# 5. Linear Regression

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 5. Linear Regression Outline Simple linear regression 3 Linear model Linear model Linear model Small residuals Minimize ˆǫ 2 i Properties of residuals Regression in R R output - Davis data How good is the fit? 12 Residual standard error R R Analysis of variance r Multiple linear regression 18 2 independent variables Statistical error Estimates and residuals Computing estimates Properties of residuals R 2 and R Ozone example 25 Ozone example Ozone data R output Standardized coefficients 29 Standardized coefficients Using hinge spread Interpretation Using st.dev

2 Interpretation Ozone example Summary 36 Summary Summary

3 Outline We have seen that linear regression has its limitations. However, it is worth studying linear regression because: Sometimes data (nearly) satisfy the assumptions. Sometimes the assumptions can be (nearly) satisfied by transforming the data. There are many useful extensions of linear regression: weighted regression, robust regression, nonparametric regression, and generalized linear models. How does linear regression work? We start with one independent variable. 2 / 38 Simple linear regression 3 / 38 Linear model Linear statistical model: Y = α + βx + ǫ. α is the intercept of the line, and β is the slope of the line. One unit increase in X gives β units increase in Y. (see figure on blackboard) ǫ is called a statistical error. It accounts for the fact that the statistical model does not give an exact fit to the data. Statistical errors can have a fixed and a random component. Fixed component: arises when the true relation is not linear (also called lack of fit error, bias) - we assume this component is negligible. Random component: due to measurement errors in Y, variables that are not included in the model, random variation. 4 / 38 Linear model Data (X 1,Y 1 ),...,(X n,y n ). Then the model gives: Y i = α + βx i + ǫ i, where ǫ i is the statistical error for the ith case. Thus, the observed value Y i equals α + βx i, except that ǫ i, an unknown random quantity is added on. The statistical errors ǫ i cannot be observed. Why? We assume: E(ǫ i ) = 0 Var(ǫ i ) = σ 2 for all i = 1,...,n Cov(ǫ i,ǫ j ) = 0 for all i j 5 / 38 3

4 Linear model The population parameters α, β and σ are unknown. We use lower case Greek letters for population parameters. We compute estimates of the population parameters: ˆα, ˆβ and ˆσ. Ŷ i = ˆα + ˆβX i is called the fitted value. (see figure on blackboard) ˆǫ i = Y i Ŷi = Y i (ˆα + ˆβX i ) is called the residual. The residuals are observable, and can be used to check assumptions on the statistical errors ǫ i. Points above the line have positive residuals, and points below the line have negative residuals. A line that fits the data well has small residuals. 6 / 38 Small residuals We want the residuals to be small in magnitude, because large negative residuals are as bad as large positive residuals. So we cannot simply require ˆǫ i = 0. In fact, any line through the means of the variables - the point ( X,Ȳ ) - satisfies ˆǫ i = 0 (derivation on board). Two immediate solutions: Require ˆǫ i to be small. Require ˆǫ 2 i to be small. We consider the second option because working with squares is mathematically easier than working with absolute values (for example, it is easier to take derivatives). However, the first option is more resistant to outliers. Eyeball regression line (see overhead). 7 / 38 4

5 Minimize ˆǫ 2 i SSE stands for Sum of Squared Error. We want to find the pair (ˆα, ˆβ) that minimizes SSE(ˆα, ˆβ) := (Y i ˆα ˆβX i ) 2. Thus, we set the partial derivatives of RSS(ˆα, ˆβ) with respect to ˆα and ˆβ equal to zero: SSE(ˆα,ˆβ) ˆα = ( 1)(2)(Y i ˆα ˆβX i ) = 0 (Y i ˆα ˆβX i ) = 0. SSE(ˆα,ˆβ) ˆβ = ( X i )(2)(Y i ˆα ˆβX i ) = 0 X i (Y i ˆα ˆβX i ) = 0. We now have two normal equations in two unknowns ˆα and ˆβ. The solution is (derivation on board, p. 18 of script): ˆβ = (Xi X)(Y i Ȳ ) (Xi X) 2 ˆα = Ȳ ˆβ X 8 / 38 Properties of residuals ˆǫ i = 0, since the regression line goes through the point ( X,Ȳ ). X iˆǫ i = 0 and Ŷ iˆǫ i = 0. The residuals are uncorrelated with the independent variables X i and with the fitted values Ŷi. Least squares estimates are uniquely defined as long as the values of the independent variable are not all identical. In that case the numerator (X i X) 2 = 0 (see figure on board). 9 / 38 Regression in R model <- lm(y x) summary(model) Coefficients: model\$coef or coef(model) (Alias: coefficients) Fitted mean values: model\$fitted or fitted(model) (Alias: fitted.values) Residuals: model\$resid or resid(model) (Alias: residuals) 10 / 38 5

