Introduction to General and Generalized Linear Models
|
|
|
- Liliana Barnett
- 9 years ago
- Views:
Transcription
1 Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby October 2010 Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
2 Today The general linear model - intro The multivariate normal distribution Deviance Likelihood, score function and information matrix The general linear model - definition Estimation Fitted values Residuals Partitioning of variation Likelihood ratio tests The coefficient of determination Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
3 The general linear model - intro The general linear model - intro We will use the term classical GLM for the General linear model to distinguish it from GLM which is used for the Generalized linear model. The classical GLM leads to a unique way of describing the variations of experiments with a continuous variable. The classical GLM s include Regression analysis Analysis of variance - ANOVA Analysis of covariance - ANCOVA The residuals are assumed to follow a multivariate normal distribution in the classical GLM. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
4 The general linear model - intro The general linear model - intro Classical GLM s are naturally studied in the framework of the multivariate normal distribution. We will consider the set of n observations as a sample from a n-dimensional normal distribution. Under the normal distribution model, maximum-likelihood estimation of mean value parameters may be interpreted geometrically as projection on an appropriate subspace. The likelihood-ratio test statistics for model reduction may be expressed in terms of norms of these projections. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
5 The multivariate normal distribution The multivariate normal distribution Let Y = (Y 1, Y 2,..., Y n ) T be a random vector with Y 1, Y 2,..., Y n independent identically distributed (iid) N(0, 1) random variables. Note that E[Y ] = 0 and the variance-covariance matrix Var[Y ] = I. Definition (Multivariate normal distribution) Z has an k-dimensional multivariate normal distribution if Z has the same distribution as AY + b for some n, some k n matrix A, and some k vector b. We indicate the multivariate normal distribution by writing Z N(b, AA T ). Since A and b are fixed, we have E[Z] = b and Var[Z] = AA T. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
6 The multivariate normal distribution The multivariate normal distribution Let us assume that the variance-covariance matrix is known apart from a constant factor, σ 2, i.e. Var[Z] = σ 2 Σ. The density for the k-dimensional random vector Z with mean µ and covariance σ 2 Σ is: [ 1 f Z (z) = (2π) k/2 σ k det Σ exp 1 ] 2σ 2 (z µ)t Σ 1 (z µ) where Σ is seen to be (a) symmetric and (b) positive semi-definite. We write Z N k (µ, σ 2 Σ). Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
7 The multivariate normal distribution The normal density as a statistical model Consider now the n observations Y = (Y 1, Y 2,..., Y n ) T, and assume that a statistical model is Y N n (µ, σ 2 Σ) for y R n The variance-covariance matrix for the observations is called the dispersion matrix, denoted D[Y ], i.e. the dispersion matrix for Y is D[Y ] = σ 2 Σ Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
8 Inner product and norm Inner product and norm Definition (Inner product and norm) The bilinear form δ Σ (y 1, y 2 ) = y T 1 Σ 1 y 2 defines an inner product in R n. Corresponding to this inner product we can define orthogonality, which is obtained when the inner product is zero. A norm is defined by y Σ = δ Σ (y, y). Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
9 Deviance Deviance for normal distributed variables Definition (Deviance for normal distributed variables) Let us introduce the notation D(y; µ) = δ Σ (y µ, y µ) = (y µ) T Σ 1 (y µ) to denote the quadratic norm of the vector (y µ) corresponding to the inner product defined by Σ 1. For a normal distribution with Σ = I, the deviance is just the Residual Sum of Squares (RSS). Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
10 Deviance Deviance for normal distributed variables Using this notation the normal density is expressed as a density defined on any finite dimensional vector space equipped with the inner product, δ Σ : [ f(y; µ, σ 2 1 ) = ( 2π) n σ n det(σ) exp 1 ] D(y; µ). 2σ2 Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
11 Likelihood, score function and information matrix The likelihood and log-likelihood function The likelihood function is: L(µ, σ 2 ; y) = 1 ( 2π) n σ n det(σ) exp [ 1 ] D(y; µ) 2σ2 The log-likelihood function is (apart from an additive constant): l µ,σ 2(µ, σ 2 ; y) = (n/2) log(σ 2 ) 1 2σ 2 (y µ)t Σ 1 (y µ) = (n/2) log(σ 2 ) 1 D(y; µ). 2σ2 Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
