Statistical Functions in Excel

Size: px
Start display at page:

Transcription

1 Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses. The rest of these notes provides several lists of functions with short descriptions of how to use them. Summarizing Data Functions The table below shows the spreadsheet functions that can be used to find the most common measures of central location of a data set. The entry data_range means that you would enter the range of cells containing the data you want to analyze. For example, if you had data in cells A2:A51, data_range would be A2:A51. If you prefer, you can give names to cell ranges, and then use the name in place of the cell range. Finally, you can enter the numbers directly but I don t recommend it. If you choose to do so, the numbers should be separated by commas. For example, I could use =average(10,11,14,18,22). Measure Function Mean =average(data_range ) Median =median(data_range) Mode =mode(data_range ) p th Percentile =percentile(data_range, p/100) 1 st Quartile =quartile(data_range, 1) 3 rd Quartile =quartile(data_range, 3) Range =max(data_range ) - min(data_range ) Interquartile Range =quartile(data_range,3) - quartile(data_range,1) Population Variance =varp(data_range ) Sample Variance =var(data_range) Population Std. Dev. =stdevp(data_range ) Statistical Functions in Excel - 1

2 Measure Function Sample Std. Dev. =stdev(data_range ) Population Covariance Sample Correlation =covar(data_range1, data_range 2) =correl(data_range1, data_range 2). Frequency Distribution =frequency(data_range,bin_range) The FREQUENCY function requires a little more explanation. First, it is an array function so you must use the rules that apply to array functions. Next, the bin_range argument is a range of cells containing the class interval boundaries that you want to use. In the example below, I highlighted the range D3:D9, typed in the function =FREQUENCY(A2:A11,C3:C8), and then used CNTRL-SHIFT-ENTER. The results show that there are 4 numbers in column A that are in (-,1.17], 1 that is in (1.17,1.19], etc. The 0 at the end indicates that none are bigger than Note that I typed in More at the end of the bin values, but I did not use its cell reference in the second argument of the function. Statistical Functions in Excel - 2

3 Probability Distribution Functions There are several functions for common probability distributions. I have listed below those that are encountered in most introductory statistics classes. Discrete Distributions: Arbitrary: If we have a given discrete random variable X with probability mass function f(x), we can find the probability P(a X b) using =PROB(x_range, f(x)_range, a, b) where x_range is the cell range containing the possible values of X, f(x)_range is the range of cells containing f(x). When finding the expected value and variance of discrete random variables, the computation requires the sum of products. A useful function is =SUMPRODUCT. As an example, suppose that we had the following discrete distribution (including labels) entered in cells A1:B6: x f(x) To find the P(1 X 3) we would use =PROB(A2:A6,B2:B6,1,3). The result would be 7. Statistical Functions in Excel - 3

4 To find the expected value of X we would use =SUMPRODUCT(A2:A6,B2:B6). The result is 2.3. To find the variance we would need to insert another column which would be (x-µ) 2 (so in cell C2 we would enter =(A2-2.3)^2 and we would copy it down to cell C6). Then we would enter =SUMPRODUCT(C2:C6,B2:B6) to get the variance. The result is Binomial: Concerns the number of successes x in n trials. =BINOMDIST(x,n,p,I) Finds P(X=x) when I=0 P(X x) when I=1. The other parameters are n the sample size and p the probability of success in one trial. Poisson: Concerns the number of occurrences x in a given time or space. =POISSON(x, µ, I) Finds P(X=x) when I=0 P(X x) when I=1. The other parameter is µ the average rate of occurrences in the given time or space. Hypergeometric: Concerns the number of successes x in a sample of size n drawn from a population of size N, and in the population there are r items that we would consider successes. =HYPGEOMDIST(x, n, r, N) Statistical Functions in Excel - 4