6 R output - Davis data > model <- lm(weight ~ repwt) > summary(model) Call: lm(formula = weight ~ repwt) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) repwt <2e-16 *** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 99 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: 1025 on 1 and 99 DF, p-value: < 2.2e / 38 How good is the fit? 12 / 38 Residual standard error Residual standard error: ˆσ = SSE/(n 2) = ˆǫ 2 i n 2. n 2 is the degrees of freedom (we lose two degrees of freedom because we estimate the two parameters α and β). For the Davis data, ˆσ 2. Interpretation: on average, using the least squares regression line to predict weight from reported weight, results in an error of about 2 kg. If the residuals are approximately normal, then about 2/3 is in the range ±2 and about 95% is in the range ±4. 13 / 38 R 2 We compare our fit to a null model Y = α + ǫ, in which we don t use the independent variable X. We define the fitted value Ŷ i = ˆα, and the residual ˆǫ i = Y i Ŷ i. We find ˆα by minimizing (ˆǫ i )2 = (Y i ˆα ) 2. This gives ˆα = Ȳ. Note that (Y i Ŷi) 2 = ˆǫ 2 i (ˆǫ i )2 = (Y i Ȳ )2 (why?). 14 / 38 6

7 R 2 TSS = (ˆǫ i )2 = (Y i Ȳ )2 is the total sum of squares: the sum of squared errors in the model that does not use the independent variable. SSE = ˆǫ 2 i = (Y i Ŷi) 2 is the sum of squared errors in the linear model. Regression sum of squares: RegSS = T SS SSE gives reduction in squared error due to the linear regression. R 2 = RegSS/TSS = 1 SSE/TSS is the proportional reduction in squared error due to the linear regression. Thus, R 2 is the proportion of the variation in Y that is explained by the linear regression. R 2 has no units doesn t chance when scale is changed. Good values of R 2 vary widely in different fields of application. 15 / 38 Analysis of variance (Y i Ŷi)(Ŷi Ȳ ) = 0 (will be shown later geometrically) RegSS = (Ŷi Ȳ )2 (derivation on board) Hence, TSS = SSE +RegSS (Yi Ȳ )2 = (Y i Ŷi) 2 + (Ŷi Ȳ )2 This decomposition is called analysis of variance. 16 / 38 r Correlation coefficient r = ± R 2 (take positive root if ˆβ > 0 and take negative root if ˆβ < 0). r gives the strength and direction of the relationship. Alternative formula: r = (Xi X)(Y i Ȳ ) (Xi X) 2 (Y i Ȳ )2. Using this formula, we can write ˆβ = r SD Y SD X (derivation on board). In the eyeball regression, the steep line had slope SD Y SD X, and the other line had the correct slope r SD Y SD X. r is symmetric in X and Y. r has no units doesn t change when scale is changed. 17 / 38 7

8 Multiple linear regression 18 / 38 2 independent variables Y = α + β 1 X 1 + β 2 X 2 + ǫ. (see p. 9 of script) This describes a plane in the 3-dimensional space {X 1,X 2,Y } (see figure): α is the intercept β 1 is the increase in Y associated with a one-unit increase in X 1 when X 2 is held constant β 2 is the increase in Y for a one-unit increase in X 2 when X 1 is held constant. 19 / 38 Statistical error Data: (X 11,X 12,Y 1 ),...,(X n1,x n2,y n ). Y i = α + β 1 X i1 + β 2 X i2 + ǫ i, where ǫ i is the statistical error for the ith case. Thus, the observed value Y i equals α + β 1 X i1 + β 2 X i2, except that ǫ i, an unknown random quantity is added on. We make the same assumptions about ǫ as before: E(ǫ i ) = 0 Var(ǫ i ) = σ 2 for all i = 1,...,n Cov(ǫ i,ǫ j ) = 0 for all i j Compare to assumption on p of script. 20 / 38 Estimates and residuals The population parameters α, β 1, β 2, and σ are unknown. We compute estimates of the population parameters: ˆα, ˆβ 1, ˆβ 2 and ˆσ. Ŷi = ˆα + ˆβ 1 X i1 + ˆβ 2 X i2 is called the fitted value. ˆǫ i = Y i Ŷi = Y i (ˆα + ˆβ 1 X i1 + ˆβ 2 X i2 ) is called the residual. The residuals are observable, and can be used to check assumptions on the statistical errors ǫ i. Points above the plane have positive residuals, and points below the plane have negative residuals. A plane that fits the data well has small residuals. 21 / 38 8

