# Using R for Linear Regression

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional entries (all current as of version R-2.4.1). Sample texts from an R session are highlighted with gray shading. Suppose we prepare a calibration curve using four external standards and a reference, obtaining the data shown here: > conc [1] > signal [1] The expected model for the data is signal = β o + β 1 conc where β o is the theoretical y-intercept and β 1 is the theoretical slope. The goal of a linear regression is to find the best estimates for β o and β 1 by minimizing the residual error between the experimental and predicted signal. The final model is signal = b o + b 1 conc + e where b o and b 1 are the estimates for β o and β 1 and e is the residual error. Defining Models in R To complete a linear regression using R it is first necessary to understand the syntax for defining models. Let s assume that the dependent variable being modeled is Y and that A, B and C are independent variables that might affect Y. The general format for a linear 1 model is response ~ op1 term1 op2 term 2 op3 term3 1 When discussing models, the term linear does not mean a straight-line. Instead, a linear model contains additive terms, each containing a single multiplicative parameter; thus, the equations y = β 0 + β 1 x y = β 0 + β 1 x 1 + β 2 x 2 y = β 0 + β 11 x 2 y = β 0 + β 1 x 1 + β 2 log(x 2 ) are linear models. The equation y = αx β, however, is not a linear model.

2 where term is an object or a sequence of objects and op is an operator, such as a + or a, that indicates how the term that follows is to be included in the model. The table below provides some useful examples. Note that the mathematical symbols used to define models do not have their normal meanings! Syntax Model Comments Y ~ A Y = β o + β 1 A Straight-line with an implicit y- intercept Y ~ -1 + A Y = β 1 A Straight-line with no y-intercept; that is, a fit forced through (0,0) Y ~ A + I(A^2) Y = β o + β 1 A + β 2 A 2 Polynomial model; note that the identity function I( ) allows terms in the model to include normal mathematical symbols. Y ~ A + B Y = β o + β 1 A + β 2 B A first-order model in A and B without interaction terms. Y ~ A:B Y = β o + β 1 AB A model containing only first-order interactions between A and B. Y ~ A*B Y = β o + β 1 A + β 2 B + β 3 AB A full first-order model with a term; an equivalent code is Y ~ A + B + A:B. Y ~ (A + B + C)^2 Y = β o + β 1 A + β 2 B + β 3 C + β 4 AB + β 5 AC + β 6 AC Completing a Regression Analysis The basic syntax for a regression analysis in R is lm(y ~ model) A model including all first-order effects and interactions up to the n th order, where n is given by ( )^n. An equivalent code in this case is Y ~ A*B*C A:B:C. where Y is the object containing the dependent variable to be predicted and model is the formula for the chosen mathematical model. The command lm( ) provides the model s coefficients but no further statistical information; thus > lm(signal ~ conc) Call: lm(formula = signal ~ conc) Coefficients: (Intercept) conc

3 To obtain more useful information, and to obtain access to many more useful functions for manipulating the data, it is best to create an object that contains the command for the model > lm.r = lm(signal ~ conc) This object can then be used as an argument for other commands. To obtain a more complete statistical summary of the model, for example, we use the summary( ) command. > summary(lm.r) Call: lm(formula = signal ~ conc) Residuals: Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) conc e-05 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: on 3 degrees of freedom Multiple R-Squared: 0.998, Adjusted R-squared: F-statistic: 1486 on 1 and 3 DF, p-value: 3.842e-05 The section of output labeled Residuals gives the difference between the experimental and predicted signals. Estimates for the model s coefficients are provided along with the their standard deviations ( Std Error ), and a t-value and probability for a null hypothesis that the coefficients have values of zero. In this case, for example, we see that there is no evidence that the intercept (β o ) is different from zero and strong evidence that the slope (β 1 ) is significantly different than zero. At the bottom of the table we find the standard deviation about the regression (s r or residual standard error), the correlation coefficient and an F-test result on the null hypothesis that the MS reg /MS res is 1. Other useful commands are shown below: > coef(lm.r) # gives the model s coefficients (Intercept) conc