5 Related Functions: Counting Functions Here are some functions related to finding probabilities when counting. Counting Method Symbol Function Factorial n! =fact(n) N Combination NC n = n =combin(n,n) Permutations NP n =permut(n,n) Continuous Distributions: Excel has two types of functions for continuous distributions. The first type generally ends with dist and finds tail areas for a given value of the random variable. The second type generally ends with inv and finds the inverse function, i.e., the value of the random variable for a given tail area. Standard Normal: (assumes a mean of 0 and standard deviation of 1) =NORMSDIST(z) Finds the area to the left of a standardized value z. =NORMSDIST(A) Normal: Finds the value of z that gives a left tail area A. =NORMDIST(x, µ, σ, 1) Finds the area to the left of x for a mean of µ and a standard deviation σ. If the 1 in the last argument is changed to 0, this function finds the height of the normal bell curve (pdf). Statistical Functions in Excel - 5

6 =NORMSDIST(A, µ, σ) Finds the value of x that gives a left tail area A. A Exponential: There is no inverse function in Excel for the exponential distribution. =EXPONDIST(x,µ,1). Finds the area to the left of x for a mean rate of µ (in other words, the units on µ are the reciprocal of the units on x). x Student t: Unlike previous functions, those for the t-distribution utilize the right rather than the left tail area. =TDIST(T, df, tails) Finds the area to the right of T for for df degrees of freedom. If tails is 1, then it finds one tail area. If tails is 2, it finds the two-tailed area (which is the one-tailed area multiplied by 2). In this function, T must be positive. Statistical Functions in Excel - 6

7 =TINV(A, df) This function always assumes two tails! It finds what value of T would give an area to the right of T equal to A/2 when there are df degrees of freedom. This is a useful feature when we want to find confidence intervals and do two-tailed hypothesis tests. For example, for a (1-α)100% confidence interval on the mean, we use s X + t α /2, n-1. We can use the TINV function to obtain tα /2, n-1. The n function would be =TINV(α,n-1). F: These functions also utilize the right tail area. =FDIST(F, ndf, ddf) Finds the area to the right of F for for ndf numerator degrees of freedom and ddf denominator degrees of freedom. =FINV(A, ndf, ddf ) Finds the value of F that would give an area to the right of F equal to A when there are ndf numerator degrees of freedom and ddf denominator degrees of freedom. Chi-squared (χ 2 ): These functions also utilize the right tail area. =CHIDIST(χ 2, df) Finds the area to the right of χ 2 for df degrees of freedom. = CHIINV(A, df) Finds the value of χ 2 that would give an area to the right of χ 2 equal to A when there are df degrees of freedom. Others: There are also functions for the Beta, Gamma and Lognormal distributions that are very similar to the functions above. Statistical Functions in Excel - 7

8 Random Samples To make a random selection, we can number each member of the population to be sampled from 1 to N (the size of the population). Then to determine which will be sampled, we can use the function RANDBETWEEN(1,N) and then copy it down to reach the desired sample size. This function is interesting, because if you do anything to the worksheet (e.g., when you copy the formula down), the value recalculates. That is a useful property for doing simulation, but it is annoying when trying to do other things. Once you have copied the function down to the desired sample size, I suggest freezing the numbers by copying them, selecting Edit/Paste Special, and choosing values. That will remove the function and just leave the values. The RANDBETWEEN function does sampling with replacement and hence duplicates are possible. The best way to check for duplicates is to sort the data. I suggest using either the RANK function or the SMALL function to do so. I will describe the SMALL function, which sorts. Suppose I had my random numbers in cells C1:C25. To dynamically sort them, I would enter the numbers 1 to 25 in cells D1:D25. Then in cell E1 I would type =SMALL(C1:C25,D1) and copy it down through E25. The function says to look for the D1 st smallest number in cells C1:C25. Since D1 =1, it finds the very smallest number in the range. When the function is copied down, it looks for the 2 nd smallest and puts it in E2, etc. Statistical Functions in Excel - 8