9 Computing estimates The triple (ˆα, ˆβ 1, ˆβ 2 ) minimizes SSE(α,β 1,β 2 ) = ˆǫ 2 i = (Y i α β 1 X i1 β 2 X i2 ) 2. We can again take partial derivatives and set these equal to zero. This gives three equations in the three unknowns α, β 1 and β 2. Solving these normal equations gives the regression coefficients ˆα, ˆβ 1 and ˆβ 2. Least squares estimates are unique unless one of the independent variables is invariant, or independent variables are perfectly collinear. The same procedure works for p independent variables X 1,...,X p. However, it is then easier to use matrix notation (see board and section 1.3 of script). In R: model <- lm(y x1 + x2) 22 / 38 Properties of residuals ˆǫ i = 0 The residuals ˆǫ i are uncorrelated with the fitted values Ŷi and with each of the independent variables X 1,...,X p. The standard error of the residuals ˆσ = ˆǫ 2 i /(n p 1) gives the average size of the residuals. n p 1 is the degrees of freedom (we lose p + 1 degrees of freedom because we estimate the p + 1 parameters α, β 1,...,β p ). 23 / 38 R 2 and R 2 TSS = (Y i Ȳ )2. SSE = (Y i Ŷi) 2 = ˆǫ 2 i. RegSS = TSS SSE = (Ŷi Ȳ )2. R 2 = RegSS/TSS = 1 SSE/TSS is the proportion of variation in Y that is captured by its linear regression on the X s. R 2 can never decrease when we add an extra variable to the model. Why? Corrected sum of squares: R2 = 1 SSE/(n p 1) TSS/(n 1) penalizes R 2 when there are extra variables in the model. R 2 and R 2 differ very little if sample size is large. 24 / 38 9

10 Ozone example 25 / 38 Ozone example Data from Sandberg, Basso, Okin (1978): SF = Summer quarter maximum hourly average ozone reading in parts per million in San Francisco SJ = Same, but then in San Jose YEAR = Year of ozone measurement RAIN = Average winter precipitation in centimeters in the San Francisco Bay area for the preceding two winters Research question: How does SF depend on YEAR and RAIN? Think about assumptions: Which one may be violated? 26 / 38 Ozone data YEAR RAIN SF SJ / 38 10

11 R output > model <- lm(sf ~ year + rain) > summary(model) Call: lm(formula = sf ~ year + rain) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-05 *** year e-05 *** rain ** --- Signif. codes: 0 *** ** 0.01 * Residual standard error: on 10 degrees of freedom Multiple R-Squared: , Adjusted R-squared: F-statistic: on 2 and 10 DF, p-value: 6.286e / 38 Standardized coefficients 29 / 38 Standardized coefficients We often want to compare coefficients of different independent variables. When the independent variables are measured in the same units, this is straightforward. If the independent variables are not commensurable, we can perform a limited comparison by rescaling the regression coefficients in relation to a measure of variation: using hinge spread using standard deviations 30 / 38 Using hinge spread Hinge spread = interquartile range (IQR) Let IQR 1,...,IQR p be the IQRs of X 1,...,X p. We start with Y i = ˆα + ˆβ 1 X i ˆβ p X ip + ˆǫ i. This can be rewritten as: Y i = ˆα + (ˆβ1 IQR 1 ) Xi1 IQR Let Z ij = X ij IQR j, for j = 1,...,p and i = 1,...,n. Let ˆβ j = ˆβ j IQR j, j = 1,...,p. Then we get Y i = ˆα + ˆβ 1 Z i1 + + ˆβ pz ip + ˆǫ i. ˆβ j = ˆβ j IQR j is called the standardized regression coefficient. (ˆβp IQR p ) Xip IQR p + ˆǫ i. 31 / 38 11