4 > resid(lm.r) # gives the residual errors in Y > fitted(lm.r) # gives the predicted values for Y Evaluating the Results of a Linear Regression Before accepting the result of a linear regression it is important to evaluate it suitability at explaining the data. One of the many ways to do this is to visually examine the residuals. If the model is appropriate, then the residual errors should be random and normally distributed. In addition, removing one case should not significantly impact the model s suitability. R provides four graphical approaches for evaluating a model using the plot( ) command. > layout(matrix(1:4,2,2)) > plot(lm.r)

5 The plot in the upper left shows the residual errors plotted versus their fitted values. The residuals should be randomly distributed around the horizontal line representing a residual error of zero; that is, there should not be a distinct trend in the distribution of points. The plot in the lower left is a standard Q-Q plot, which should suggest that the residual errors are normally distributed. The scale-location plot in the upper right shows the square root of the standardized residuals (sort of a square root of relative error) as a function of the fitted values. Again, there should be no obvious trend in this plot. Finally, the plot in the lower right shows each points leverage, which is a measure of its importance in determining the regression result. Superimposed on the plot are contour lines for the Cook s distance, which is another measure of the importance of each observation to the regression. Smaller distances means that removing the observation has little affect on the regression results. Distances larger than 1 are suspicious and suggest the presence of a possible outlier or a poor model. Sometimes a model has known values for one or more of its parameters. For example, suppose we know that the true model relating the signal and concentration is Our regression model is signal = 3.00 conc signal = conc We can use a standard t-test to evaluate the slope and intercept. The confidence interval for each is β o = b o ± ts bo β 1 = b 1 ± ts b1 where s bo and s b1 are the standard errors for the intercept and slope, respectively. To determine if there is a significant difference between the expected (β) and calculated (b) values we calculate t and compare it to its standard value for the correct number of degrees of freedom, which in this case is 3 (see earlier summary). > tb1 = abs(( )/ ); tb1 # calculate absolute value of t [1] > pt(tb1, 3, lower.tail = FALSE) # calculate probability for t [1] # double this value for a two- # tailed evaluation; difference # is significant at p = 0.05 > tb0=abs((0-3.60)/ );tb0 # calculate absolute value of t [1]

6 > pt(tb0, 3, lower.tail = FALSE) # calculate probability for t [1] # double this value for a two- # tailed evaluation; difference # is not significant at p = 0.05 Here we calculate the absolute value of t using the calculated values and standard errors from our earlier summary of results. The command pt(value, degrees of freedom, lower.tail = FALSE) returns the one-tailed probability that there is no difference between the expected and calculated values. In this example, we see that there is evidence that the calculated slope of 1.94 is significantly different than the expected value of The expected intercept of 0, however, is not significantly different than the calculated value of Note that the larger standard deviation for the intercept makes it more difficult to show that there is a significant difference between the experimental and theoretical values. Using the Results of a Regression to Make Predictions The purpose of a regression analysis, of course, is to develop a model that can be used to predict the results of future experiments. In our example, for instance, the calibration equation signal = conc Because there is uncertainty in both the calculated slope and intercept, there will be uncertainty in the calculated signals. Suppose we wish to predict the signal for concentrations of 0.05, 0.15, 0.25, 0.35 and 0.45 along with the confidence interval for each We can use the predict( ) command to do this; the syntax is predict(model, data.frame(pred = new pred), level = 0.95, interval = confidence ) where pred is the object containing the original independent variables and new pred is the object containing the new values for which predictions are desired, and level is the desired confidence level. > newconc=c(5,15,25,35,45);newconc [1] > predict(lm.result,data.frame(conc = newconc), level = 0.9, interval = "confidence")

7 fit lwr upr where lwr is the lower limit of the confidence interval and upr is the upper limit of the confidence interval. R does not contain a feature for finding the confidence intervals for predicted values of the independent variable for specified values of dependent variables, a common desire in chemistry. Too bad. Adding Regression Lines to Plots For straight-lines this is easy to accomplish. > plot(conc, signal) > abline(lm.r) gives the following plot. For data that does not follow a straight-line we must be more creative.

8 > height = c(100, 200, 300, 450, 600, 800, 1000) > distance = c(253, 337, 395, 451, 495, 534, 574) # data from Galileo > lm.r = lm(distance ~ height + I(height^2)); lm.r # a quadratic model Call: lm(formula = distance ~ height + I(height^2)) Coefficients: (Intercept) height I(height^2) > newh = seq(100, 1000, 10); newh # create heights for # predictions [1] [12] [23] [34] [45] [56] [67] [78] [89] > fit = *newh *newh^2;fit # calculate distance # for new heights # using model [1] [9] [17] [25] [33] [41] [49] [57] [65] [73] [81] [89] > plot(height, distance) # original data > lines(newh, fit, lty=1) # display best fit

9 The resulting plot is shown here.

### Multiple Linear Regression

Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

### Correlation and Simple Linear Regression

Correlation and Simple Linear Regression We are often interested in studying the relationship among variables to determine whether they are associated with one another. When we think that changes in a

### Regression in ANOVA. James H. Steiger. Department of Psychology and Human Development Vanderbilt University

Regression in ANOVA James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 30 Regression in ANOVA 1 Introduction 2 Basic Linear

### Statistical Models in R

Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### Regression, least squares

Regression, least squares Joe Felsenstein Department of Genome Sciences and Department of Biology Regression, least squares p.1/24 Fitting a straight line X Two distinct cases: The X values are chosen

### Exercise Page 1 of 32

Exercise 10.1 (a) Plot wages versus LOS. Describe the relationship. There is one woman with relatively high wages for her length of service. Circle this point and do not use it in the rest of this exercise.

### KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

### CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Lets suppose we rolled a six-sided die 150 times and recorded the number of times each outcome (1-6) occured. The data is

In this lab we will look at how R can eliminate most of the annoying calculations involved in (a) using Chi-Squared tests to check for homogeneity in two-way tables of catagorical data and (b) computing

### Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

### We extended the additive model in two variables to the interaction model by adding a third term to the equation.

Quadratic Models We extended the additive model in two variables to the interaction model by adding a third term to the equation. Similarly, we can extend the linear model in one variable to the quadratic

### Week 5: Multiple Linear Regression

BUS41100 Applied Regression Analysis Week 5: Multiple Linear Regression Parameter estimation and inference, forecasting, diagnostics, dummy variables Robert B. Gramacy The University of Chicago Booth School

### Simple Linear Regression Chapter 11

Simple Linear Regression Chapter 11 Rationale Frequently decision-making situations require modeling of relationships among business variables. For instance, the amount of sale of a product may be related

### MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL. by Michael L. Orlov Chemistry Department, Oregon State University (1996)

MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL by Michael L. Orlov Chemistry Department, Oregon State University (1996) INTRODUCTION In modern science, regression analysis is a necessary part

### 5. Linear Regression

5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4

### Data and Regression Analysis. Lecturer: Prof. Duane S. Boning. Rev 10

Data and Regression Analysis Lecturer: Prof. Duane S. Boning Rev 10 1 Agenda 1. Comparison of Treatments (One Variable) Analysis of Variance (ANOVA) 2. Multivariate Analysis of Variance Model forms 3.

### Basic Statistics and Data Analysis for Health Researchers from Foreign Countries

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association

### Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario

Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario I have found that the best way to practice regression is by brute force That is, given nothing but a dataset and your mind, compute everything

### 12-1 Multiple Linear Regression Models

12-1.1 Introduction Many applications of regression analysis involve situations in which there are more than one regressor variable. A regression model that contains more than one regressor variable is

### ST 311 Evening Problem Session Solutions Week 11

1. p. 175, Question 32 (Modules 10.1-10.4) [Learning Objectives J1, J3, J9, J11-14, J17] Since 1980, average mortgage rates have fluctuated from a low of under 6% to a high of over 14%. Is there a relationship

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### Comparing Nested Models

Comparing Nested Models ST 430/514 Two models are nested if one model contains all the terms of the other, and at least one additional term. The larger model is the complete (or full) model, and the smaller

### E205 Final: Version B

Name: Class: Date: E205 Final: Version B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of a local nightclub has recently surveyed a random

### Statistical Modelling in Stata 5: Linear Models

Statistical Modelling in Stata 5: Linear Models Mark Lunt Arthritis Research UK Centre for Excellence in Epidemiology University of Manchester 08/11/2016 Structure This Week What is a linear model? How

### e = random error, assumed to be normally distributed with mean 0 and standard deviation σ

1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.

### Quantitative Understanding in Biology Module II: Model Parameter Estimation Lecture I: Linear Correlation and Regression

Quantitative Understanding in Biology Module II: Model Parameter Estimation Lecture I: Linear Correlation and Regression Correlation Linear correlation and linear regression are often confused, mostly

### Chapter 9, Part A Hypothesis Tests. Learning objectives

Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population

### Stat 412/512 CASE INFLUENCE STATISTICS. Charlotte Wickham. stat512.cwick.co.nz. Feb 2 2015

Stat 412/512 CASE INFLUENCE STATISTICS Feb 2 2015 Charlotte Wickham stat512.cwick.co.nz Regression in your field See website. You may complete this assignment in pairs. Find a journal article in your field

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### MULTIPLE REGRESSION EXAMPLE

MULTIPLE REGRESSION EXAMPLE For a sample of n = 166 college students, the following variables were measured: Y = height X 1 = mother s height ( momheight ) X 2 = father s height ( dadheight ) X 3 = 1 if

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.

Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.

### ID X Y

Dale Berger SPSS Step-by-Step Regression Introduction: MRC01 This step-by-step example shows how to enter data into SPSS and conduct a simple regression analysis to develop an equation to predict from.

### Final Exam Practice Problem Answers

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

### Testing for Lack of Fit

Chapter 6 Testing for Lack of Fit How can we tell if a model fits the data? If the model is correct then ˆσ 2 should be an unbiased estimate of σ 2. If we have a model which is not complex enough to fit

### Residuals. Residuals = ª Department of ISM, University of Alabama, ST 260, M23 Residuals & Minitab. ^ e i = y i - y i

A continuation of regression analysis Lesson Objectives Continue to build on regression analysis. Learn how residual plots help identify problems with the analysis. M23-1 M23-2 Example 1: continued Case

### Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2

Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2 Note: Whether we calculate confidence intervals or perform hypothesis tests we need the distribution of the statistic we will use.

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### The scatterplot indicates a positive linear relationship between waist size and body fat percentage:

STAT E-150 Statistical Methods Multiple Regression Three percent of a man's body is essential fat, which is necessary for a healthy body. However, too much body fat can be dangerous. For men between the

### Chapter 11: Two Variable Regression Analysis

Department of Mathematics Izmir University of Economics Week 14-15 2014-2015 In this chapter, we will focus on linear models and extend our analysis to relationships between variables, the definitions

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### CHAPTER 2 AND 10: Least Squares Regression

CHAPTER 2 AND 0: Least Squares Regression In chapter 2 and 0 we will be looking at the relationship between two quantitative variables measured on the same individual. General Procedure:. Make a scatterplot

### E(y i ) = x T i β. yield of the refined product as a percentage of crude specific gravity vapour pressure ASTM 10% point ASTM end point in degrees F

Random and Mixed Effects Models (Ch. 10) Random effects models are very useful when the observations are sampled in a highly structured way. The basic idea is that the error associated with any linear,

### 0.1 Multiple Regression Models

0.1 Multiple Regression Models We will introduce the multiple Regression model as a mean of relating one numerical response variable y to two or more independent (or predictor variables. We will see different

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### 12.13 RESIDUAL ANALYSIS IN MULTIPLE REGRESSION (OPTIONAL)

12.13 Analysis in Multiple Regression (Optional) 1 Although Excel and MegaStat are emphasized in Business Statistics in Practice, Second Canadian Edition, some examples in the additional material on Connect

### Chapter 5: Linear regression

Chapter 5: Linear regression Last lecture: Ch 4............................................................ 2 Next: Ch 5................................................................. 3 Simple linear

### Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.

Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under

### A correlation exists between two variables when one of them is related to the other in some way.

Lecture #10 Chapter 10 Correlation and Regression The main focus of this chapter is to form inferences based on sample data that come in pairs. Given such paired sample data, we want to determine whether

### Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500 6 8480

1) The S & P/TSX Composite Index is based on common stock prices of a group of Canadian stocks. The weekly close level of the TSX for 6 weeks are shown: Week TSX Index 1 8480 2 8470 3 8475 4 8510 5 8500

### Regression in SPSS. Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology

Regression in SPSS Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology John P. Bentley Department of Pharmacy Administration University of

### Regression step-by-step using Microsoft Excel

Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression

### Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

### Stat 411/511 ANOVA & REGRESSION. Charlotte Wickham. stat511.cwick.co.nz. Nov 31st 2015

Stat 411/511 ANOVA & REGRESSION Nov 31st 2015 Charlotte Wickham stat511.cwick.co.nz This week Today: Lack of fit F-test Weds: Review email me topics, otherwise I ll go over some of last year s final exam

### Chapter 23. Inferences for Regression

Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily

### Math 130 Final Exam Spring 2014 \ NAME: . You must show all work, calculations, formulas used to receive any credit. NO WORK =NO CREDIT.

Math 130 Final Exam Spring 2014 \ NAME:. You must show all work, calculations, formulas used to receive any credit. NO WORK =NO CREDIT. Round the final answers to 3 decimal places. Good luck! Question

### STAT 350 Practice Final Exam Solution (Spring 2015)

PART 1: Multiple Choice Questions: 1) A study was conducted to compare five different training programs for improving endurance. Forty subjects were randomly divided into five groups of eight subjects

### X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

### Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

### Bivariate Analysis. Correlation. Correlation. Pearson's Correlation Coefficient. Variable 1. Variable 2

Bivariate Analysis Variable 2 LEVELS >2 LEVELS COTIUOUS Correlation Used when you measure two continuous variables. Variable 2 2 LEVELS X 2 >2 LEVELS X 2 COTIUOUS t-test X 2 X 2 AOVA (F-test) t-test AOVA

### where b is the slope of the line and a is the intercept i.e. where the line cuts the y axis.

Least Squares Introduction We have mentioned that one should not always conclude that because two variables are correlated that one variable is causing the other to behave a certain way. However, sometimes

### Simple Linear Regression in SPSS STAT 314

Simple Linear Regression in SPSS STAT 314 1. Ten Corvettes between 1 and 6 years old were randomly selected from last year s sales records in Virginia Beach, Virginia. The following data were obtained,

### 1. The parameters to be estimated in the simple linear regression model Y=α+βx+ε ε~n(0,σ) are: a) α, β, σ b) α, β, ε c) a, b, s d) ε, 0, σ

STA 3024 Practice Problems Exam 2 NOTE: These are just Practice Problems. This is NOT meant to look just like the test, and it is NOT the only thing that you should study. Make sure you know all the material

### Pearson's Correlation Tests

Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation

### Multiple Regression Analysis in Minitab 1

Multiple Regression Analysis in Minitab 1 Suppose we are interested in how the exercise and body mass index affect the blood pressure. A random sample of 10 males 50 years of age is selected and their

### EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION

EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION EDUCATION AND VOCABULARY 5-10 hours of input weekly is enough to pick up a new language (Schiff & Myers, 1988). Dutch children spend 5.5 hours/day

### How Far is too Far? Statistical Outlier Detection

How Far is too Far? Statistical Outlier Detection Steven Walfish President, Statistical Outsourcing Services steven@statisticaloutsourcingservices.com 30-325-329 Outline What is an Outlier, and Why are

### 2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or

Simple and Multiple Regression Analysis Example: Explore the relationships among Month, Adv.\$ and Sales \$: 1. Prepare a scatter plot of these data. The scatter plots for Adv.\$ versus Sales, and Month versus

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Statistical Functions in Excel

Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses.

### How To Run Statistical Tests in Excel

How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting

### Premaster Statistics Tutorial 4 Full solutions

Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for

### PASS Sample Size Software. Linear Regression

Chapter 855 Introduction Linear regression is a commonly used procedure in statistical analysis. One of the main objectives in linear regression analysis is to test hypotheses about the slope (sometimes

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Statistics and Data Analysis

Statistics and Data Analysis In this guide I will make use of Microsoft Excel in the examples and explanations. This should not be taken as an endorsement of Microsoft or its products. In fact, there are

### Simple Linear Regression

Chapter Nine Simple Linear Regression Consider the following three scenarios: 1. The CEO of the local Tourism Authority would like to know whether a family s annual expenditure on recreation is related

### Regression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

### Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

### Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

### Simple Methods and Procedures Used in Forecasting

Simple Methods and Procedures Used in Forecasting The project prepared by : Sven Gingelmaier Michael Richter Under direction of the Maria Jadamus-Hacura What Is Forecasting? Prediction of future events

### AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

### AMS7: WEEK 8. CLASS 1. Correlation Monday May 18th, 2015

AMS7: WEEK 8. CLASS 1 Correlation Monday May 18th, 2015 Type of Data and objectives of the analysis Paired sample data (Bivariate data) Determine whether there is an association between two variables This

### Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

### Stat 5303 (Oehlert): Tukey One Degree of Freedom 1

Stat 5303 (Oehlert): Tukey One Degree of Freedom 1 > catch

### Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework

Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal

### N-Way Analysis of Variance

N-Way Analysis of Variance 1 Introduction A good example when to use a n-way ANOVA is for a factorial design. A factorial design is an efficient way to conduct an experiment. Each observation has data

### High School Algebra 1 Common Core Standards & Learning Targets

High School Algebra 1 Common Core Standards & Learning Targets Unit 1: Relationships between Quantities and Reasoning with Equations CCS Standards: Quantities N-Q.1. Use units as a way to understand problems

### Chapter 5: Basic Statistics and Hypothesis Testing

Chapter 5: Basic Statistics and Hypothesis Testing In this chapter: 1. Viewing the t-value from an OLS regression (UE 5.2.1) 2. Calculating critical t-values and applying the decision rule (UE 5.2.2) 3.

### Chapter 4 and 5 solutions

Chapter 4 and 5 solutions 4.4. Three different washing solutions are being compared to study their effectiveness in retarding bacteria growth in five gallon milk containers. The analysis is done in a laboratory,

### The general form of the PROC GLM statement is

Linear Regression Analysis using PROC GLM Regression analysis is a statistical method of obtaining an equation that represents a linear relationship between two variables (simple linear regression), or

### Simple Linear Regression

1 Excel Manual Simple Linear Regression Chapter 13 This chapter discusses statistics involving the linear regression. Excel has numerous features that work well for comparing quantitative variables both

### Using Minitab for Regression Analysis: An extended example

Using Minitab for Regression Analysis: An extended example The following example uses data from another text on fertilizer application and crop yield, and is intended to show how Minitab can be used to

### Practice 3 SPSS. Partially based on Notes from the University of Reading:

Practice 3 SPSS Partially based on Notes from the University of Reading: http://www.reading.ac.uk Simple Linear Regression A simple linear regression model is fitted when you want to investigate whether

### Math 62 Statistics Sample Exam Questions

Math 62 Statistics Sample Exam Questions 1. (10) Explain the difference between the distribution of a population and the sampling distribution of a statistic, such as the mean, of a sample randomly selected

### Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course