12 Likelihood, score function and information matrix The score function, observed - and expected information for µ The score function wrt. µ is µ l µ,σ 2(µ, σ2 ; y) = 1 σ 2 [ Σ 1 y Σ 1 µ ] = 1 σ 2 Σ 1 (y µ) The observed information (wrt. µ) is j(µ; y) = 1 σ 2 Σ 1. It is seen that the observed information does not depend on the observations y. Hence the expected information is i(µ) = 1 σ 2 Σ 1. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
13 The general linear model The general linear model In the case of a normal density the observation Y i is most often written as Y i = µ i + ɛ i which for all n observations (Y 1, Y 2,..., Y n ) can be written on the matrix form Y = µ + ɛ where Y N n (µ, σ 2 Σ) for y R n Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
14 General Linear Models The general linear model In the linear model it is assumed that µ belongs to a linear (or affine) subspace Ω 0 of R n. The full model is a model with Ω full = R n and hence each observation fits the model perfectly, i.e. µ = y. The most restricted model is the null model with Ω null = R. It only describes the variations of the observations by a common mean value for all observations. In practice, one often starts with formulating a rather comprehensive model with Ω = R k, where k < n. We will call such a model a sufficient model. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
15 The general linear model The General Linear Model Definition (The general linear model) Assume that Y 1, Y 2,..., Y n is normally distributed as described before. A general linear model for Y 1, Y 2,..., Y n is a model where an affine hypothesis is formulated for µ. The hypothesis is of the form H 0 : µ µ 0 Ω 0, where Ω 0 is a linear subspace of R n of dimension k, and where µ 0 denotes a vector of known offset values. Definition (Dimension of general linear model) The dimension of the subspace Ω 0 for the linear model is the dimension of the model. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
16 The design matrix The general linear model Definition (Design matrix for classical GLM) Assume that the linear subspace Ω 0 = span{x 1,..., x k }, i.e. the subspace is spanned by k vectors (k < n). Consider a general linear model where the hypothesis can be written as H 0 : µ µ 0 = Xβ with β R k, where X has full rank. The n k matrix X of known deterministic coefficients is called the design matrix. The i th row of the design matrix is given by the model vector for the i th observation. x T i = Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37 x i1 x i2. x ik T,
17 Estimation Estimation of mean value parameters Under the hypothesis H 0 : µ Ω 0, the maximum likelihood estimate for the set µ is found as the orthogonal projection (with respect to δ Σ ), p 0 (y) of y onto the linear subspace Ω 0. Theorem (ML estimates of mean value parameters) For hypothesis of the form H 0 : µ(β) = Xβ the maximum likelihood estimated for β is found as a solution to the normal equation X T Σ 1 y = X T Σ 1 X β. If X has full rank, the solution is uniquely given by β = (X T Σ 1 X) 1 X T Σ 1 y Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
18 Estimation Properties of the ML estimator Theorem (Properties of the ML estimator) For the ML estimator we have β N k (β, σ 2 (X T Σ 1 X) 1 ) Unknown Σ Notice that it has been assumed that Σ is known. If Σ is unknown, one possibility is to use the relaxation algorithm described in Madsen (2008) a. a Madsen, H. (2008) Time Series Analysis. Chapman, Hall Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
19 Fitted values Fitted values Fitted or predicted values The fitted values µ = X β is found as the projection of y (denoted p 0 (y)) on to the subspace Ω 0 spanned by X, and β denotes the local coordinates for the projection. Definition (Projection matrix) A matrix H is a projection matrix if and only if (a) H T = H and (b) H 2 = H, i.e. the matrix is idempotent. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
20 The hat matrix Fitted values The matrix is a projection matrix. H = X[X T Σ 1 X] 1 X T Σ 1 The projection matrix provides the predicted values µ, since µ = p 0 (y) = X β = Hy It follows that the predicted values are normally distributed with D[X β] = σ 2 X[X T Σ 1 X] 1 X T = σ 2 HΣ The matrix H is often termed the hat matrix since it transforms the observations y to their predicted values symbolized by a hat on the µ s. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