12 Interpretation Interpretation: Increasing Z j by 1 and holding constant the other Z l s (l j), is associated, on average, with an increase of ˆβ j in Y. Increasing Z j by 1, means that X j is increased by one IQR of X j. So increasing X j by one IQR of X j and holding constant the other X l s (l j), is associated, on average, with an increase of ˆβ j in Y. Ozone example: Variable Coeff. Hinge spread Stand. coeff. Year Rain / 38 Using st.dev. Let S Y be the standard deviation of Y, and let S 1,...,S p be the standard deviations of X 1,...,X p. We start with Y i = ˆα + ˆβ 1 X i ˆβ p X ip + ˆǫ i. This can be rewritten ) as (derivation on board): ) Y i Ȳ S S Y = (ˆβ1 1 Xi1 X 1 S S Y S p Xip (ˆβp X p S Y S p + ˆǫ i S Y. Let Z iy = Y i Ȳ S Y Let ˆβ j = ˆβ j S j S Y and Z ij = X ij X j S j, for j = 1,...,p. and ˆǫ i = ˆǫ i S Y. Then we get Z iy = ˆβ 1 Z i1 + + ˆβ pz ip + ˆǫ i. ˆβ j = ˆβ j S j S Y is called the standardized regression coefficient. 33 / 38 Interpretation Interpretation: Increasing Z j by 1 and holding constant the other Z l s (l j), is associated, on average, with an increase of ˆβ j in Z Y. Increasing Z j by 1, means that X j is increased by one SD of X j. Increasing Z Y by 1 means that Y is increased by one SD of Y. So increasing X j by one SD of X j and holding constant the other X l s (l j), is associated, on average, with an increase of ˆβ j SDs of Y in Y. 34 / 38 12

13 Ozone example Ozone example: Variable Coeff. St.dev(variable) St.dev(Y) Year Rain Stand. coeff. Both methods (using hinge spread or standard deviations) only allow for a very limited comparison. They both assume that predictors with a large spread are more important, and that does not need to be the case. 35 / 38 Summary 36 / 38 Summary Linear statistical model: Y = α + β 1 X β p X p + ǫ. We assume that the statistical errors ǫ have mean zero, constant standard deviation σ, and are uncorrelated. The population parameters α, β 1,...,β p and σ cannot be observed. Also the statistical errors ǫ cannot be observed. We define the fitted value Ŷi = ˆα + ˆβ 1 X i1 + + ˆβ p X ip and the residual ˆǫ i = Y i Ŷi. We can use the residuals to check the assumptions about the statistical errors. We compute estimates ˆα, ˆβ 1,..., ˆβ p for α,β 1,...,β p by minimizing the residual sum of squares SSE = ˆǫ 2 i = (Y i (ˆα + ˆβ 1 X i1 + + ˆβ p X ip )) 2. Interpretation of the coefficients? 37 / 38 Summary To measure how good the fit is, we can use: the residual standard error ˆσ = SSE/(n p 1) the multiple correlation coefficient R 2 the adjusted multiple correlation coefficient R 2 the correlation coefficient r Analysis of variance (ANOVA): TSS = SSE + RegSS Standardized regression coefficients 38 / 38 13

### Chapter 5: Linear regression

Chapter 5: Linear regression Last lecture: Ch 4............................................................ 2 Next: Ch 5................................................................. 3 Simple linear

### Basic Statistics and Data Analysis for Health Researchers from Foreign Countries

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association

### Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares

Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation

### Multiple Linear Regression

Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

### Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

### e = random error, assumed to be normally distributed with mean 0 and standard deviation σ

1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.

### 2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Regression in ANOVA. James H. Steiger. Department of Psychology and Human Development Vanderbilt University

Regression in ANOVA James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 30 Regression in ANOVA 1 Introduction 2 Basic Linear

### Final Exam Practice Problem Answers

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION

EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION EDUCATION AND VOCABULARY 5-10 hours of input weekly is enough to pick up a new language (Schiff & Myers, 1988). Dutch children spend 5.5 hours/day

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### Correlation and Simple Linear Regression

Correlation and Simple Linear Regression We are often interested in studying the relationship among variables to determine whether they are associated with one another. When we think that changes in a