9 Once the data are sorted, you can look at neighbors for duplicates. I suggest using the =IF function to do so. In the example above I would use =IF(E1=E2,1,0) in cell F1. Then I would copy it down through F24 and look at the sum of the results. If the sum is 0, there are no duplicates. Inference Functions Most of the functions needed to do statistical inference have already been introduced. For example, to form a confidence interval on a population proportion, we generally use z α /2. To get its value in Excel, we would use =normsinv(1-α/2) or =-normsinv(α/2). (Remember that the area used as an input in the NORMSINV function is the left area, but for z α /2 we need a right area.) Below I have put some of these functions in the context of inference, and have also introduced a few other functions unique to inference. Confidence Intervals: For the case of estimating a population mean when we know the population standard deviation σ, we can use the function =CONFIDENCE(α, σ, n). The result of the function is the margin of error. Statistical Functions in Excel - 9

10 Hypothesis Tests on One Parameter: Statistic Tails Function for CR Function for p-value 1 =normsinv(1-α) =1-normsdist(abs(Z)) Z = X µ 0 σ / n 2 =normsinv(1-α/2) =2*(1-normsdist(abs(Z)) 1 =tinv(2α, n-1) =tdist(abs(t), n-1,1) T X µ = 0 s / n 2 =tinv(α, n-1) =tdist(abs(t), n-1, 2) Z = p p 0 p 0(1 p 0) n 1 2 =normsinv(1-α) =normsinv(1-α/2) =1-normsdist(abs(Z)) =2*(1-normsdist(abs(Z)) In the equations above the values with subscript 0 are the hypothesized values. For these tests, compare the absolute value of the computed test statistic to the CR value, or compare the p-value to α. If we have the data given for the first two cases above, there are built-in functions in Excel to give us the p-value. For the case when we are testing the hypothesis on one mean and we have the population standard deviation given, we can use =ztest(data_range, µ 0, σ) The result of this function is the one-sided p-value. NOTE that this is different than what the Excel documentation says. The documentation mistakenly says that it is the two-sided p-value. Statistical Functions in Excel - 10

11 If the population standard deviation were not known, the function would be =TTEST(data_range, µ 0 _range, tails,1) Here the µ 0 _range is a column of values all equal to the hypothesized mean with the same size as the column of data (i.e., the same length as data_range) and tails is 1 if it is a 1-sided test and 2 if it is a 2-sided test. The last argument tails Excel what type of t-test to do (see below). Testing Two Means: In the case of comparing two means, we can also use the TTEST function. There are only a few changes. The function is =TTEST(data_range1, data_range2, tails, type). Here the data_range values are the cell references for the data from the two samples (one from each population). The tails argument is the same as above (1 if it is a 1-sided test and 2 if it is a 2-sided test). The type argument tells Excel what kind of t-test is being done. type=1: Paired (or matched) sample t-test type=2: Unmatched 2-sample t-test assuming equal variances type=3: Unmatched 2-sample t-test assuming unequal variances Testing Two Variances: =FTEST(data_range1, data_range2) The result of this function is a 2-sided p-value. If you want a one-sided test, you need to divide the result by 2. Statistical Functions in Excel - 11

12 Chi-squared(categorical) tests: =CHITEST(observed_range, expected_range) where observed_range is the range of cells containing the observed number in each category, and expected_range is the range of cells containing the expected number in each category. The result will be the p-value. Be sure that all categories have at least 5 expected observations before you use this function. Note that the chi-squared test for independence is equivalent to testing the equality of two population proportions. ANOVA There are no built in functions in Excel to do ANOVA. However, the multiple regression function described below can be used to obtain the results. You can also use the Analysis Tools to do it. If you want to use the function, you should create one column containing the observed values from all groups. Call it y (it is the dependent variable). If there are a total of p groups, then you would need to create p-1 independent variables. If the value of y comes from group 1, then x 1 would be 1 otherwise it would be 0. The other independent variables would have the same coding. If an observation came from group p, all of the x values would be equal to 0. Then follow the instructions for the LINEST function described below, being sure that the stats argument is equal to 1. The resulting F statistic would be used to test the hypothesis that all means are equal. Statistical Functions in Excel - 12