21 Residuals Residuals The observed residuals are r = y X β = (I H)y Orthogonality The maximum likelihood estimate for β is found as the value of β which minimizes the distance y Xβ. The normal equations show that X T Σ 1 (y X β) = 0 i.e. the residuals are orthogonal (with respect to Σ 1 ) to the subspace Ω 0. The residuals are thus orthogonal to the fitted or predicted values. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
22 Residuals Residuals 3.5 Likelihood ratio tests 45 y y y p o (y) Ω 0 0 p 0 (y) p 0 (y) = X β Figure 3.1: Orthogonality between the residual (y X b β) and the vector X b β. Figure: Orthogonality between the residual (y X β) and the vector X β. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
23 Residuals Residuals The residuals r = (I H)Y are normally distributed with D[r] = σ 2 (I H) The individual residuals do not have the same variance. The residuals are thus belonging to a subspace of dimension n k, which is orthogonal to Ω 0. It may be shown that the distribution of the residuals r is independent of the fitted values X β. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
24 Cochran s theorem Residuals Theorem (Cochran s theorem) Suppose that Y N n (0, I n ) (i.e. standard multivariate Gaussian random variable) Y T Y = Y T H 1 Y + Y T H 2 Y + + Y T H k Y where H i is a symmetric n n matrix with rank n i, i = 1, 2,..., k. Then any one of the following conditions implies the other two: i The ranks of the H i adds to n, i.e. k i=1 n i = n ii Each quadratic form Y T H i Y χ 2 n i (thus the H i are positive semidefinite) iii All the quadratic forms Y T H i Y are independent (necessary and sufficient condition). Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
25 Partitioning of variation Partitioning of variation Partitioning of the variation D(y; Xβ) = D(y; X β) + D(X β; Xβ) = (y X β) T Σ 1 (y X β) + ( β β) T X T Σ 1 X( β β) (y X β) T Σ 1 (y X β) Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
26 Partitioning of variation Partitioning of variation χ 2 -distribution of individual contributions Under H 0 it follows from the normal distribution of Y that D(y; Xβ) = (y Xβ) T Σ 1 (y Xβ) σ 2 χ 2 n Furthermore, it follows from the normal distribution of r and of β that D(y; X β) = (y X β) T Σ 1 (y X β) σ 2 χ 2 n k D(X β; Xβ) = ( β β) T X T Σ 1 X( β β) σ 2 χ 2 k moreover, the independence of r and X β implies that D(y; X β) and D(X β; Xβ) are independent. Thus, the σ 2 χ 2 n-distribution on the left side is partitioned into two independent χ 2 distributed variables with n k and k degrees of freedom, respectively. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
27 Estimation of the residual variance σ 2 Estimation of the residual variance σ 2 Theorem (Estimation of the variance) Under the hypothesis H 0 : µ(β) = Xβ the maximum marginal likelihood estimator for the variance σ 2 is σ 2 = D(y; X β) n k = (y X β) T Σ 1 (y X β) n k Under the hypothesis, σ 2 σ 2 χ 2 f /f with f = n k. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
28 Likelihood ratio tests Likelihood ratio tests In the classical GLM case the exact distribution of the likelihood ratio test statistic may be derived. Consider the following model for the data Y N n (µ, σ 2 Σ). Let us assume that we have the sufficient model with dim(ω 1 ) = m 1. H 1 : µ Ω 1 R n Now we want to test whether the model may be reduced to a model where µ is restricted to some subspace of Ω 1, and hence we introduce Ω 0 Ω 1 as a linear (affine) subspace with dim(ω 0 ) = m 0. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
29 Residual under hypothesis Model reduction Likelihood ratio tests n m 0 y p 0 (y) 2 y y p 0 (y) y y p 1 (y) Ω 1 Ω 0 0 p 0 (y) p 1 (y) p 1 (y) p 0 (y) Figure 3.2: Model reduction. The partitioning of the deviance corresponding to a Figure: Model reduction. The partitioning of the deviance corresponding to a test test of the hypothesis H 0 : µ Ω 0 under the assumption of H 1 : 1. of the hypothesis H 0 : µ Ω 0 under the assumption of H 1 : µ Ω 1. Initial test for model sufficiency Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
30 Likelihood ratio tests Test for model reduction Theorem (A test for model reduction) The likelihood ratio test statistic for testing is a monotone function of H 0 : µ Ω 0 against the alternative H 1 : µ Ω 1 \ Ω 0 F (y) = D(p 1(y); p 0 (y))/(m 1 m 0 ) D(y; p 1 (y))/(n m 1 ) where p 1 (y) and p 0 (y) denote the projection of y on Ω 1 and Ω 0, respectively. Under H 0 we have F F (m 1 m 0, n m 1 ) i.e. large values of F reflects a conflict between the data and H 0, and hence lead to rejection of H 0. The p-value of the test is found as p = P [F (m 1 m 0, n m 1 ) F obs ], where F obs is the observed value of F given the data. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
