Multiple Linear Regression


 Benjamin Stanley Dorsey
 2 years ago
 Views:
Transcription
1 Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is now modeled as a function of several explanatory variables. The function lm can be used to perform multiple linear regression in R and much of the syntax is the same as that used for fitting simple linear regression models. To perform multiple linear regression with p explanatory variables use the command: lm(response ~ explanatory_1 + explanatory_2 + + explanatory_p) Here the terms response and explanatory_i in the function should be replaced by the names of the response and explanatory variables, respectively, used in the analysis. Ex. Data was collected on 100 houses recently sold in a city. It consisted of the sales price (in $), house size (in square feet), the number of bedrooms, the number of bathrooms, the lot size (in square feet) and the annual real estate tax (in $). The following program reads in the data. > Housing = read.table("c:/users/martin/documents/w2024/housing.txt", header=true) > Housing Taxes Bedrooms Baths Price Size Lot Suppose we are only interested in working with a subset of the variables (e.g., Price, Size and Lot ). It is possible (but not necessary) to construct a new data frame consisting solely of these values using the commands: > myvars = c("price", "Size", "Lot") > Housing2 = Housing[myvars] > Housing2 Price Size Lot
2 Before fitting our regression model we want to investigate how the variables are related to one another. We can do this graphically by constructing scatter plots of all pairwise combinations of variables in the data frame. This can be done by typing: > plot(housing2) To fit a multiple linear regression model with price as the response variable and size and lot as the explanatory variables, use the command: > results = lm(price ~ Size + Lot, data=housing) > results Call: lm(formula = Price ~ Size + Lot, data = Housing) Coefficients: (Intercept) Size Lot This output indicates that the fitted value is given by yˆ x x2
3 Inference in the multiple regression setting is typically performed in a number of steps. We begin by testing whether the explanatory variables collectively have an effect on the response variable, i.e. H 0 : 1 2 p 0 If we can reject this hypothesis, we continue by testing whether the individual regression coefficients are significant while controlling for the other variables in the model. We can access the results of each test by typing: > summary(results) Call: lm(formula = Price ~ Size + Lot, data = Housing) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e e Size 5.378e e e13 *** Lot 2.840e e e09 ***  Signif. codes: 0 *** ** 0.01 * Residual standard error: on 97 degrees of freedom Multiple Rsquared: , Adjusted Rsquared: Fstatistic: on 2 and 97 DF, pvalue: < 2.2e16 The output shows that F = (p < 2.2e16), indicating that we should clearly reject the null hypothesis that the variables Size and Lot collectively have no effect on Price. The results also show that the variable Size is significant controlling for the variable Lot (p = 8.39e13), as is Lot controlling for the variable Size (p=1.68e09). In addition, the output also shows that R 2 = and R 2 adjusted = B. Testing a subset of variables using a partial Ftest Sometimes we are interested in simultaneously testing whether a certain subset of the coefficients are equal to 0 (e.g. 3 = 4 = 0). We can do this using a partial Ftest. This test involves comparing the SSE from a reduced model (excluding the parameters we hypothesis are equal to zero) with the SSE from the full model (including all of the parameters).
4 In R we can perform partial Ftests by fitting both the reduced and full models separately and thereafter comparing them using the anova function. Ex. Suppose we include the variables bedroom, bath, size and lot in our model and are interested in testing whether the number of bedrooms and bathrooms are significant after taking size and lot into consideration. The following code performs the partial Ftest: > reduced = lm(price ~ Size + Lot, data=housing) # Reduced model > full = lm(price ~ Size + Lot + Bedrooms + Baths, data=housing) # Full Model > anova(reduced, full) # Compare the models Analysis of Variance Table Model 1: Price ~ Size + Lot Model 2: Price ~ Size + Lot + Bedrooms + Baths Res.Df RSS Df Sum of Sq F Pr(>F) e e Signif. codes: 0 *** ** 0.01 * The output shows the results of the partial Ftest. Since F=2.82 (pvalue=0.0647) we cannot reject the null hypothesis ( 3 = 4 = 0) at the 5% level of significance. It appears that the variables Bedrooms and Baths do not contribute significant information to the sales price once the variables Size and Lot have been taken into consideration. C. Confidence and Prediction Intervals We often use our regression models to estimate the mean response or predict future values of the response variable for certain values of the response variables. The function predict() can be used to make both confidence intervals for the mean response and prediction intervals. To make confidence intervals for the mean response use the option interval= confidence. To make a prediction interval use the option interval= prediction. By default this makes 95% confidence and prediction intervals. If you instead want to make a 99% confidence or prediction interval use the option level=0.99. Ex. Obtain a 95% confidence interval for the mean sales price of houses whose size is 1,000 square feet and lot size is 20,000 square feet. > results = lm(price ~ Size + Lot, data=housing)
5 > predict(results,data.frame(size=1000, Lot=20000),interval="confidence") fit lwr upr [1,] A 95% confidence interval is given by (90711, ) Ex. Obtain a 95% prediction interval for the sales price of a particular house whose size is 1,000 square feet and lot size is 20,000 square feet. > predict(results,data.frame(size=1000, Lot=20000),interval="prediction") fit lwr upr [1,] A 95% prediction interval is given by (38627, ). Note that this is quite a bit wider than the confidence interval, indicating that the variation about the mean is fairly large.