### Bivariate Regression Analysis. The beginning of many types of regression

Bivariate Regression Analysis The beginning of many types of regression TOPICS Beyond Correlation Forecasting Two points to estimate the slope Meeting the BLUE criterion The OLS method Purpose of Regression

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Statistical Models in R

Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate

### where b is the slope of the line and a is the intercept i.e. where the line cuts the y axis.

Least Squares Introduction We have mentioned that one should not always conclude that because two variables are correlated that one variable is causing the other to behave a certain way. However, sometimes

### E(y i ) = x T i β. yield of the refined product as a percentage of crude specific gravity vapour pressure ASTM 10% point ASTM end point in degrees F

Random and Mixed Effects Models (Ch. 10) Random effects models are very useful when the observations are sampled in a highly structured way. The basic idea is that the error associated with any linear,

### Section 1: Simple Linear Regression

Section 1: Simple Linear Regression Carlos M. Carvalho The University of Texas McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

### Statistiek II. John Nerbonne. March 24, 2010. Information Science, Groningen Slides improved a lot by Harmut Fitz, Groningen!

Information Science, Groningen j.nerbonne@rug.nl Slides improved a lot by Harmut Fitz, Groningen! March 24, 2010 Correlation and regression We often wish to compare two different variables Examples: compare

### DEPARTMENT OF ECONOMICS. Unit ECON 12122 Introduction to Econometrics. Notes 4 2. R and F tests

DEPARTMENT OF ECONOMICS Unit ECON 11 Introduction to Econometrics Notes 4 R and F tests These notes provide a summary of the lectures. They are not a complete account of the unit material. You should also

### Comparing Nested Models

Comparing Nested Models ST 430/514 Two models are nested if one model contains all the terms of the other, and at least one additional term. The larger model is the complete (or full) model, and the smaller

### Stat 411/511 ANOVA & REGRESSION. Charlotte Wickham. stat511.cwick.co.nz. Nov 31st 2015

Stat 411/511 ANOVA & REGRESSION Nov 31st 2015 Charlotte Wickham stat511.cwick.co.nz This week Today: Lack of fit F-test Weds: Review email me topics, otherwise I ll go over some of last year s final exam

### Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.

Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.

### Linear and Piecewise Linear Regressions

Tarigan Statistical Consulting & Coaching statistical-coaching.ch Doctoral Program in Computer Science of the Universities of Fribourg, Geneva, Lausanne, Neuchâtel, Bern and the EPFL Hands-on Data Analysis

### Testing for Lack of Fit

Chapter 6 Testing for Lack of Fit How can we tell if a model fits the data? If the model is correct then ˆσ 2 should be an unbiased estimate of σ 2. If we have a model which is not complex enough to fit

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Using R for Linear Regression

Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional

### Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

### IAPRI Quantitative Analysis Capacity Building Series. Multiple regression analysis & interpreting results

IAPRI Quantitative Analysis Capacity Building Series Multiple regression analysis & interpreting results How important is R-squared? R-squared Published in Agricultural Economics 0.45 Best article of the

### 17. SIMPLE LINEAR REGRESSION II

17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.

### Week 5: Multiple Linear Regression

BUS41100 Applied Regression Analysis Week 5: Multiple Linear Regression Parameter estimation and inference, forecasting, diagnostics, dummy variables Robert B. Gramacy The University of Chicago Booth School

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

### Chapter 11: Two Variable Regression Analysis

Department of Mathematics Izmir University of Economics Week 14-15 2014-2015 In this chapter, we will focus on linear models and extend our analysis to relationships between variables, the definitions

### Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011

Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this

### CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

### STAT 350 Practice Final Exam Solution (Spring 2015)

PART 1: Multiple Choice Questions: 1) A study was conducted to compare five different training programs for improving endurance. Forty subjects were randomly divided into five groups of eight subjects

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### Regression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between

### Regression in SPSS. Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology

Regression in SPSS Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology John P. Bentley Department of Pharmacy Administration University of

Lecture 5: Linear least-squares Regression III: Advanced Methods William G. Jacoby Department of Political Science Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Simple Linear Regression

### 2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or

Simple and Multiple Regression Analysis Example: Explore the relationships among Month, Adv.\$ and Sales \$: 1. Prepare a scatter plot of these data. The scatter plots for Adv.\$ versus Sales, and Month versus

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### Basic Statistcs Formula Sheet