31 Likelihood ratio tests Test for model reduction The partitioning of the variation is presented in a Deviance table (or an ANalysis Of VAriance table, ANOVA). The table reflects the partitioning in the test for model reduction. The deviance between the variation of the model from the hypothesis is measured using the deviance of the observations from the model as a reference. Under H 0 they are both χ 2 distributed, orthogonal and thus independent. This means that the ratio is F distributed. If the test quantity is large this shows evidence against the model reduction tested using H 0. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
32 Deviance table Likelihood ratio tests Source f Deviance Test statistic, F Model versus hypothesis m 1 m 0 p 1 (y) p 0 (y) 2 p 1 (y) p 0 (y) 2 /(m 1 m 0 ) y p 1 (y) 2 /(n m 1 ) Residual under model n m 1 y p 1 (y) 2 Residual under hypothesis n m 0 y p 0 (y) 2 Table: Deviance table corresponding to a test for model reduction as specified by H 0. For Σ = I this corresponds to an analysis of variance table, and then Deviance is equal to the Sum of Squared deviations (SS) Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
33 Likelihood ratio tests Test for model reduction The test is a conditional test It should be noted that the test has been derived as a conditional test. It is a test for the hypothesis H 0 : µ Ω 0 under the assumption that H 1 : µ Ω 1 is true. The test does in no way assess whether H 1 is in agreement with the data. On the contrary in the test the residual variation under H 1 is used to estimate σ 2, i.e. to assess D(y; p 1 (y)). The test does not depend on the particular parametrization of the hypotheses Note that the test does only depend on the two sub-spaces Ω 1 and Ω 0, but not on how the subspaces have been parametrized (the particular choice of basis, i.e. the design matrix). Therefore it is sometimes said that the test is coordinate free. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
34 Likelihood ratio tests Initial test for model sufficiency In practice, one often starts with formulating a rather comprehensive model, a sufficient model, and then tests whether the model may be reduced to the null model with Ω null = R, i.e. dim Ω null = 1. The hypotheses are where dim Ω 1 = k. H null : µ R H 1 : µ Ω 1 \ R. The hypothesis is a hypothesis of Total homogeneity, namely that all observations are satisfactorily represented by their common mean. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
35 Deviance table Likelihood ratio tests Source f Deviance Test statistic, F Model H null k 1 p 1 (y) p null (y) 2 p 1 (y) p null (y) 2 /(k 1) y p 1 (y) 2 /(n k) Residual under H 1 n k y p 1 (y) 2 Total n 1 y p null (y) 2 Table: Deviance table corresponding to the test for model reduction to the null model. Under H null, F F (k 1, n k), and hence large values of F would indicate rejection of the hypothesis H null. The p-value of the test is p = P [F (k 1, n k) F obs ]. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
36 Coefficient of determination, R 2 Coefficient of determination, R 2 The coefficient of determination, R 2, is defined as R 2 = D(p 1(y); p null (y)) D(y; p null (y)) = 1 D(y; p 1(y)) D(y; p null (y)), 0 R2 1. Suppose you want to predict Y. If you do not know the x s, then the best prediction is y. The variability corresponding to this prediction is expressed by the total variation. If the model is utilized for the prediction, then the prediction error is reduced to the residual variation. R 2 expresses the fraction of the total variation that is explained by the model. As more variables are added to the model, D(y; p 1 (y)) will decrease, and R 2 will increase. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
37 Coefficient of determination, R 2 Adjusted coefficient of determination, R 2 adj The adjusted coefficient of determination aims to correct that R 2 increases as more variables are added to the model. It is defined as: R 2 adj = 1 D(y; p 1(y))/(n k) D(y; p null (y))/(n 1). It charges a penalty for the number of variables in the model. As more variables are added to the model, D(y; p 1 (y)) decreases, but the corresponding degrees of freedom also decreases. The numerator in may increase if the reduction in the residual deviance caused by the additional variables does not compensate for the loss in the degrees of freedom. Henrik MadsenPoul Thyregod (IMM-DTU) Chapman & Hall October / 37
Least Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David
Multivariate normal distribution and testing for means (see MKB Ch 3)
Multivariate normal distribution and testing for means (see MKB Ch 3) Where are we going? 2 One-sample t-test (univariate).................................................. 3 Two-sample t-test (univariate).................................................
