Difference of Means and ANOVA Problems


 Marianna McCoy
 1 years ago
 Views:
Transcription
1 Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly in relation to charges by the size of the firm It takes a random sample of 0 companies from three size classes Sales over $50 million Sales of $00 to $50 million Sales of Less than $00 million Stem and Leaf Plot STEM Leaf Descriptive Statistics with 95% C.I. $50+ $00$50 < $00 Total Mean Standard Error Median Mode 50 #N/A #N/A 50 Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum Count Confidence Level(95.0%) Things to note The mean cost for the largest firms is much larger than the other two firm classes While there is a difference in the means for the lower two classes, when we look at the BOE for the 95% C.I. there is overlap The variances of the lower two firms is very similar but both are considerably lower than that for the largest firms Difference of Means Test Let s test to see if there is a significant difference between firms of sales between $00 to $50 million Less than $00 million Is this reasonable? Ratio of variances is 35.7/ =.00
2 Decision Tree for Two Means Target Assumptions Test Statistic Independent random samples z, using Large sample size (n, n >30) sample variance H 0 : µ µ =D Independent random samples Small sample size t, using Populations appr. normal pooled variance Equal variances S p POOLED ESTIMATE OF THE VARIANCE The Our formula will be a weighted average of s and s ( n ) s + ( n ) s s p = ( n + n ) s p (0 ) (0 ) = (0 + 0 ) s p = s 8 = p = NOTE Since the sample sizes were equal, we could have simply taken the average of the two variances ( )/ = Use the Pooled Estimate of the Variance to calculate the standard error ˆ σ ( x x ) = s p + n n ˆ ( x ) = = x σ Accounting Firm Problem EXCEL Output Null hypothesis Alternative Assumptions Test Statistic Rejection Region Calculation Conclusion H 0 : (: : ) = 0 H a : (: : ) 0 twotailed test Small independent samples, approx normal, variances are equal t* = ( )/5.493 t.05/, 8 d.f. =.0 t* =.9 t* < t.05/, 8 d.f..9 <.0 We cannot reject H 0 : (: : ) = 0 ttest: TwoSample Assuming Equal Variances $00$50 < $00 Mean Variance Observations 0 0 Pooled Variance Hypothesized Mean Difference 0 df 8 t Stat 0.9 P(T<=t) onetail 0.84 t Critical onetail.734 P(T<=t) twotail t Critical twotail.0
3 Let s shift to would allow us to test the difference of means across all classes of firm size We need to assume equal variances is this reasonable? Review Degrees of freedom k = 3 n = 30 SS(Total) df = n = 30  = 9 SST df = k = 3 = SSE df = nk = 30 3 = 7 Excel Output $ $00$ < $ Between Groups Within Groups Hypothesis Test Null hypothesis H 0 : : =: = : 3 Alternative H a : At least two means differ Assumptions F* = 8.44 Test Statistic F Rejection Region.05,, 7 d.f. = 3.35 F* > F Conclusion 8.44 > 3.35 Equal variances, normal distribution Reject H 0 : : =: = : 3 Total Brake Test A firm makes disc brakes for the automobile industry The R&D department tested four different brake systems In the test, they used 40 identical midsized cars, 0 each for the four brake systems The cars were driven on a test track and stopped electronically They measured the distance in feet to bring the car to a stop Are there differences in stopping distance across the different brakes? The data Brake A Brake B Brake C Brake D Total Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum Confidence Level(95.0% )
4 The Output Brake A Brake B Brake C Brake D Between Groups Within Groups Hypothesis Test Null hypothesis H 0 : : =: = : 3 = : 4 Alternative H a : At least two means differ Assumptions F* = Test Statistic F Rejection Region.05, 3, 36 d.f. =.866 F* > F Conclusion >.866 Equal variances, normal distribution Reject H 0 : : =: = : 3 = : 4 Total What is Rsquare? Cock Roach Data / =.4 On page 660 there is a Statistics in the Real World problem on roaches. This is a study to see if the navigation of cockroaches is random or not. The researcher hypothesized that cockroaches do follow trails, much like bees, ants, and termites, using chemical trails. She used a chemical trail with pheromones as the main treatment (EXTRACT  from cockroach feces), but also included a control trail using methanol (TRAIL). Today, we will focus on a TwoWay of the Trail Type (Extract versus Control group) and Roach Type (Gravid, Male, Female, Nymph) Roach TwoWay The researcher released German cockroaches of different age, sex, and reproductive stage to see if these factors influenced trail following ability Factor = TYPE: The levels = Female; Gravid; Male; and Nymph Factor = TRAIL The levels = Extract and Control She measured the movement pattern of the cockroaches and calculated an average perpendicular distance Response Variable = MOVE 4
5 The is how the procedure arranges the Data Extract Control Male Female Gravid Nymph Total Mean Standard Error Median Mode.40 #N/A.40 #N/A #N/A #N/A.40 Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum Count Male Female Gravid Nymphs Total Extract Sum Average Variance Control Sum Average Variance Total Count Sum Average Variance I can graph it to try to make sense of it R = 464/ = EXTRACT CONTROL Male Female Nymph Gravid Female Gravid Male Nymph Between Groups Within Groups Total Conduct a Test to see if there is a mean difference in MOVE by the levels for Type (Male, Female, Nymph, and Gravid). Use an Ftest with α=.0. Null Hypothesis H0: : = : = : 3 = : 4 Alternative Hypothesis Assumptions of Test Test Statistic F* =.605 Ha: At least one mean is different Large sample, equal variances, normal distribution Rejection Region F.0, 3 and 76 d.f. = 4.05 Comparison of Test Statistics with Rejection Region F* > F.0, 3 and 76 d.f..605 > 4.05 We can reject H0: : = : = : 3 = : 4 pvalue <.000 What if I focused on just the TRAIL Factor? Extract Control Between Groups Within Groups Total R = 30,984.9/3, =.78 or 7% of the variability in MOVE 5
6 What if I focused on just the TRAIL Factor? Male Female Gravid Nymph Between Groups Within Groups Total R = 0,37.89/3, =.0905 or 9% of the variability in MOVE Two Factor Male Female Gravid Nymphs Total Extract Sum Average Variance Control Sum Average Variance Total Count Sum Average Variance TwoFactor How to Solve for R? Sample Columns Interaction Within Total Sample refers to TRAIL (Extract versus Control) Columns refers to TYPE (Male, Female, Gravid, Nymph) Interaction refers to the interaction between TRAIL and TYPE Use this formula: SSE/SST R = 70,89./3,993.0 = .69 = % of the variability in MOVE is accounted for by considering the trail type and the Roach Type 6
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationRegression III: Dummy Variable Regression
Regression III: Dummy Variable Regression Tom Ilvento FREC 408 Linear Regression Assumptions about the error term Mean of Probability Distribution of the Error term is zero Probability Distribution of
More informationNull Hypothesis H 0. The null hypothesis (denoted by H 0
Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property
More informationWater Quality Problem. Hypothesis Testing of Means. Water Quality Example. Water Quality Example. Water quality example. Water Quality Example
Water Quality Problem Hypothesis Testing of Means Dr. Tom Ilvento FREC 408 Suppose I am concerned about the quality of drinking water for people who use wells in a particular geographic area I will test
More informationHYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
More information1 SAMPLE SIGN TEST. NonParametric Univariate Tests: 1 Sample Sign Test 1. A nonparametric equivalent of the 1 SAMPLE TTEST.
NonParametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A nonparametric equivalent of the 1 SAMPLE TTEST. ASSUMPTIONS: Data is nonnormally distributed, even after log transforming.
More informationAn Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10 TWOSAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10 TWOSAMPLE TESTS Practice
More informationSPSS on two independent samples. Two sample test with proportions. Paired ttest (with more SPSS)
SPSS on two independent samples. Two sample test with proportions. Paired ttest (with more SPSS) State of the course address: The Final exam is Aug 9, 3:30pm 6:30pm in B9201 in the Burnaby Campus. (One
More information3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More informationChapter 9, Part A Hypothesis Tests. Learning objectives
Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population
More informationOneWay Analysis of Variance (ANOVA) Example Problem
OneWay Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesistesting technique used to test the equality of two or more population (or treatment) means
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationGeneral Method: Difference of Means. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n
More informationIndependent t Test (Comparing Two Means)
Independent t Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent ttest when to use the independent ttest the use of SPSS to complete an independent
More informationHypothesis Testing hypothesis testing approach formulation of the test statistic
Hypothesis Testing For the next few lectures, we re going to look at various test statistics that are formulated to allow us to test hypotheses in a variety of contexts: In all cases, the hypothesis testing
More informationEstimation of σ 2, the variance of ɛ
Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated
More informationChapter Additional: Standard Deviation and Chi Square
Chapter Additional: Standard Deviation and Chi Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret
More informationThe Basics of a Hypothesis Test
Overview The Basics of a Test Dr Tom Ilvento Department of Food and Resource Economics Alternative way to make inferences from a sample to the Population is via a Test A hypothesis test is based upon A
More informationHypothesis testing for µ:
University of California, Los Angeles Department of Statistics Statistics 13 Elements of a hypothesis test: Hypothesis testing Instructor: Nicolas Christou 1. Null hypothesis, H 0 (always =). 2. Alternative
More informationTwo Related Samples t Test
Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person
More informationTHE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.
THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM
More informationCHAPTER 9 HYPOTHESIS TESTING
CHAPTER 9 HYPOTHESIS TESTING The TI83 Plus and TI84 Plus fully support hypothesis testing. Use the key, then highlight TESTS. The options used in Chapter 9 are given on the two screens. TESTING A SINGLE
More informationSections 4.54.7: TwoSample Problems. Paired ttest (Section 4.6)
Sections 4.54.7: TwoSample Problems Paired ttest (Section 4.6) Examples of Paired Differences studies: Similar subjects are paired off and one of two treatments is given to each subject in the pair.
More informationThe alternative hypothesis,, is the statement that the parameter value somehow differs from that claimed by the null hypothesis. : 0.5 :>0.5 :<0.
Section 8.28.5 Null and Alternative Hypotheses... The null hypothesis,, is a statement that the value of a population parameter is equal to some claimed value. :=0.5 The alternative hypothesis,, is the
More informationFinal Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
More informationChapter 11: Two Variable Regression Analysis
Department of Mathematics Izmir University of Economics Week 1415 20142015 In this chapter, we will focus on linear models and extend our analysis to relationships between variables, the definitions
More informationDo the following using Mintab (1) Make a normal probability plot for each of the two curing times.
SMAM 314 Computer Assignment 4 1. An experiment was performed to determine the effect of curing time on the comprehensive strength of concrete blocks. Two independent random samples of 14 blocks were prepared
More informationTwoSample TTests Assuming Equal Variance (Enter Means)
Chapter 4 TwoSample TTests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one or twosided twosample ttests when the variances of
More informationData Analysis Tools. Tools for Summarizing Data
Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool
More informationStatistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
More informationHypothesis testing  Steps
Hypothesis testing  Steps Steps to do a twotailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
More informationHypothesis Testing: Two Means, Paired Data, Two Proportions
Chapter 10 Hypothesis Testing: Two Means, Paired Data, Two Proportions 10.1 Hypothesis Testing: Two Population Means and Two Population Proportions 1 10.1.1 Student Learning Objectives By the end of this
More information1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
More informationTwoSample TTests Allowing Unequal Variance (Enter Difference)
Chapter 45 TwoSample TTests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one or twosided twosample ttests when no assumption
More informationUNDERSTANDING THE INDEPENDENTSAMPLES t TEST
UNDERSTANDING The independentsamples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly
More informationIntroduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.
Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.
More informationNCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, twosample ttests, the ztest, the
More information93.4 Likelihood ratio test. NeymanPearson lemma
93.4 Likelihood ratio test NeymanPearson lemma 91 Hypothesis Testing 91.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental
More informationThe GoodnessofFit Test
on the Lecture 49 Section 14.3 HampdenSydney College Tue, Apr 21, 2009 Outline 1 on the 2 3 on the 4 5 Hypotheses on the (Steps 1 and 2) (1) H 0 : H 1 : H 0 is false. (2) α = 0.05. p 1 = 0.24 p 2 = 0.20
More informationBasic Elements of a Hypothesis Test. Hypothesis Testing of Proportions and Small Sample Means. Proportions. Proportions
Hypothesis Testing of Proportions and Small Sample Means Dr. Tom Ilvento FREC 408 Basic Elements of a Hypothesis Test H 0 : H a : : : Proportions The Pepsi Challenge asked soda drinkers to compare Diet
More informationGeneral Procedure for Hypothesis Test. Five types of statistical analysis. 1. Formulate H 1 and H 0. General Procedure for Hypothesis Test
Five types of statistical analysis General Procedure for Hypothesis Test Descriptive Inferential Differences Associative Predictive What are the characteristics of the respondents? What are the characteristics
More informationSkewed Data and Nonparametric Methods
0 2 4 6 8 10 12 14 Skewed Data and Nonparametric Methods Comparing two groups: ttest assumes data are: 1. Normally distributed, and 2. both samples have the same SD (i.e. one sample is simply shifted
More informationSection 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
More informationWhen to use Excel. When NOT to use Excel 9/24/2014
Analyzing Quantitative Assessment Data with Excel October 2, 2014 Jeremy Penn, Ph.D. Director When to use Excel You want to quickly summarize or analyze your assessment data You want to create basic visual
More informationIntroduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
More informationC. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.
Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample
More informationMultiple Linear Regression
Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is
More informationHypothesis Testing or How to Decide to Decide Edpsy 580
Hypothesis Testing or How to Decide to Decide Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at UrbanaChampaign Hypothesis Testing or How to Decide to Decide
More informationUCLA STAT 13 Statistical Methods  Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates
UCLA STAT 13 Statistical Methods  Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates 1. (a) (i) µ µ (ii) σ σ n is exactly Normally distributed. (c) (i) is approximately Normally
More informationConfidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
More informationStatistics 641  EXAM II  1999 through 2003
Statistics 641  EXAM II  1999 through 2003 December 1, 1999 I. (40 points ) Place the letter of the best answer in the blank to the left of each question. (1) In testing H 0 : µ 5 vs H 1 : µ > 5, the
More informationPsychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck!
Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Name: 1. The basic idea behind hypothesis testing: A. is important only if you want to compare two populations. B. depends on
More informationNull Hypothesis Significance Testing Signifcance Level, Power, ttests. 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom
Null Hypothesis Significance Testing Signifcance Level, Power, ttests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is
More informationChapter 9: Hypothesis Testing GBS221, Class April 15, 2013 Notes Compiled by Nicolas C. Rouse, Instructor, Phoenix College
Chapter Objectives 1. Learn how to formulate and test hypotheses about a population mean and a population proportion. 2. Be able to use an Excel worksheet to conduct hypothesis tests about population means
More informationHYPOTHESIS TESTING AND TYPE I AND TYPE II ERROR
HYPOTHESIS TESTING AND TYPE I AND TYPE II ERROR Hypothesis is a conjecture (an inferring) about one or more population parameters. Null Hypothesis (H 0 ) is a statement of no difference or no relationship
More informationClass 19: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
More informationHypothesis Testing for Two Variances
Hypothesis Testing for Two Variances The standard version of the twosample t test is used when the variances of the underlying populations are either known or assumed to be equal In other situations,
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More informationChapter 8: Hypothesis Testing for One Population Mean, Variance, and Proportion
Chapter 8: Hypothesis Testing for One Population Mean, Variance, and Proportion Learning Objectives Upon successful completion of Chapter 8, you will be able to: Understand terms. State the null and alternative
More informationIntroduction. Statistics Toolbox
Introduction A hypothesis test is a procedure for determining if an assertion about a characteristic of a population is reasonable. For example, suppose that someone says that the average price of a gallon
More informationStatistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013
Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.11.6) Objectives
More informationIntroduction to Stata
Introduction to Stata September 23, 2014 Stata is one of a few statistical analysis programs that social scientists use. Stata is in the midrange of how easy it is to use. Other options include SPSS,
More informationChapter 1 Hypothesis Testing
Chapter 1 Hypothesis Testing Principles of Hypothesis Testing tests for one sample case 1 Statistical Hypotheses They are defined as assertion or conjecture about the parameter or parameters of a population,
More informationHypothesis Testing  One Mean
Hypothesis Testing  One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis
More informationAP STATISTICS (WarmUp Exercises)
AP STATISTICS (WarmUp Exercises) 1. Describe the distribution of ages in a city: 2. Graph a box plot on your calculator for the following test scores: {90, 80, 96, 54, 80, 95, 100, 75, 87, 62, 65, 85,
More informationChapter 16 Multiple Choice Questions (The answers are provided after the last question.)
Chapter 16 Multiple Choice Questions (The answers are provided after the last question.) 1. Which of the following symbols represents a population parameter? a. SD b. σ c. r d. 0 2. If you drew all possible
More informationKSTAT MINIMANUAL. Decision Sciences 434 Kellogg Graduate School of Management
KSTAT MINIMANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More informationThe ChiSquare Test. STAT E50 Introduction to Statistics
STAT 50 Introduction to Statistics The ChiSquare Test The Chisquare test is a nonparametric test that is used to compare experimental results with theoretical models. That is, we will be comparing observed
More information12.5: CHISQUARE GOODNESS OF FIT TESTS
125: ChiSquare Goodness of Fit Tests CD121 125: CHISQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability
More informationChapter 2. Hypothesis testing in one population
Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance
More informationSeminar paper Statistics
Seminar paper Statistics The seminar paper must contain:  the title page  the characterization of the data (origin, reason why you have chosen this analysis,...)  the list of the data (in the table)
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More informationt Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
ttests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com
More informationModule 5: Multiple Regression Analysis
Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College
More informationChapter 8. Hypothesis Testing
Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing
More informationBowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition
Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology StepbyStep  Excel Microsoft Excel is a spreadsheet software application
More informationStatistical Inference and ttests
1 Statistical Inference and ttests Objectives Evaluate the difference between a sample mean and a target value using a onesample ttest. Evaluate the difference between a sample mean and a target value
More informationCalculating PValues. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating PValues Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating PValues" (2014). A with Honors Projects.
More informationStatistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl
Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 Oneway ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic
More informationDescriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
More informationUNDERSTANDING THE TWOWAY ANOVA
UNDERSTANDING THE e have seen how the oneway ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
More informationNonparametric TwoSample Tests. Nonparametric Tests. Sign Test
Nonparametric TwoSample Tests Sign test MannWhitney Utest (a.k.a. Wilcoxon twosample test) KolmogorovSmirnov Test Wilcoxon SignedRank Test TukeyDuckworth Test 1 Nonparametric Tests Recall, nonparametric
More informationANOVA  Analysis of Variance
ANOVA  Analysis of Variance ANOVA  Analysis of Variance Extends independentsamples t test Compares the means of groups of independent observations Don t be fooled by the name. ANOVA does not compare
More informationChiSquare Tests and the FDistribution. Goodness of Fit Multinomial Experiments. Chapter 10
Chapter 0 ChiSquare Tests and the FDistribution 0 Goodness of Fit Multinomial xperiments A multinomial experiment is a probability experiment consisting of a fixed number of trials in which there are
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationEXST SAS Lab Lab #7: Hypothesis testing with Paired ttests and Onetailed ttests
EXST SAS Lab Lab #7: Hypothesis testing with Paired ttests and Onetailed ttests Objectives 1. Infile two external data sets (TXT files) 2. Calculate a difference between two variables in the data step
More informationStatistics for Management IISTAT 362Final Review
Statistics for Management IISTAT 362Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to
More informationModule 5 Hypotheses Tests: Comparing Two Groups
Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this
More informationBusiness Statistics. Lecture 8: More Hypothesis Testing
Business Statistics Lecture 8: More Hypothesis Testing 1 Goals for this Lecture Review of ttests Additional hypothesis tests Twosample tests Paired tests 2 The Basic Idea of Hypothesis Testing Start
More informationINTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the oneway ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
More informationComparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
More informationHypothesis testing S2
Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More informationExperimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
More informationANOVA MULTIPLE CHOICE QUESTIONS. In the following multiplechoice questions, select the best answer.
ANOVA MULTIPLE CHOICE QUESTIONS In the following multiplechoice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard
More informationMultiple Regression Analysis in Minitab 1
Multiple Regression Analysis in Minitab 1 Suppose we are interested in how the exercise and body mass index affect the blood pressure. A random sample of 10 males 50 years of age is selected and their
More informationStatistiek I. ttests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. John Nerbonne 1/35
Statistiek I ttests John Nerbonne CLCG, Rijksuniversiteit Groningen http://wwwletrugnl/nerbonne/teach/statistieki/ John Nerbonne 1/35 ttests To test an average or pair of averages when σ is known, we
More informationChris Slaughter, DrPH. GI Research Conference June 19, 2008
Chris Slaughter, DrPH Assistant Professor, Department of Biostatistics Vanderbilt University School of Medicine GI Research Conference June 19, 2008 Outline 1 2 3 Factors that Impact Power 4 5 6 Conclusions
More information