Basic Statistcs Formula Sheet Steven W. ydick May 5, 0 This document is only intended to review basic concepts/formulas from an introduction to statistics course. Only mean-based procedures are reviewed,

### 1 Simple Linear Regression I Least Squares Estimation

Simple Linear Regression I Least Squares Estimation Textbook Sections: 8. 8.3 Previously, we have worked with a random variable x that comes from a population that is normally distributed with mean µ and

### DATA INTERPRETATION AND STATISTICS

PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE

### The Classical Linear Regression Model

The Classical Linear Regression Model 1 September 2004 A. A brief review of some basic concepts associated with vector random variables Let y denote an n x l vector of random variables, i.e., y = (y 1,

### 0.1 Multiple Regression Models

0.1 Multiple Regression Models We will introduce the multiple Regression model as a mean of relating one numerical response variable y to two or more independent (or predictor variables. We will see different

### , then the form of the model is given by: which comprises a deterministic component involving the three regression coefficients (

Multiple regression Introduction Multiple regression is a logical extension of the principles of simple linear regression to situations in which there are several predictor variables. For instance if we

### Quantitative Understanding in Biology Module II: Model Parameter Estimation Lecture I: Linear Correlation and Regression

Quantitative Understanding in Biology Module II: Model Parameter Estimation Lecture I: Linear Correlation and Regression Correlation Linear correlation and linear regression are often confused, mostly

### Least Squares Estimation

Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David

### International Statistical Institute, 56th Session, 2007: Phil Everson

Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA E-mail: peverso1@swarthmore.edu 1. Introduction

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### 1.5 Oneway Analysis of Variance

Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

### 5. Multiple regression

5. Multiple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/5 QBUS6840 Predictive Analytics 5. Multiple regression 2/39 Outline Introduction to multiple linear regression Some useful

### Numerical Summarization of Data OPRE 6301

Numerical Summarization of Data OPRE 6301 Motivation... In the previous session, we used graphical techniques to describe data. For example: While this histogram provides useful insight, other interesting

### We extended the additive model in two variables to the interaction model by adding a third term to the equation.

Quadratic Models We extended the additive model in two variables to the interaction model by adding a third term to the equation. Similarly, we can extend the linear model in one variable to the quadratic

### Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

### 17.0 Linear Regression

17.0 Linear Regression 1 Answer Questions Lines Correlation Regression 17.1 Lines The algebraic equation for a line is Y = β 0 + β 1 X 2 The use of coordinate axes to show functional relationships was

### Lecture 5 Hypothesis Testing in Multiple Linear Regression

Lecture 5 Hypothesis Testing in Multiple Linear Regression BIOST 515 January 20, 2004 Types of tests 1 Overall test Test for addition of a single variable Test for addition of a group of variables Overall

### Regression Analysis: Basic Concepts

The simple linear model Regression Analysis: Basic Concepts Allin Cottrell Represents the dependent variable, y i, as a linear function of one independent variable, x i, subject to a random disturbance

### Regression III: Dummy Variable Regression

Regression III: Dummy Variable Regression Tom Ilvento FREC 408 Linear Regression Assumptions about the error term Mean of Probability Distribution of the Error term is zero Probability Distribution of

### 12-1 Multiple Linear Regression Models

12-1.1 Introduction Many applications of regression analysis involve situations in which there are more than one regressor variable. A regression model that contains more than one regressor variable is

### 1. The parameters to be estimated in the simple linear regression model Y=α+βx+ε ε~n(0,σ) are: a) α, β, σ b) α, β, ε c) a, b, s d) ε, 0, σ

STA 3024 Practice Problems Exam 2 NOTE: These are just Practice Problems. This is NOT meant to look just like the test, and it is NOT the only thing that you should study. Make sure you know all the material

### Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

### Data and Regression Analysis. Lecturer: Prof. Duane S. Boning. Rev 10

Data and Regression Analysis Lecturer: Prof. Duane S. Boning Rev 10 1 Agenda 1. Comparison of Treatments (One Variable) Analysis of Variance (ANOVA) 2. Multivariate Analysis of Variance Model forms 3.