Quadratic forms Cochran s theorem, degrees of freedom, and all that
Quadratic forms Cochran s theorem, degrees of freedom, and all that Dr. Frank Wood Frank Wood, [email protected] Linear Regression Models Lecture 1, Slide 1 Why We Care Cochran s theorem tells us
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
Lecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
Regression Analysis. Regression Analysis MIT 18.S096. Dr. Kempthorne. Fall 2013
Lecture 6: Regression Analysis MIT 18.S096 Dr. Kempthorne Fall 2013 MIT 18.S096 Regression Analysis 1 Outline Regression Analysis 1 Regression Analysis MIT 18.S096 Regression Analysis 2 Multiple Linear
Recall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
STATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
Statistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS
A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS Eusebio GÓMEZ, Miguel A. GÓMEZ-VILLEGAS and J. Miguel MARÍN Abstract In this paper it is taken up a revision and characterization of the class of
Part 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
Least-Squares Intersection of Lines
Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a
Some probability and statistics
Appendix A Some probability and statistics A Probabilities, random variables and their distribution We summarize a few of the basic concepts of random variables, usually denoted by capital letters, X,Y,
Multivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
15.062 Data Mining: Algorithms and Applications Matrix Math Review
.6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop
MATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
Chapter 3: The Multiple Linear Regression Model
Chapter 3: The Multiple Linear Regression Model Advanced Econometrics - HEC Lausanne Christophe Hurlin University of Orléans November 23, 2013 Christophe Hurlin (University of Orléans) Advanced Econometrics
Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.
Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C
Chapter 6: Multivariate Cointegration Analysis
Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration
17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function
17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
3.1 Least squares in matrix form
118 3 Multiple Regression 3.1 Least squares in matrix form E Uses Appendix A.2 A.4, A.6, A.7. 3.1.1 Introduction More than one explanatory variable In the foregoing chapter we considered the simple regression
MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =
MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the
Linear Models for Continuous Data
Chapter 2 Linear Models for Continuous Data The starting point in our exploration of statistical models in social research will be the classical linear model. Stops along the way include multiple linear
A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution
A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September
NOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
Factor analysis. Angela Montanari
Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number
Chapter 4: Statistical Hypothesis Testing
Chapter 4: Statistical Hypothesis Testing Christophe Hurlin November 20, 2015 Christophe Hurlin () Advanced Econometrics - Master ESA November 20, 2015 1 / 225 Section 1 Introduction Christophe Hurlin
Notes on Applied Linear Regression
Notes on Applied Linear Regression Jamie DeCoster Department of Social Psychology Free University Amsterdam Van der Boechorststraat 1 1081 BT Amsterdam The Netherlands phone: +31 (0)20 444-8935 email:
SAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
Time Series Analysis
Time Series Analysis [email protected] Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Identification of univariate time series models, cont.:
Regression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
Linear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
Statistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova
NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
Orthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics
INTERNATIONAL BLACK SEA UNIVERSITY COMPUTER TECHNOLOGIES AND ENGINEERING FACULTY ELABORATION OF AN ALGORITHM OF DETECTING TESTS DIMENSIONALITY Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree
POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model.
Polynomial Regression POLYNOMIAL AND MULTIPLE REGRESSION Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. It is a form of linear regression
A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA
REVSTAT Statistical Journal Volume 4, Number 2, June 2006, 131 142 A LOGNORMAL MODEL FOR INSURANCE CLAIMS DATA Authors: Daiane Aparecida Zuanetti Departamento de Estatística, Universidade Federal de São
Regression III: Advanced Methods
Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components
Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they
Name: Section Registered In:
Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are
Poisson Models for Count Data
Chapter 4 Poisson Models for Count Data In this chapter we study log-linear models for count data under the assumption of a Poisson error structure. These models have many applications, not only to the
Logit Models for Binary Data
Chapter 3 Logit Models for Binary Data We now turn our attention to regression models for dichotomous data, including logistic regression and probit analysis. These models are appropriate when the response
Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation
2. Simple Linear Regression
Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according
These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.
DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms
Orthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
Linear Regression. Guy Lebanon
Linear Regression Guy Lebanon Linear Regression Model and Least Squares Estimation Linear regression is probably the most popular model for predicting a RV Y R based on multiple RVs X 1,..., X d R. It
Elementary Statistics Sample Exam #3
Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to
Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression
Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction
Econometrics Simple Linear Regression
Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight
Use of deviance statistics for comparing models
A likelihood-ratio test can be used under full ML. The use of such a test is a quite general principle for statistical testing. In hierarchical linear models, the deviance test is mostly used for multiparameter
Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables
The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,
Linear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka [email protected] http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
MULTIVARIATE PROBABILITY DISTRIBUTIONS
MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined
Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
Permutation Tests for Comparing Two Populations
Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of
1 Determinants and the Solvability of Linear Systems
1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped
The Loss in Efficiency from Using Grouped Data to Estimate Coefficients of Group Level Variables. Kathleen M. Lang* Boston College.
The Loss in Efficiency from Using Grouped Data to Estimate Coefficients of Group Level Variables Kathleen M. Lang* Boston College and Peter Gottschalk Boston College Abstract We derive the efficiency loss
BANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
Detection of changes in variance using binary segmentation and optimal partitioning
Detection of changes in variance using binary segmentation and optimal partitioning Christian Rohrbeck Abstract This work explores the performance of binary segmentation and optimal partitioning in the
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.
MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α
Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
1 Prior Probability and Posterior Probability
Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which
individualdifferences
1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok
THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan
3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...
MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................
HYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
Lecture 9: Introduction to Pattern Analysis
Lecture 9: Introduction to Pattern Analysis g Features, patterns and classifiers g Components of a PR system g An example g Probability definitions g Bayes Theorem g Gaussian densities Features, patterns
5. Linear Regression
5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4
GENERALIZED LINEAR MODELS IN VEHICLE INSURANCE
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume 62 41 Number 2, 2014 http://dx.doi.org/10.11118/actaun201462020383 GENERALIZED LINEAR MODELS IN VEHICLE INSURANCE Silvie Kafková
CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
Final Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
Linear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
1 Simple Linear Regression I Least Squares Estimation
Simple Linear Regression I Least Squares Estimation Textbook Sections: 8. 8.3 Previously, we have worked with a random variable x that comes from a population that is normally distributed with mean µ and
Reject Inference in Credit Scoring. Jie-Men Mok
Reject Inference in Credit Scoring Jie-Men Mok BMI paper January 2009 ii Preface In the Master programme of Business Mathematics and Informatics (BMI), it is required to perform research on a business
Multivariate Analysis of Variance (MANOVA): I. Theory
Gregory Carey, 1998 MANOVA: I - 1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the
Section 14 Simple Linear Regression: Introduction to Least Squares Regression
Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship
One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups
One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The
Lecture 14: GLM Estimation and Logistic Regression
Lecture 14: GLM Estimation and Logistic Regression Dipankar Bandyopadhyay, Ph.D. BMTRY 711: Analysis of Categorical Data Spring 2011 Division of Biostatistics and Epidemiology Medical University of South
Credit Risk Models: An Overview
Credit Risk Models: An Overview Paul Embrechts, Rüdiger Frey, Alexander McNeil ETH Zürich c 2003 (Embrechts, Frey, McNeil) A. Multivariate Models for Portfolio Credit Risk 1. Modelling Dependent Defaults:
Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression
Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Saikat Maitra and Jun Yan Abstract: Dimension reduction is one of the major tasks for multivariate
Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].
Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real
Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this
Solutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