Correlation and Simple Linear Regression
Correlation and Simple Linear Regression We are often interested in studying the relationship among variables to determine whether they are associated with one another. When we think that changes in a
More informationStatistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 16233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate
More informationGeneralized Linear Models
Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the
More informationUsing R for Linear Regression
Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional
More informationComparing Nested Models
Comparing Nested Models ST 430/514 Two models are nested if one model contains all the terms of the other, and at least one additional term. The larger model is the complete (or full) model, and the smaller
More informationRegression stepbystep using Microsoft Excel
Step 1: Regression stepbystep using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression
More informationTesting for Lack of Fit
Chapter 6 Testing for Lack of Fit How can we tell if a model fits the data? If the model is correct then ˆσ 2 should be an unbiased estimate of σ 2. If we have a model which is not complex enough to fit
More informationWe extended the additive model in two variables to the interaction model by adding a third term to the equation.
Quadratic Models We extended the additive model in two variables to the interaction model by adding a third term to the equation. Similarly, we can extend the linear model in one variable to the quadratic
More informationANOVA. February 12, 2015
ANOVA February 12, 2015 1 ANOVA models Last time, we discussed the use of categorical variables in multivariate regression. Often, these are encoded as indicator columns in the design matrix. In [1]: %%R
More informationEDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION
EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION EDUCATION AND VOCABULARY 510 hours of input weekly is enough to pick up a new language (Schiff & Myers, 1988). Dutch children spend 5.5 hours/day
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More informationDEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9
DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,
More informationStat 5303 (Oehlert): Tukey One Degree of Freedom 1
Stat 5303 (Oehlert): Tukey One Degree of Freedom 1 > catch
More informationE(y i ) = x T i β. yield of the refined product as a percentage of crude specific gravity vapour pressure ASTM 10% point ASTM end point in degrees F
Random and Mixed Effects Models (Ch. 10) Random effects models are very useful when the observations are sampled in a highly structured way. The basic idea is that the error associated with any linear,
More informationMultiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.
Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.
More informationLets suppose we rolled a sixsided die 150 times and recorded the number of times each outcome (16) occured. The data is
In this lab we will look at how R can eliminate most of the annoying calculations involved in (a) using ChiSquared tests to check for homogeneity in twoway tables of catagorical data and (b) computing
More informationLecture 5 Hypothesis Testing in Multiple Linear Regression
Lecture 5 Hypothesis Testing in Multiple Linear Regression BIOST 515 January 20, 2004 Types of tests 1 Overall test Test for addition of a single variable Test for addition of a group of variables Overall
More informationExercise Page 1 of 32
Exercise 10.1 (a) Plot wages versus LOS. Describe the relationship. There is one woman with relatively high wages for her length of service. Circle this point and do not use it in the rest of this exercise.
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationPsychology 205: Research Methods in Psychology
Psychology 205: Research Methods in Psychology Using R to analyze the data for study 2 Department of Psychology Northwestern University Evanston, Illinois USA November, 2012 1 / 38 Outline 1 Getting ready
More information5. Linear Regression
5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4
More informationAnd sample sizes > tapply(count, spray, length) A B C D E F And a boxplot: > boxplot(count ~ spray) How does the data look?
ANOVA in R 1Way ANOVA We re going to use a data set called InsectSprays. 6 different insect sprays (1 Independent Variable with 6 levels) were tested to see if there was a difference in the number of
More informationBasic Statistics and Data Analysis for Health Researchers from Foreign Countries
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association
More informationNWay Analysis of Variance
NWay Analysis of Variance 1 Introduction A good example when to use a nway ANOVA is for a factorial design. A factorial design is an efficient way to conduct an experiment. Each observation has data
More informationFactors affecting online sales
Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4
More informationRegression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between
More informationModel Diagnostics for Regression
Model Diagnostics for Regression After fitting a regression model it is important to determine whether all the necessary model assumptions are valid before performing inference. If there are any violations,
More informationWeek 5: Multiple Linear Regression
BUS41100 Applied Regression Analysis Week 5: Multiple Linear Regression Parameter estimation and inference, forecasting, diagnostics, dummy variables Robert B. Gramacy The University of Chicago Booth School
More information2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or
Simple and Multiple Regression Analysis Example: Explore the relationships among Month, Adv.$ and Sales $: 1. Prepare a scatter plot of these data. The scatter plots for Adv.$ versus Sales, and Month versus
More informationLecture 11: Confidence intervals and model comparison for linear regression; analysis of variance
Lecture 11: Confidence intervals and model comparison for linear regression; analysis of variance 14 November 2007 1 Confidence intervals and hypothesis testing for linear regression Just as there was
More informationMath 141. Lecture 24: Model Comparisons and The Ftest. Albyn Jones 1. 1 Library jones/courses/141
Math 141 Lecture 24: Model Comparisons and The Ftest Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Nested Models Two linear models are Nested if one (the restricted
More informationFinal Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
More informationLucky vs. Unlucky Teams in Sports
Lucky vs. Unlucky Teams in Sports Introduction Assuming gambling odds give true probabilities, one can classify a team as having been lucky or unlucky so far. Do results of matches between lucky and unlucky
More informationStatistiek II. John Nerbonne. March 24, 2010. Information Science, Groningen Slides improved a lot by Harmut Fitz, Groningen!
Information Science, Groningen j.nerbonne@rug.nl Slides improved a lot by Harmut Fitz, Groningen! March 24, 2010 Correlation and regression We often wish to compare two different variables Examples: compare
More informationMIXED MODEL ANALYSIS USING R
Research Methods Group MIXED MODEL ANALYSIS USING R Using Case Study 4 from the BIOMETRICS & RESEARCH METHODS TEACHING RESOURCE BY Stephen Mbunzi & Sonal Nagda www.ilri.org/rmg www.worldagroforestrycentre.org/rmg
More informationSPSS Guide: Regression Analysis
SPSS Guide: Regression Analysis I put this together to give you a stepbystep guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar
More informationChapter 13 Introduction to Linear Regression and Correlation Analysis
Chapter 3 Student Lecture Notes 3 Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing
More informationRegression, least squares
Regression, least squares Joe Felsenstein Department of Genome Sciences and Department of Biology Regression, least squares p.1/24 Fitting a straight line X Two distinct cases: The X values are chosen
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More informationStatistics for Management IISTAT 362Final Review
Statistics for Management IISTAT 362Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to
More informationStatistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 16233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova
More informationChapter 7: Simple linear regression Learning Objectives
Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) 
More informationUnivariate Regression
Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is
More informationTwoway ANOVA and ANCOVA
Twoway ANOVA and ANCOVA In this tutorial we discuss fitting twoway analysis of variance (ANOVA), as well as, analysis of covariance (ANCOVA) models in R. As we fit these models using regression methods
More informationAfter the ANOVA. Categorical Predictors: Gene Expression and Mental Disorders. The Data. Fit the Data with a Linear Model
Categorical Predictors: Gene Expression and Mental Disorders After the ANOVA The Data Fit the Data with a Linear Model 0.0 mean.expression 0.1 bg.sub.lm
More informationPlease follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software
STATA Tutorial Professor Erdinç Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software 1.Wald Test Wald Test is used
More informationExchange Rate Regime Analysis for the Chinese Yuan
Exchange Rate Regime Analysis for the Chinese Yuan Achim Zeileis Ajay Shah Ila Patnaik Abstract We investigate the Chinese exchange rate regime after China gave up on a fixed exchange rate to the US dollar
More informationNCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
More informationStat 412/512 CASE INFLUENCE STATISTICS. Charlotte Wickham. stat512.cwick.co.nz. Feb 2 2015
Stat 412/512 CASE INFLUENCE STATISTICS Feb 2 2015 Charlotte Wickham stat512.cwick.co.nz Regression in your field See website. You may complete this assignment in pairs. Find a journal article in your field
More informationPart 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
More informationMULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS
MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance
More informationStatistical Modelling in Stata 5: Linear Models
Statistical Modelling in Stata 5: Linear Models Mark Lunt Arthritis Research UK Centre for Excellence in Epidemiology University of Manchester 08/11/2016 Structure This Week What is a linear model? How
More informationStatistics II Final Exam  January Use the University stationery to give your answers to the following questions.
Statistics II Final Exam  January 2012 Use the University stationery to give your answers to the following questions. Do not forget to write down your name and class group in each page. Indicate clearly
More informationNotes on Maxwell & Delaney
Notes on Maxwell & Delaney PSY710 5 Chapter 5  Multiple Comparisons of Means 5.1 Inflation of Type I Error Rate When conducting a statistical test, we typically set α =.05 or α =.01 so that the probability
More informationSimple Linear Regression
Chapter Nine Simple Linear Regression Consider the following three scenarios: 1. The CEO of the local Tourism Authority would like to know whether a family s annual expenditure on recreation is related
More information2013 MBA Jump Start Program. Statistics Module Part 3
2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just
More informationRegression Analysis. Data Calculations Output
Regression Analysis In an attempt to find answers to questions such as those posed above, empirical labour economists use a useful tool called regression analysis. Regression analysis is essentially a
More informationn + n log(2π) + n log(rss/n)
There is a discrepancy in R output from the functions step, AIC, and BIC over how to compute the AIC. The discrepancy is not very important, because it involves a difference of a constant factor that cancels
More informationRegression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
More informationIntroduction to Stata
Introduction to Stata September 23, 2014 Stata is one of a few statistical analysis programs that social scientists use. Stata is in the midrange of how easy it is to use. Other options include SPSS,
More informationChapter 3 Quantitative Demand Analysis
Managerial Economics & Business Strategy Chapter 3 uantitative Demand Analysis McGrawHill/Irwin Copyright 2010 by the McGrawHill Companies, Inc. All rights reserved. Overview I. The Elasticity Concept
More informationc. The factor is the type of TV program that was watched. The treatment is the embedded commercials in the TV programs.
STAT E150  Statistical Methods Assignment 9 Solutions Exercises 12.8, 12.13, 12.75 For each test: Include appropriate graphs to see that the conditions are met. Use Tukey's Honestly Significant Difference
More informatione = random error, assumed to be normally distributed with mean 0 and standard deviation σ
1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.
More informationAn Sweave Demo. Charles J. Geyer. July 27, latex
An Sweave Demo Charles J. Geyer July 27, 2010 This is a demo for using the Sweave command in R. To get started make a regular L A TEX file (like this one) but give it the suffix.rnw instead of.tex and
More informationResiduals. Residuals = ª Department of ISM, University of Alabama, ST 260, M23 Residuals & Minitab. ^ e i = y i  y i
A continuation of regression analysis Lesson Objectives Continue to build on regression analysis. Learn how residual plots help identify problems with the analysis. M231 M232 Example 1: continued Case
More informationCHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression
Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the
More informationExercises on using R for Statistics and Hypothesis Testing Dr. Wenjia Wang
Exercises on using R for Statistics and Hypothesis Testing Dr. Wenjia Wang School of Computing Sciences, UEA University of East Anglia Brief Introduction to R R is a free open source statistics and mathematical
More informationMultivariate Logistic Regression
1 Multivariate Logistic Regression As in univariate logistic regression, let π(x) represent the probability of an event that depends on p covariates or independent variables. Then, using an inv.logit formulation
More informationEPS 625 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM
EPS 6 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM ANCOVA One Continuous Dependent Variable (DVD Rating) Interest Rating in DVD One Categorical/Discrete Independent Variable
More informationModule 5: Multiple Regression Analysis
Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College
More informationSTAT 350 Practice Final Exam Solution (Spring 2015)
PART 1: Multiple Choice Questions: 1) A study was conducted to compare five different training programs for improving endurance. Forty subjects were randomly divided into five groups of eight subjects
More informationMulti Factors Model. Daniel Herlemont. March 31, 2009. 2 Estimating using Ordinary Least Square regression 3
Multi Factors Model Daniel Herlemont March 31, 2009 Contents 1 Introduction 1 2 Estimating using Ordinary Least Square regression 3 3 Multicollinearity 6 4 Estimating Fundamental Factor Models by Orthogonal
More informationMULTIPLE REGRESSION EXAMPLE
MULTIPLE REGRESSION EXAMPLE For a sample of n = 166 college students, the following variables were measured: Y = height X 1 = mother s height ( momheight ) X 2 = father s height ( dadheight ) X 3 = 1 if
More informationRegression Analysis (Spring, 2000)
Regression Analysis (Spring, 2000) By Wonjae Purposes: a. Explaining the relationship between Y and X variables with a model (Explain a variable Y in terms of Xs) b. Estimating and testing the intensity
More informationAn example ANOVA situation. 1Way ANOVA. Some notation for ANOVA. Are these differences significant? Example (Treating Blisters)
An example ANOVA situation Example (Treating Blisters) 1Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College Subjects: 25 patients with blisters Treatments: Treatment A, Treatment
More informationClass 19: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
More informationOutline. Topic 4  Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4  Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test  Fall 2013 R 2 and the coefficient of correlation
More informationMultiple Linear Regression. Multiple linear regression is the extension of simple linear regression to the case of two or more independent variables.
1 Multiple Linear Regression Basic Concepts Multiple linear regression is the extension of simple linear regression to the case of two or more independent variables. In simple linear regression, we had
More informationANOVA  Analysis of Variance
ANOVA  Analysis of Variance ANOVA  Analysis of Variance Extends independentsamples t test Compares the means of groups of independent observations Don t be fooled by the name. ANOVA does not compare
More informationHOW TO USE MINITAB: INTRODUCTION AND BASICS. Noelle M. Richard 08/27/14
HOW TO USE MINITAB: INTRODUCTION AND BASICS 1 Noelle M. Richard 08/27/14 CONTENTS * Click on the links to jump to that page in the presentation. * 1. Minitab Environment 2. Uploading Data to Minitab/Saving
More informationKSTAT MINIMANUAL. Decision Sciences 434 Kellogg Graduate School of Management
KSTAT MINIMANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To
More informationInteraction between quantitative predictors
Interaction between quantitative predictors In a firstorder model like the ones we have discussed, the association between E(y) and a predictor x j does not depend on the value of the other predictors
More informationChapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means Oneway ANOVA To test the null hypothesis that several population means are equal,
More informationQuantitative Understanding in Biology Module II: Model Parameter Estimation Lecture I: Linear Correlation and Regression
Quantitative Understanding in Biology Module II: Model Parameter Estimation Lecture I: Linear Correlation and Regression Correlation Linear correlation and linear regression are often confused, mostly
More informationSection 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
More informationSAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
More informationBivariate Analysis. Correlation. Correlation. Pearson's Correlation Coefficient. Variable 1. Variable 2
Bivariate Analysis Variable 2 LEVELS >2 LEVELS COTIUOUS Correlation Used when you measure two continuous variables. Variable 2 2 LEVELS X 2 >2 LEVELS X 2 COTIUOUS ttest X 2 X 2 AOVA (Ftest) ttest AOVA
More informationStatistics 112 Regression Cheatsheet Section 1B  Ryan Rosario
Statistics 112 Regression Cheatsheet Section 1B  Ryan Rosario I have found that the best way to practice regression is by brute force That is, given nothing but a dataset and your mind, compute everything
More information2. Regression and Correlation. Simple Linear Regression Software: R
2. Regression and Correlation Simple Linear Regression Software: R Create txt file from SAS data set data _null_; file 'C:\Documents and Settings\sphlab\Desktop\slr1.txt'; set temp; put input day:date7.
More informationttests and Ftests in regression
ttests and Ftests in regression Johan A. Elkink University College Dublin 5 April 2012 Johan A. Elkink (UCD) t and Ftests 5 April 2012 1 / 25 Outline 1 Simple linear regression Model Variance and R
More informationINTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the oneway ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
More informationCOMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.
277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies
More informationEstimation of σ 2, the variance of ɛ
Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated
More information1 Simple Linear Regression I Least Squares Estimation
Simple Linear Regression I Least Squares Estimation Textbook Sections: 8. 8.3 Previously, we have worked with a random variable x that comes from a population that is normally distributed with mean µ and
More information2 Sample ttest (unequal sample sizes and unequal variances)
Variations of the ttest: Sample tail Sample ttest (unequal sample sizes and unequal variances) Like the last example, below we have ceramic sherd thickness measurements (in cm) of two samples representing
More informationBill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1
Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce
More informationChapter 7 Section 1 Homework Set A
Chapter 7 Section 1 Homework Set A 7.15 Finding the critical value t *. What critical value t * from Table D (use software, go to the web and type t distribution applet) should be used to calculate the
More informationSTATISTICS: AN INTRODUCTION USING R. By M.J. Crawley. Exercises 4. REGRESSION
STATISTICS: AN INTRODUCTION USING R By M.J. Crawley Exercises 4. REGRESSION Regression is the statistical model we use when the explanatory variable is continuous. If the explanatory variables were categorical
More informationDifference of Means and ANOVA Problems
Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly
More informationWeek TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480
1) The S & P/TSX Composite Index is based on common stock prices of a group of Canadian stocks. The weekly close level of the TSX for 6 weeks are shown: Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500
More information