### Statistical Models in R

Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova

### The scatterplot indicates a positive linear relationship between waist size and body fat percentage:

STAT E-150 Statistical Methods Multiple Regression Three percent of a man's body is essential fat, which is necessary for a healthy body. However, too much body fat can be dangerous. For men between the

### Regression, least squares

Regression, least squares Joe Felsenstein Department of Genome Sciences and Department of Biology Regression, least squares p.1/24 Fitting a straight line X Two distinct cases: The X values are chosen

### Lecture 11: Confidence intervals and model comparison for linear regression; analysis of variance

Lecture 11: Confidence intervals and model comparison for linear regression; analysis of variance 14 November 2007 1 Confidence intervals and hypothesis testing for linear regression Just as there was

### AMS7: WEEK 8. CLASS 1. Correlation Monday May 18th, 2015

AMS7: WEEK 8. CLASS 1 Correlation Monday May 18th, 2015 Type of Data and objectives of the analysis Paired sample data (Bivariate data) Determine whether there is an association between two variables This

### Part II. Multiple Linear Regression

Part II Multiple Linear Regression 86 Chapter 7 Multiple Regression A multiple linear regression model is a linear model that describes how a y-variable relates to two or more xvariables (or transformations

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### Stat 5303 (Oehlert): Tukey One Degree of Freedom 1

Stat 5303 (Oehlert): Tukey One Degree of Freedom 1 > catch

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Psychology 205: Research Methods in Psychology

Psychology 205: Research Methods in Psychology Using R to analyze the data for study 2 Department of Psychology Northwestern University Evanston, Illinois USA November, 2012 1 / 38 Outline 1 Getting ready

### 12/31/2016. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Understand when to use multiple Understand the multiple equation and what the coefficients represent Understand different methods

### An analysis appropriate for a quantitative outcome and a single quantitative explanatory. 9.1 The model behind linear regression

Chapter 9 Simple Linear Regression An analysis appropriate for a quantitative outcome and a single quantitative explanatory variable. 9.1 The model behind linear regression When we are examining the relationship

### Investment Statistics: Definitions & Formulas

Investment Statistics: Definitions & Formulas The following are brief descriptions and formulas for the various statistics and calculations available within the ease Analytics system. Unless stated otherwise,

### Regression Analysis. Pekka Tolonen

Regression Analysis Pekka Tolonen Outline of Topics Simple linear regression: the form and estimation Hypothesis testing and statistical significance Empirical application: the capital asset pricing model

### Principal Components Regression. Principal Components Regression. Principal Components Regression. Principal Components Regression

Principal Components Regression Principal Components Regression y i = β 0 + β j x ij + ɛ i Usual least squares may be inappropriate if x is high dimensional, especially in comparison to sample size x is

### The importance of graphing the data: Anscombe s regression examples

The importance of graphing the data: Anscombe s regression examples Bruce Weaver Northern Health Research Conference Nipissing University, North Bay May 30-31, 2008 B. Weaver, NHRC 2008 1 The Objective

### fifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson

fifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson Contents What Are These Demos About? How to Use These Demos If This Is Your First Time Using Fathom Tutorial: An Extended Example

### HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

### Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

### Lecture 2: Simple Linear Regression

DMBA: Statistics Lecture 2: Simple Linear Regression Least Squares, SLR properties, Inference, and Forecasting Carlos Carvalho The University of Texas McCombs School of Business mccombs.utexas.edu/faculty/carlos.carvalho/teaching

### Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario

Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario I have found that the best way to practice regression is by brute force That is, given nothing but a dataset and your mind, compute everything

### Module 5: Multiple Regression Analysis

Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

### Econometrics Simple Linear Regression

Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight

### Example: Boats and Manatees

Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant

### A. Karpinski

Chapter 3 Multiple Linear Regression Page 1. Overview of multiple regression 3-2 2. Considering relationships among variables 3-3 3. Extending the simple regression model to multiple predictors 3-4 4.

### Simple Linear Regression Chapter 11

Simple Linear Regression Chapter 11 Rationale Frequently decision-making situations require modeling of relationships among business variables. For instance, the amount of sale of a product may be related

### Perform hypothesis testing

Multivariate hypothesis tests for fixed effects Testing homogeneity of level-1 variances In the following sections, we use the model displayed in the figure below to illustrate the hypothesis tests. Partial

### Paired Differences and Regression

Paired Differences and Regression Students sometimes have difficulty distinguishing between paired data and independent samples when comparing two means. One can return to this topic after covering simple

### Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.

Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under

### Chapter 7. One-way ANOVA

Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks