# N-Way Analysis of Variance

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 N-Way Analysis of Variance 1 Introduction A good example when to use a n-way ANOVA is for a factorial design. A factorial design is an efficient way to conduct an experiment. Each observation has data on all factors, and we are able to look at one factor while observing different levels of another factor. Table 1 shows an analysis of variance table for a three-factor design. This can obviously be extended to more factors or be used for two factors. Table 1: Two-Way ANOVA Source DF SS Mean Square F Total rab - 1 SS Total Factor A a - 1 SS(A) MS(A) MS(A)/MSE Factor B b - 1 SS(B) MS(B) MS(B)/MSE Factor C c - 1 SS(C) MS(C) MS(C)/MSE A*B Interaction (a-1)(b-1) SS(AB) MS(AB) MS(AB)/MSE B*C Interaction (b-1)(c-1) SS(BC) MS(BC) MS(BC)/MSE A*B*C Interaction (a-1)(b-1)(c-1) SS(ABC) MS(ABC) MS(ABC)/MSE Error abc(r-1) SSE MSE 2 Analysis of Variance Preparation This example will use the dataset npk (Nitrogen - N, Phosphate - P, Potassium - K) that is available in R with the MASS library (Modern Applied Statistics with S). The first thing to do with analysis of variance is to inspect the data to ensure it is formatted and designed properly. Inspecting the balance of the design can be done with the following R code. This shows that the design is balanced and the analysis not require additional considerations. >replications(yield ~ N*P*K, data=npk); N P K N:P N:K P:K N:P:K There are several ways to graphically review the data. A good graphical approach is to create side-by-side boxplots of each of the experimental combinations. Figure 1 show the boxplot for the npk data. Because the npk data has three factors each with two factor levels the interactions should be reviewed. A good way to accomplish this is graphically using an interaction plot. Figure 2 shows the output from the following R code. This code is a concise way to display two interaction plots for the nitrogen and potassium and the nitrogen and phosphate. c copyright 2012 Statistical-Research.com. 1

2 Figure 1: Box Plot of Experimental Combinations >with(npk, { interaction.plot(n, P, yield, type="b", legend="t", ylab="yield of Peas", main="interaction Plot", pch=c(1,19) ) interaction.plot(n, K, yield, type="b", legend="t", ylab="yield of Peas", main="interaction Plot", pch=c(1,19)) } ); It is generally a good idea to look at the basic summary statistics for the data. This will give a researcher a good idea what to expect from the data and to identify any observation that may be outliers or may have suffered from data input errors. The following code provides table summaries of each of the factors compared to the other factors. with(npk, tapply(yield, list(n,p), mean)); with(npk, tapply(yield, list(n,k), mean)); with(npk, tapply(yield, list(p,k), mean)); > with(npk, tapply(yield, list(n,p), mean)); > with(npk, tapply(yield, list(n,k), mean)); > with(npk, tapply(yield, list(p,k), mean)); c copyright 2012 Statistical-Research.com.

3 Analysis of Variance Once the data has been reviewed and a researcher has a complete understanding of the design and scope of the data then the ANOVA table can be produced. Analysis of variance in R is quite simple and can generally be done using only a couple of lines of code. The following code produces an analysis of variance table and shows the difference in means using the Tukey HSD (Honestly Significant Difference) test. Additionally, the difference and the family-wise confidence levels can be easily graphed as seen in Figures 3 and 4. The following code produces quite a bit of output showing the differences and the confidence intervals for all comparisons of means. >npk.aov <- aov(yield ~ N*P*K, data=npk); >TukeyHSD(npk.aov, conf.level=.99); >plot(tukeyhsd(npk.aov, conf.level=.99)); At this point the analysis of variance table can be produced. We can look at the output a few different ways. First we can look at the traditional ANOVA table to determine the significance of the main effects and the interactions (interactions are identified by a colon : ). A second way to look at the ANOVA output is by looking at treatment effects. The output from the below code shows that the mean when all factors are set to zero is From there we can see the effect of the other variables. >summary(npk.aov); Df Sum Sq Mean Sq F value Pr(>F) N * P K N:P N:K P:K N:P:K Residuals Signif. codes: 0 *** ** 0.01 * >options("contrasts"); >summary.lm(npk.aov); Call: aov(formula = yield ~ N * P * K, data = npk) c copyright 2012 Statistical-Research.com. 3

4 Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-11 *** N * P K N1:P N1:K P1:K N1:P1:K Signif. codes: 0 *** ** 0.01 * Residual standard error: on 16 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 7 and 16 DF, p-value: Final Diagnostics Finally, diagnostics should be conducted to ensure that ANOVA is a proper fit and that all of the basic assumptions are met. These primarily include normality of data and homogeneity of variance. A good way to visually determine if the data are normally distributed is by using a Q-Q plot as seen in Figure 5. If the point follow Q-Q line then data follow a normal distribution if there is a lot of deviation from the line then the data should be inspected further. Additionally, the Shapiro-Wilk test for normality is another good way to identify (using a null hypothesis of normal data) whether or not the data is from a normal distribution. The homogeneity of variance can be determined using the Bartlett Test of Homogeneity (seen in the output below) of Variances or the Fligner-Killeen Test of Homogeneity of Variances. plot(npk.aov); plot.design(yield~n*p*k, data=npk); qqnorm(npk\$yield); qqline(npk\$yield, col=4); ##Shapiro-Wilk Normality Test by(npk\$yield, npk\$n, shapiro.test); by(npk\$yield, npk\$p, shapiro.test); by(npk\$yield, npk\$k, shapiro.test); > by(npk\$yield, npk\$n, shapiro.test); npk\$n: 0 4 c copyright 2012 Statistical-Research.com.

5 data: dd[x, ] W = , p-value = npk\$n: 1 data: dd[x, ] W = , p-value = > by(npk\$yield, npk\$p, shapiro.test); npk\$p: 0 data: dd[x, ] W = , p-value = npk\$p: 1 data: dd[x, ] W = , p-value = > by(npk\$yield, npk\$k, shapiro.test); npk\$k: 0 data: dd[x, ] W = , p-value = npk\$k: 1 data: dd[x, ] W = , p-value = > bartlett.test(npk\$yield ~ npk\$n); Bartlett test of homogeneity of variances data: npk\$yield by npk\$n Bartlett s K-squared = , df = 1, p-value = c copyright 2012 Statistical-Research.com. 5

6 > bartlett.test(npk\$yield ~ npk\$p); Bartlett test of homogeneity of variances data: npk\$yield by npk\$p Bartlett s K-squared = , df = 1, p-value = > bartlett.test(npk\$yield ~ npk\$k); Bartlett test of homogeneity of variances data: npk\$yield by npk\$k Bartlett s K-squared = , df = 1, p-value = fligner.test(npk\$yield ~ npk\$n); fligner.test(npk\$yield ~ npk\$p); fligner.test(npk\$yield ~ npk\$k); 6 c copyright 2012 Statistical-Research.com.

7 Figure 2: Interaction Plot of Factor Levels c copyright 2012 Statistical-Research.com. 7

8 Figure 3: Interaction Plot of Factor Levels 8 c copyright 2012 Statistical-Research.com.

9 Figure 4: Interaction Plot of Factor Levels c copyright 2012 Statistical-Research.com. 9

10 Figure 5: Normal Q-Q Plot 10 c copyright 2012 Statistical-Research.com.

### Multiple Linear Regression

Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

### Regression in ANOVA. James H. Steiger. Department of Psychology and Human Development Vanderbilt University

Regression in ANOVA James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 30 Regression in ANOVA 1 Introduction 2 Basic Linear

### Chapter 19 Split-Plot Designs

Chapter 19 Split-Plot Designs Split-plot designs are needed when the levels of some treatment factors are more difficult to change during the experiment than those of others. The designs have a nested

### We extended the additive model in two variables to the interaction model by adding a third term to the equation.

Quadratic Models We extended the additive model in two variables to the interaction model by adding a third term to the equation. Similarly, we can extend the linear model in one variable to the quadratic

### Statistical Models in R

Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova

### Topic 9. Factorial Experiments [ST&D Chapter 15]

Topic 9. Factorial Experiments [ST&D Chapter 5] 9.. Introduction In earlier times factors were studied one at a time, with separate experiments devoted to each factor. In the factorial approach, the investigator

### And sample sizes > tapply(count, spray, length) A B C D E F And a boxplot: > boxplot(count ~ spray) How does the data look?

ANOVA in R 1-Way ANOVA We re going to use a data set called InsectSprays. 6 different insect sprays (1 Independent Variable with 6 levels) were tested to see if there was a difference in the number of

### c. The factor is the type of TV program that was watched. The treatment is the embedded commercials in the TV programs.

STAT E-150 - Statistical Methods Assignment 9 Solutions Exercises 12.8, 12.13, 12.75 For each test: Include appropriate graphs to see that the conditions are met. Use Tukey's Honestly Significant Difference

### ANOVA. February 12, 2015

ANOVA February 12, 2015 1 ANOVA models Last time, we discussed the use of categorical variables in multivariate regression. Often, these are encoded as indicator columns in the design matrix. In [1]: %%R

### 1 Basic ANOVA concepts

Math 143 ANOVA 1 Analysis of Variance (ANOVA) Recall, when we wanted to compare two population means, we used the 2-sample t procedures. Now let s expand this to compare k 3 population means. As with the

### Statistical Models in R

Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate

### 12: Analysis of Variance. Introduction

1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider

### Repeatability and Reproducibility

Repeatability and Reproducibility Copyright 1999 by Engineered Software, Inc. Repeatability is the variability of the measurements obtained by one person while measuring the same item repeatedly. This

### Classical Hypothesis Testing in R. R can do all of the common analyses that are available in SPSS, including:

Classical Hypothesis Testing in R R can do all of the common analyses that are available in SPSS, including: Classical Hypothesis Testing in R R can do all of the common analyses that are available in

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Stat 411/511 ANOVA & REGRESSION. Charlotte Wickham. stat511.cwick.co.nz. Nov 31st 2015

Stat 411/511 ANOVA & REGRESSION Nov 31st 2015 Charlotte Wickham stat511.cwick.co.nz This week Today: Lack of fit F-test Weds: Review email me topics, otherwise I ll go over some of last year s final exam

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

### Using R for Linear Regression

Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional

### BIOL 933 Lab 6 Fall 2015. Data Transformation

BIOL 933 Lab 6 Fall 2015 Data Transformation Transformations in R General overview Log transformation Power transformation The pitfalls of interpreting interactions in transformed data Transformations

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### 1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

### Paired Differences and Regression

Paired Differences and Regression Students sometimes have difficulty distinguishing between paired data and independent samples when comparing two means. One can return to this topic after covering simple

### Final Exam Practice Problem Answers

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

### where b is the slope of the line and a is the intercept i.e. where the line cuts the y axis.

Least Squares Introduction We have mentioned that one should not always conclude that because two variables are correlated that one variable is causing the other to behave a certain way. However, sometimes

### Background to ANOVA. One-Way Analysis of Variance: ANOVA. The One-Way ANOVA Summary Table. Hypothesis Test in One-Way ANOVA

Background to ANOVA One-Way Analysis of Variance: ANOVA Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Recall from

### Lecture 5 Hypothesis Testing in Multiple Linear Regression

Lecture 5 Hypothesis Testing in Multiple Linear Regression BIOST 515 January 20, 2004 Types of tests 1 Overall test Test for addition of a single variable Test for addition of a group of variables Overall

### The scatterplot indicates a positive linear relationship between waist size and body fat percentage:

STAT E-150 Statistical Methods Multiple Regression Three percent of a man's body is essential fat, which is necessary for a healthy body. However, too much body fat can be dangerous. For men between the

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### Comparing Nested Models

Comparing Nested Models ST 430/514 Two models are nested if one model contains all the terms of the other, and at least one additional term. The larger model is the complete (or full) model, and the smaller

### One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups

One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The

### Chapter 7. One-way ANOVA

Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks

### 12-1 Multiple Linear Regression Models

12-1.1 Introduction Many applications of regression analysis involve situations in which there are more than one regressor variable. A regression model that contains more than one regressor variable is

### Analysis of Variance. MINITAB User s Guide 2 3-1

3 Analysis of Variance Analysis of Variance Overview, 3-2 One-Way Analysis of Variance, 3-5 Two-Way Analysis of Variance, 3-11 Analysis of Means, 3-13 Overview of Balanced ANOVA and GLM, 3-18 Balanced

### Factor B: Curriculum New Math Control Curriculum (B (B 1 ) Overall Mean (marginal) Females (A 1 ) Factor A: Gender Males (A 2) X 21

1 Factorial ANOVA The ANOVA designs we have dealt with up to this point, known as simple ANOVA or oneway ANOVA, had only one independent grouping variable or factor. However, oftentimes a researcher has

### Introduction to Stata

Introduction to Stata September 23, 2014 Stata is one of a few statistical analysis programs that social scientists use. Stata is in the mid-range of how easy it is to use. Other options include SPSS,

### Basic Statistics and Data Analysis for Health Researchers from Foreign Countries

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association

### Regression step-by-step using Microsoft Excel

Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression

### Testing for Lack of Fit

Chapter 6 Testing for Lack of Fit How can we tell if a model fits the data? If the model is correct then ˆσ 2 should be an unbiased estimate of σ 2. If we have a model which is not complex enough to fit

### MEAN SEPARATION TESTS (LSD AND Tukey s Procedure) is rejected, we need a method to determine which means are significantly different from the others.

MEAN SEPARATION TESTS (LSD AND Tukey s Procedure) If Ho 1 2... n is rejected, we need a method to determine which means are significantly different from the others. We ll look at three separation tests

### Experimental Design for Influential Factors of Rates on Massive Open Online Courses

Experimental Design for Influential Factors of Rates on Massive Open Online Courses December 12, 2014 Ning Li nli7@stevens.edu Qing Wei qwei1@stevens.edu Yating Lan ylan2@stevens.edu Yilin Wei ywei12@stevens.edu

### E(y i ) = x T i β. yield of the refined product as a percentage of crude specific gravity vapour pressure ASTM 10% point ASTM end point in degrees F

Random and Mixed Effects Models (Ch. 10) Random effects models are very useful when the observations are sampled in a highly structured way. The basic idea is that the error associated with any linear,

### SCHOOL OF MATHEMATICS AND STATISTICS

RESTRICTED OPEN BOOK EXAMINATION (Not to be removed from the examination hall) Data provided: Statistics Tables by H.R. Neave MAS5052 SCHOOL OF MATHEMATICS AND STATISTICS Basic Statistics Spring Semester

### Simple Linear Regression Chapter 11

Simple Linear Regression Chapter 11 Rationale Frequently decision-making situations require modeling of relationships among business variables. For instance, the amount of sale of a product may be related

### EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION

EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION EDUCATION AND VOCABULARY 5-10 hours of input weekly is enough to pick up a new language (Schiff & Myers, 1988). Dutch children spend 5.5 hours/day

### ANOVA - Analysis of Variance

ANOVA - Analysis of Variance ANOVA - Analysis of Variance Extends independent-samples t test Compares the means of groups of independent observations Don t be fooled by the name. ANOVA does not compare

### Correlation and Simple Linear Regression

Correlation and Simple Linear Regression We are often interested in studying the relationship among variables to determine whether they are associated with one another. When we think that changes in a

### 5. Linear Regression

5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4

Table of Contents Introduction to Minitab...2 Example 1 One-Way ANOVA...3 Determining Sample Size in One-way ANOVA...8 Example 2 Two-factor Factorial Design...9 Example 3: Randomized Complete Block Design...14

### Statistical Modelling in Stata 5: Linear Models

Statistical Modelling in Stata 5: Linear Models Mark Lunt Arthritis Research UK Centre for Excellence in Epidemiology University of Manchester 08/11/2016 Structure This Week What is a linear model? How

### Residuals. Residuals = ª Department of ISM, University of Alabama, ST 260, M23 Residuals & Minitab. ^ e i = y i - y i

A continuation of regression analysis Lesson Objectives Continue to build on regression analysis. Learn how residual plots help identify problems with the analysis. M23-1 M23-2 Example 1: continued Case

### Regression III: Dummy Variable Regression

Regression III: Dummy Variable Regression Tom Ilvento FREC 408 Linear Regression Assumptions about the error term Mean of Probability Distribution of the Error term is zero Probability Distribution of

### An analysis method for a quantitative outcome and two categorical explanatory variables.

Chapter 11 Two-Way ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that

### Allelopathic Effects on Root and Shoot Growth: One-Way Analysis of Variance (ANOVA) in SPSS. Dan Flynn

Allelopathic Effects on Root and Shoot Growth: One-Way Analysis of Variance (ANOVA) in SPSS Dan Flynn Just as t-tests are useful for asking whether the means of two groups are different, analysis of variance

### Demonstrating Systematic Sampling

Demonstrating Systematic Sampling Julie W. Pepe, University of Central Florida, Orlando, Florida Abstract A real data set involving the number of reference requests at a university library, will be used

### Exercise Page 1 of 32

Exercise 10.1 (a) Plot wages versus LOS. Describe the relationship. There is one woman with relatively high wages for her length of service. Circle this point and do not use it in the rest of this exercise.

### Predictor Coef StDev T P Constant 970667056 616256122 1.58 0.154 X 0.00293 0.06163 0.05 0.963. S = 0.5597 R-Sq = 0.0% R-Sq(adj) = 0.

Statistical analysis using Microsoft Excel Microsoft Excel spreadsheets have become somewhat of a standard for data storage, at least for smaller data sets. This, along with the program often being packaged

### Statistics for Management II-STAT 362-Final Review

Statistics for Management II-STAT 362-Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to

### Randomized Block Analysis of Variance

Chapter 565 Randomized Block Analysis of Variance Introduction This module analyzes a randomized block analysis of variance with up to two treatment factors and their interaction. It provides tables of

### Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

### 13: Additional ANOVA Topics. Post hoc Comparisons

13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated Kruskal-Wallis Test Post hoc Comparisons In the prior

### One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

### Simple Linear Regression

Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression Statistical model for linear regression Estimating

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### Notes on Maxwell & Delaney

Notes on Maxwell & Delaney PSY710 5 Chapter 5 - Multiple Comparisons of Means 5.1 Inflation of Type I Error Rate When conducting a statistical test, we typically set α =.05 or α =.01 so that the probability

### 4.4. Further Analysis within ANOVA

4.4. Further Analysis within ANOVA 1) Estimation of the effects Fixed effects model: α i = µ i µ is estimated by a i = ( x i x) if H 0 : µ 1 = µ 2 = = µ k is rejected. Random effects model: If H 0 : σa

### CS 147: Computer Systems Performance Analysis

CS 147: Computer Systems Performance Analysis One-Factor Experiments CS 147: Computer Systems Performance Analysis One-Factor Experiments 1 / 42 Overview Introduction Overview Overview Introduction Finding

### ACTM State Exam-Statistics

ACTM State Exam-Statistics For the 25 multiple-choice questions, make your answer choice and record it on the answer sheet provided. Once you have completed that section of the test, proceed to the tie-breaker

### Practice 3 SPSS. Partially based on Notes from the University of Reading:

Practice 3 SPSS Partially based on Notes from the University of Reading: http://www.reading.ac.uk Simple Linear Regression A simple linear regression model is fitted when you want to investigate whether

### MSwM examples. Jose A. Sanchez-Espigares, Alberto Lopez-Moreno Dept. of Statistics and Operations Research UPC-BarcelonaTech.

MSwM examples Jose A. Sanchez-Espigares, Alberto Lopez-Moreno Dept. of Statistics and Operations Research UPC-BarcelonaTech February 24, 2014 Abstract Two examples are described to illustrate the use of

### Factors affecting online sales

Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4

### Statistics II Final Exam - January Use the University stationery to give your answers to the following questions.

Statistics II Final Exam - January 2012 Use the University stationery to give your answers to the following questions. Do not forget to write down your name and class group in each page. Indicate clearly

### SELF-TEST: SIMPLE REGRESSION

ECO 22000 McRAE SELF-TEST: SIMPLE REGRESSION Note: Those questions indicated with an (N) are unlikely to appear in this form on an in-class examination, but you should be able to describe the procedures

### Data Analysis. Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) SS Analysis of Experiments - Introduction

Data Analysis Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) Prof. Dr. Dr. h.c. Dieter Rombach Dr. Andreas Jedlitschka SS 2014 Analysis of Experiments - Introduction

### Recall this chart that showed how most of our course would be organized:

Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

### ABSORBENCY OF PAPER TOWELS

ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?

### Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

### Perform hypothesis testing

Multivariate hypothesis tests for fixed effects Testing homogeneity of level-1 variances In the following sections, we use the model displayed in the figure below to illustrate the hypothesis tests. Partial

### Investigation of Optimal Reimbursement Policy for Wifi Service by Public Libraries

Investigation of Optimal Reimbursement Policy for Wifi Service by Public Libraries Vinod Bakthavachalam August 28, 2014 Data Overview The purpose of this analysis is to investigate what the optimal reimbursement

### Exercises on using R for Statistics and Hypothesis Testing Dr. Wenjia Wang

Exercises on using R for Statistics and Hypothesis Testing Dr. Wenjia Wang School of Computing Sciences, UEA University of East Anglia Brief Introduction to R R is a free open source statistics and mathematical

### CORRELATION AND SIMPLE REGRESSION ANALYSIS USING SAS IN DAIRY SCIENCE

CORRELATION AND SIMPLE REGRESSION ANALYSIS USING SAS IN DAIRY SCIENCE A. K. Gupta, Vipul Sharma and M. Manoj NDRI, Karnal-132001 When analyzing farm records, simple descriptive statistics can reveal a

### KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

### Chapter 11: Two Variable Regression Analysis

Department of Mathematics Izmir University of Economics Week 14-15 2014-2015 In this chapter, we will focus on linear models and extend our analysis to relationships between variables, the definitions

### Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl

Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic

### THE KRUSKAL WALLLIS TEST

THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### RNR / ENTO Assumptions for Simple Linear Regression

74 RNR / ENTO 63 --Assumptions for Simple Linear Regression Statistical statements (hypothesis tests and CI estimation) with least squares estimates depends on 4 assumptions:. Linearity of the mean responses

### Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2

Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2 Note: Whether we calculate confidence intervals or perform hypothesis tests we need the distribution of the statistic we will use.

### 0.1 Multiple Regression Models

0.1 Multiple Regression Models We will introduce the multiple Regression model as a mean of relating one numerical response variable y to two or more independent (or predictor variables. We will see different

### Chapter 7 Section 1 Homework Set A

Chapter 7 Section 1 Homework Set A 7.15 Finding the critical value t *. What critical value t * from Table D (use software, go to the web and type t distribution applet) should be used to calculate the

### Simple Linear Regression

Chapter Nine Simple Linear Regression Consider the following three scenarios: 1. The CEO of the local Tourism Authority would like to know whether a family s annual expenditure on recreation is related

### An example ANOVA situation. 1-Way ANOVA. Some notation for ANOVA. Are these differences significant? Example (Treating Blisters)

An example ANOVA situation Example (Treating Blisters) 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College Subjects: 25 patients with blisters Treatments: Treatment A, Treatment

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### Suggested solution for exam in MSA830: Statistical Analysis and Experimental Design 26 October 2012

Petter Mostad Matematisk Statistik Chalmers Suggested solution for exam in MSA830: Statistical Analysis and Experimental Design 26 October 2012 1. (a) We first compute the probability that all bottles

### Discrete with many values are often treated as continuous: Minnesota math scores, years of education.

Lecture 9 1. Continuous and categorical predictors 2. Indicator variables 3. General linear model: child s IQ example 4. Proc GLM and Proc Reg 5. ANOVA example: Rat diets 6. Factorial design: 2 2 7. Interactions

### ANOVA MULTIPLE CHOICE QUESTIONS. In the following multiple-choice questions, select the best answer.

ANOVA MULTIPLE CHOICE QUESTIONS In the following multiple-choice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard

### Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario

Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario I have found that the best way to practice regression is by brute force That is, given nothing but a dataset and your mind, compute everything

### Fixed vs. Random Effects

Statistics 203: Introduction to Regression and Analysis of Variance Fixed vs. Random Effects Jonathan Taylor - p. 1/19 Today s class Implications for Random effects. One-way random effects ANOVA. Two-way

### Exchange Rate Regime Analysis for the Chinese Yuan

Exchange Rate Regime Analysis for the Chinese Yuan Achim Zeileis Ajay Shah Ila Patnaik Abstract We investigate the Chinese exchange rate regime after China gave up on a fixed exchange rate to the US dollar

### Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases:

Profile Analysis Introduction Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases: ) Comparing the same dependent variables

### 5 Analysis of Variance models, complex linear models and Random effects models

5 Analysis of Variance models, complex linear models and Random effects models In this chapter we will show any of the theoretical background of the analysis. The focus is to train the set up of ANOVA