height+age+gender,data=chs)) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-08 *** WEIGHT HEIGHT AGE *** GENDER Signif. codes: 0 *** ** 0.01 * Residual standard error: on 493 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 4 and 493 DF, p-value:

22 H 0 : β 2 = β 3 = β 4 = 0 vs H 1 : β j, j = 2, 3, 4 21 Df Sum Sq Mean Sq F value Pr(>F) WEIGHT HEIGHT AGE GENDER Residuals SSR(intercept, weight, height, age, gender) = = SSR(intercept, weight) = = SSR(height, age, gender intercept, weight) = = 1670 Notice we can also get this from the ANOVA table above SSR(height, age, gender intercept,weight) = = 1670

23 The observed F statistic is 22 F 0 = 1670/3/ = 13.5 > F 3,493,.95 = 2.62, and we reject the null hypothesis, concluding that at least one of β 2, β 3 or β 4 is not equal to 0. This should look very similar to the overall F test if we considered the intercept to be a predictor and all the covariates to be the additional variables under consideration.

24 What if we had put the predictors in the model in a different order? 23 diabp i = β 0 + height i β 2 + age i β 3 + weight i β 1 + gender i β 4 + ɛ Df Sum Sq Mean Sq F value Pr(>F) HEIGHT AGE WEIGHT GENDER Residuals Could we use this table to test H 0 : β 2 = β 3 = β 4 = 0?

25 What if we had the ANOVA table for the reduced model? Df Sum Sq Mean Sq F value Pr(>F) WEIGHT Residuals Given that SSR = SSR(x 2 ) + SSR(x 3 x 2 ) + SSR(x 1 x 2, x 3 ) + SSR(x 4 x 3, x 2, x 1 ) and then SSR(x 2, x 3, x 4 x 1 ) = SSR SSR(x 1 ) SSR(x 2, x 3, x 4 x 1 ) = = 1680.

26 One other question we might be interested in asking is if there are any significant interactions in the model? 25 lm(diabp~weight*height*age*gender,data=chs) Estimate Std. Error t value Pr(> t ) (Intercept) WEIGHT HEIGHT AGE GENDER WEIGHT:HEIGHT WEIGHT:AGE HEIGHT:AGE WEIGHT:GENDER HEIGHT:GENDER AGE:GENDER WEIGHT:HEIGHT:AGE WEIGHT:HEIGHT:GENDER WEIGHT:AGE:GENDER HEIGHT:AGE:GENDER WEIGHT:HEIGHT:AGE:GENDER

27 ANOVA table 26 Df Sum Sq Mean Sq F value Pr(>F) WEIGHT HEIGHT AGE GENDER WEIGHT:HEIGHT WEIGHT:AGE HEIGHT:AGE WEIGHT:GENDER HEIGHT:GENDER AGE:GENDER WEIGHT:HEIGHT:AGE WEIGHT:HEIGHT:GENDER WEIGHT:AGE:GENDER HEIGHT:AGE:GENDER WEIGHT:HEIGHT:AGE:GENDER Residuals

28 We can simplify the ANOVA table to 27 Df Sum Sq Mean Sq F value Pr(>F) Main effects Interactions Residuals How do we fill in the rest of this table?

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

More information

We extended the additive model in two variables to the interaction model by adding a third term to the equation.

We extended the additive model in two variables to the interaction model by adding a third term to the equation. Quadratic Models We extended the additive model in two variables to the interaction model by adding a third term to the equation. Similarly, we can extend the linear model in one variable to the quadratic

More information

Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares

Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation

More information

Comparing Nested Models

Comparing Nested Models Comparing Nested Models ST 430/514 Two models are nested if one model contains all the terms of the other, and at least one additional term. The larger model is the complete (or full) model, and the smaller

More information

Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression

Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction

More information

5. Linear Regression

5. Linear Regression 5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4

More information

ANOVA. February 12, 2015

ANOVA. February 12, 2015 ANOVA February 12, 2015 1 ANOVA models Last time, we discussed the use of categorical variables in multivariate regression. Often, these are encoded as indicator columns in the design matrix. In [1]: %%R

More information

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

More information

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The

More information

Statistical Models in R

Statistical Models in R Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova

More information

SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlation and Simple Linear Regression We are often interested in studying the relationship among variables to determine whether they are associated with one another. When we think that changes in a

More information

Statistical Models in R

Statistical Models in R Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate

More information

Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.

Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.

More information

Notes on Applied Linear Regression

Notes on Applied Linear Regression Notes on Applied Linear Regression Jamie DeCoster Department of Social Psychology Free University Amsterdam Van der Boechorststraat 1 1081 BT Amsterdam The Netherlands phone: +31 (0)20 444-8935 email:

More information

Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

More information

How to calculate an ANOVA table

How to calculate an ANOVA table How to calculate an ANOVA table Calculations by Hand We look at the following example: Let us say we measure the height of some plants under the effect of different fertilizers. Treatment Measures Mean

More information

Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

More information

Module 5: Multiple Regression Analysis

Module 5: Multiple Regression Analysis Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

More information

N-Way Analysis of Variance

N-Way Analysis of Variance N-Way Analysis of Variance 1 Introduction A good example when to use a n-way ANOVA is for a factorial design. A factorial design is an efficient way to conduct an experiment. Each observation has data

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA. Analysis Of Variance Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

More information

Testing for Lack of Fit

Testing for Lack of Fit Chapter 6 Testing for Lack of Fit How can we tell if a model fits the data? If the model is correct then ˆσ 2 should be an unbiased estimate of σ 2. If we have a model which is not complex enough to fit

More information

POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model.

POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. Polynomial Regression POLYNOMIAL AND MULTIPLE REGRESSION Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. It is a form of linear regression

More information

Regression step-by-step using Microsoft Excel

Regression step-by-step using Microsoft Excel Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression

More information

Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 13 Introduction to Linear Regression and Correlation Analysis Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

More information

International Statistical Institute, 56th Session, 2007: Phil Everson

International Statistical Institute, 56th Session, 2007: Phil Everson Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA E-mail: peverso1@swarthmore.edu 1. Introduction

More information

EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION

EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION EDUCATION AND VOCABULARY 5-10 hours of input weekly is enough to pick up a new language (Schiff & Myers, 1988). Dutch children spend 5.5 hours/day

More information

2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or

2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or Simple and Multiple Regression Analysis Example: Explore the relationships among Month, Adv.$ and Sales $: 1. Prepare a scatter plot of these data. The scatter plots for Adv.$ versus Sales, and Month versus

More information

Using R for Linear Regression

Using R for Linear Regression Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional

More information

Part II. Multiple Linear Regression

Part II. Multiple Linear Regression Part II Multiple Linear Regression 86 Chapter 7 Multiple Regression A multiple linear regression model is a linear model that describes how a y-variable relates to two or more xvariables (or transformations

More information

One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

More information

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( ) Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

More information

Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

More information

Psychology 205: Research Methods in Psychology

Psychology 205: Research Methods in Psychology Psychology 205: Research Methods in Psychology Using R to analyze the data for study 2 Department of Psychology Northwestern University Evanston, Illinois USA November, 2012 1 / 38 Outline 1 Getting ready

More information

Multiple Linear Regression in Data Mining

Multiple Linear Regression in Data Mining Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple

More information

Lecture 11: Confidence intervals and model comparison for linear regression; analysis of variance

Lecture 11: Confidence intervals and model comparison for linear regression; analysis of variance Lecture 11: Confidence intervals and model comparison for linear regression; analysis of variance 14 November 2007 1 Confidence intervals and hypothesis testing for linear regression Just as there was

More information

E(y i ) = x T i β. yield of the refined product as a percentage of crude specific gravity vapour pressure ASTM 10% point ASTM end point in degrees F

E(y i ) = x T i β. yield of the refined product as a percentage of crude specific gravity vapour pressure ASTM 10% point ASTM end point in degrees F Random and Mixed Effects Models (Ch. 10) Random effects models are very useful when the observations are sampled in a highly structured way. The basic idea is that the error associated with any linear,

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the

More information

Week 5: Multiple Linear Regression

Week 5: Multiple Linear Regression BUS41100 Applied Regression Analysis Week 5: Multiple Linear Regression Parameter estimation and inference, forecasting, diagnostics, dummy variables Robert B. Gramacy The University of Chicago Booth School

More information

1 Simple Linear Regression I Least Squares Estimation

1 Simple Linear Regression I Least Squares Estimation Simple Linear Regression I Least Squares Estimation Textbook Sections: 8. 8.3 Previously, we have worked with a random variable x that comes from a population that is normally distributed with mean µ and

More information

Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl

Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic

More information

Regression Analysis: A Complete Example

Regression Analysis: A Complete Example Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

More information

1.1. Simple Regression in Excel (Excel 2010).

1.1. Simple Regression in Excel (Excel 2010). .. Simple Regression in Excel (Excel 200). To get the Data Analysis tool, first click on File > Options > Add-Ins > Go > Select Data Analysis Toolpack & Toolpack VBA. Data Analysis is now available under

More information

Lecture 8: Gamma regression

Lecture 8: Gamma regression Lecture 8: Gamma regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Models with constant coefficient of variation Gamma regression: estimation and testing

More information

Regression Analysis (Spring, 2000)

Regression Analysis (Spring, 2000) Regression Analysis (Spring, 2000) By Wonjae Purposes: a. Explaining the relationship between Y and X variables with a model (Explain a variable Y in terms of Xs) b. Estimating and testing the intensity

More information

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance

More information

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association

More information

General Regression Formulae ) (N-2) (1 - r 2 YX

General Regression Formulae ) (N-2) (1 - r 2 YX General Regression Formulae Single Predictor Standardized Parameter Model: Z Yi = β Z Xi + ε i Single Predictor Standardized Statistical Model: Z Yi = β Z Xi Estimate of Beta (Beta-hat: β = r YX (1 Standard

More information

MULTIPLE REGRESSION ANALYSIS OF MAIN ECONOMIC INDICATORS IN TOURISM. R, analysis of variance, Student test, multivariate analysis

MULTIPLE REGRESSION ANALYSIS OF MAIN ECONOMIC INDICATORS IN TOURISM. R, analysis of variance, Student test, multivariate analysis Journal of tourism [No. 8] MULTIPLE REGRESSION ANALYSIS OF MAIN ECONOMIC INDICATORS IN TOURISM Assistant Ph.D. Erika KULCSÁR Babeş Bolyai University of Cluj Napoca, Romania Abstract This paper analysis

More information

Final Exam Practice Problem Answers

Final Exam Practice Problem Answers Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

More information

This chapter will demonstrate how to perform multiple linear regression with IBM SPSS

This chapter will demonstrate how to perform multiple linear regression with IBM SPSS CHAPTER 7B Multiple Regression: Statistical Methods Using IBM SPSS This chapter will demonstrate how to perform multiple linear regression with IBM SPSS first using the standard method and then using the

More information

Simple Linear Regression Inference

Simple Linear Regression Inference Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

More information

Linear Models in STATA and ANOVA

Linear Models in STATA and ANOVA Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples

More information

1.5 Oneway Analysis of Variance

1.5 Oneway Analysis of Variance Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

More information

New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction

New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.

More information

Stat 5303 (Oehlert): Tukey One Degree of Freedom 1

Stat 5303 (Oehlert): Tukey One Degree of Freedom 1 Stat 5303 (Oehlert): Tukey One Degree of Freedom 1 > catch

More information

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

More information

Section 14 Simple Linear Regression: Introduction to Least Squares Regression

Section 14 Simple Linear Regression: Introduction to Least Squares Regression Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship

More information

Lets suppose we rolled a six-sided die 150 times and recorded the number of times each outcome (1-6) occured. The data is

Lets suppose we rolled a six-sided die 150 times and recorded the number of times each outcome (1-6) occured. The data is In this lab we will look at how R can eliminate most of the annoying calculations involved in (a) using Chi-Squared tests to check for homogeneity in two-way tables of catagorical data and (b) computing

More information

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

 Y. Notation and Equations for Regression Lecture 11/4. Notation: Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

More information

Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480

Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480 1) The S & P/TSX Composite Index is based on common stock prices of a group of Canadian stocks. The weekly close level of the TSX for 6 weeks are shown: Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500

More information

Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software

Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software STATA Tutorial Professor Erdinç Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software 1.Wald Test Wald Test is used

More information

MSwM examples. Jose A. Sanchez-Espigares, Alberto Lopez-Moreno Dept. of Statistics and Operations Research UPC-BarcelonaTech.

MSwM examples. Jose A. Sanchez-Espigares, Alberto Lopez-Moreno Dept. of Statistics and Operations Research UPC-BarcelonaTech. MSwM examples Jose A. Sanchez-Espigares, Alberto Lopez-Moreno Dept. of Statistics and Operations Research UPC-BarcelonaTech February 24, 2014 Abstract Two examples are described to illustrate the use of

More information

Regression III: Advanced Methods

Regression III: Advanced Methods Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models

More information

Copyright 2007 by Laura Schultz. All rights reserved. Page 1 of 5

Copyright 2007 by Laura Schultz. All rights reserved. Page 1 of 5 Using Your TI-83/84 Calculator: Linear Correlation and Regression Elementary Statistics Dr. Laura Schultz This handout describes how to use your calculator for various linear correlation and regression

More information

ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS

ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS Many treatments are equally spaced (incremented). This provides us with the opportunity to look at the response curve

More information

Factors affecting online sales

Factors affecting online sales Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4

More information

Deterministic and Stochastic Modeling of Insulin Sensitivity

Deterministic and Stochastic Modeling of Insulin Sensitivity Deterministic and Stochastic Modeling of Insulin Sensitivity Master s Thesis in Engineering Mathematics and Computational Science ELÍN ÖSP VILHJÁLMSDÓTTIR Department of Mathematical Science Chalmers University

More information

MULTIPLE REGRESSIONS ON SOME SELECTED MACROECONOMIC VARIABLES ON STOCK MARKET RETURNS FROM 1986-2010

MULTIPLE REGRESSIONS ON SOME SELECTED MACROECONOMIC VARIABLES ON STOCK MARKET RETURNS FROM 1986-2010 Advances in Economics and International Finance AEIF Vol. 1(1), pp. 1-11, December 2014 Available online at http://www.academiaresearch.org Copyright 2014 Academia Research Full Length Research Paper MULTIPLE

More information

ANALYSING LIKERT SCALE/TYPE DATA, ORDINAL LOGISTIC REGRESSION EXAMPLE IN R.

ANALYSING LIKERT SCALE/TYPE DATA, ORDINAL LOGISTIC REGRESSION EXAMPLE IN R. ANALYSING LIKERT SCALE/TYPE DATA, ORDINAL LOGISTIC REGRESSION EXAMPLE IN R. 1. Motivation. Likert items are used to measure respondents attitudes to a particular question or statement. One must recall

More information

CS 147: Computer Systems Performance Analysis

CS 147: Computer Systems Performance Analysis CS 147: Computer Systems Performance Analysis One-Factor Experiments CS 147: Computer Systems Performance Analysis One-Factor Experiments 1 / 42 Overview Introduction Overview Overview Introduction Finding

More information

MULTIPLE REGRESSION EXAMPLE

MULTIPLE REGRESSION EXAMPLE MULTIPLE REGRESSION EXAMPLE For a sample of n = 166 college students, the following variables were measured: Y = height X 1 = mother s height ( momheight ) X 2 = father s height ( dadheight ) X 3 = 1 if

More information

Lucky vs. Unlucky Teams in Sports

Lucky vs. Unlucky Teams in Sports Lucky vs. Unlucky Teams in Sports Introduction Assuming gambling odds give true probabilities, one can classify a team as having been lucky or unlucky so far. Do results of matches between lucky and unlucky

More information

ECON 142 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE #2

ECON 142 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE #2 University of California, Berkeley Prof. Ken Chay Department of Economics Fall Semester, 005 ECON 14 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE # Question 1: a. Below are the scatter plots of hourly wages

More information

Statistical Functions in Excel

Statistical Functions in Excel Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses.

More information

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1) Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

More information

Section 1: Simple Linear Regression

Section 1: Simple Linear Regression Section 1: Simple Linear Regression Carlos M. Carvalho The University of Texas McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. 277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies

More information

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

More information

Rockefeller College University at Albany

Rockefeller College University at Albany Rockefeller College University at Albany PAD 705 Handout: Hypothesis Testing on Multiple Parameters In many cases we may wish to know whether two or more variables are jointly significant in a regression.

More information

An Introduction to Statistical Tests for the SAS Programmer Sara Beck, Fred Hutchinson Cancer Research Center, Seattle, WA

An Introduction to Statistical Tests for the SAS Programmer Sara Beck, Fred Hutchinson Cancer Research Center, Seattle, WA ABSTRACT An Introduction to Statistical Tests for the SAS Programmer Sara Beck, Fred Hutchinson Cancer Research Center, Seattle, WA Often SAS Programmers find themselves in situations where performing

More information

Interaction between quantitative predictors

Interaction between quantitative predictors Interaction between quantitative predictors In a first-order model like the ones we have discussed, the association between E(y) and a predictor x j does not depend on the value of the other predictors

More information

MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL. by Michael L. Orlov Chemistry Department, Oregon State University (1996)

MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL. by Michael L. Orlov Chemistry Department, Oregon State University (1996) MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL by Michael L. Orlov Chemistry Department, Oregon State University (1996) INTRODUCTION In modern science, regression analysis is a necessary part

More information

MULTIPLE REGRESSION WITH CATEGORICAL DATA

MULTIPLE REGRESSION WITH CATEGORICAL DATA DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 86 MULTIPLE REGRESSION WITH CATEGORICAL DATA I. AGENDA: A. Multiple regression with categorical variables. Coding schemes. Interpreting

More information

This can dilute the significance of a departure from the null hypothesis. We can focus the test on departures of a particular form.

This can dilute the significance of a departure from the null hypothesis. We can focus the test on departures of a particular form. One-Degree-of-Freedom Tests Test for group occasion interactions has (number of groups 1) number of occasions 1) degrees of freedom. This can dilute the significance of a departure from the null hypothesis.

More information

Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

Applied Statistics. J. Blanchet and J. Wadsworth. Institute of Mathematics, Analysis, and Applications EPF Lausanne

Applied Statistics. J. Blanchet and J. Wadsworth. Institute of Mathematics, Analysis, and Applications EPF Lausanne Applied Statistics J. Blanchet and J. Wadsworth Institute of Mathematics, Analysis, and Applications EPF Lausanne An MSc Course for Applied Mathematicians, Fall 2012 Outline 1 Model Comparison 2 Model

More information

ABSORBENCY OF PAPER TOWELS

ABSORBENCY OF PAPER TOWELS ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?

More information

Difference of Means and ANOVA Problems

Difference of Means and ANOVA Problems Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly

More information

Biostatistics Short Course Introduction to Longitudinal Studies

Biostatistics Short Course Introduction to Longitudinal Studies Biostatistics Short Course Introduction to Longitudinal Studies Zhangsheng Yu Division of Biostatistics Department of Medicine Indiana University School of Medicine Zhangsheng Yu (Indiana University) Longitudinal

More information

I n d i a n a U n i v e r s i t y U n i v e r s i t y I n f o r m a t i o n T e c h n o l o g y S e r v i c e s

I n d i a n a U n i v e r s i t y U n i v e r s i t y I n f o r m a t i o n T e c h n o l o g y S e r v i c e s I n d i a n a U n i v e r s i t y U n i v e r s i t y I n f o r m a t i o n T e c h n o l o g y S e r v i c e s Linear Regression Models for Panel Data Using SAS, Stata, LIMDEP, and SPSS * Hun Myoung Park,

More information

Stat 412/512 CASE INFLUENCE STATISTICS. Charlotte Wickham. stat512.cwick.co.nz. Feb 2 2015

Stat 412/512 CASE INFLUENCE STATISTICS. Charlotte Wickham. stat512.cwick.co.nz. Feb 2 2015 Stat 412/512 CASE INFLUENCE STATISTICS Feb 2 2015 Charlotte Wickham stat512.cwick.co.nz Regression in your field See website. You may complete this assignment in pairs. Find a journal article in your field

More information

Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption

Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular

More information

Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 )

Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 ) Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 ) and Neural Networks( 類 神 經 網 路 ) 許 湘 伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) LR Chap 10 1 / 35 13 Examples

More information

1 Basic ANOVA concepts

1 Basic ANOVA concepts Math 143 ANOVA 1 Analysis of Variance (ANOVA) Recall, when we wanted to compare two population means, we used the 2-sample t procedures. Now let s expand this to compare k 3 population means. As with the

More information

Causal Forecasting Models

Causal Forecasting Models CTL.SC1x -Supply Chain & Logistics Fundamentals Causal Forecasting Models MIT Center for Transportation & Logistics Causal Models Used when demand is correlated with some known and measurable environmental

More information

TRINITY COLLEGE. Faculty of Engineering, Mathematics and Science. School of Computer Science & Statistics

TRINITY COLLEGE. Faculty of Engineering, Mathematics and Science. School of Computer Science & Statistics UNIVERSITY OF DUBLIN TRINITY COLLEGE Faculty of Engineering, Mathematics and Science School of Computer Science & Statistics BA (Mod) Enter Course Title Trinity Term 2013 Junior/Senior Sophister ST7002

More information

Chicago Insurance Redlining - a complete example

Chicago Insurance Redlining - a complete example Chapter 12 Chicago Insurance Redlining - a complete example In a study of insurance availability in Chicago, the U.S. Commission on Civil Rights attempted to examine charges by several community organizations

More information