13 Regression: Simple Regression: Statistic Intercept Slope R 2 s y x Function =intercept(y_range, x_range) =slope(y_range, x_range) =rsq(y_range, x_range) =steyx(y_range, x_range) In all cases y_range is the range of cells containing the dependent variable and x_range is the range of cells containing the independent variable. The last statistic, s y x, is the standard error of the y given x. In other words, it is the estimate of the standard deviation in the y-direction about the line. It is also equal to MSE. Multiple Regression: =linest(y_range,x_range,intercept,stats) This function calculates several statistics associated with a multiple regression, depending on the value of the argument stats. Here y_range is the range of cells containing the dependent variable and x_range is the range of cells containing all of the independent variable. Therefore, all independent variables must be in a contiguous set of cells. The argument intercept is usually omitted. If you make it equal to 0 or FALSE, the regression will force the intercept to be 0. The argument stats is equal to 0 or FALSE if you only want the estimates of the slopes and intercept; it is 1 or TRUE if you want see several other statistics. Statistical Functions in Excel - 13

14 The function =LINEST is an array function. The number of cells that you highlight depends on whether stats is 0 or 1. If it is 0, you need to highlight one row whose length is equal to the number of parameters being estimated (the number of independent variables+1). If stats is 1, you need to highlight 5 rows and the number of columns will again be the number of independent variables+1. The coefficients are listed with the last slope first, then the second-to-last slope, etc., until reaching the first slope followed by the intercept. When stats is 1, the values in the resulting matrix are as follows: b k b k-1 b 1 b 0 s b k b k 1 R 2 s y x F SSR s b 1 n-k-1 SSE s s b0 In the above, I am assuming that there are k independent variables. The b values are the coefficients (b 0 is the intercept), the s b values are the standard errors of the coefficients, F is the F-statistic calculated in the ANOVA section of the regression analysis (and used to test if the overall relationship is significant), SSR is the regression (or explained) sums of squares, and SSE is the error (or unexplained) sums of squares. From the above numbers most of the other basic numbers from a regression output can be calculated. For example, to get MSE I would divide SSE by n-k-1. To get the t-statistic for slope k, I would use b k / s. bk Statistical Functions in Excel - 14

15 Matrix Functions Many statistical computations require matrix manipulations. Hence matrix functions are quite useful. Below I list the matrix functions in Excel. The arguments are arrays of cells in Excel. Except for MDETERM, these are all array functions. Function =TRANSPOSE(matrix) =MINVERSE(matrix) =MDETERM(matrix) =MMULT(matrix1,matrix2) Purpose Transposes the matrix Inverts a square matrix Finds the determinant of a square matrix Multiplies the two matrices Other Useful Functions There are several other functions that I use often. I will just list them and say what they do, but I will not describe them in detail here. Instead I will let you learn about them on your own. Function =SQRT =STANDARDIZE =COUNT =IF =COUNTIF =SUMIF Purpose Finds the square root of the argument Standardizes a value by subtracting the mean and dividing by the standard deviation Counts the number of non-blank and non-text cell entries Does if/then computations Counts values based on a particular criterion Sums values based on a particular criterion Statistical Functions in Excel - 15

Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

Using Microsoft Excel for Probability and Statistics

Introduction Using Microsoft Excel for Probability and Despite having been set up with the business user in mind, Microsoft Excel is rather poor at handling precisely those aspects of statistics which

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

seven Statistical Analysis with Excel chapter OVERVIEW CHAPTER

seven Statistical Analysis with Excel CHAPTER chapter OVERVIEW 7.1 Introduction 7.2 Understanding Data 7.3 Relationships in Data 7.4 Distributions 7.5 Summary 7.6 Exercises 147 148 CHAPTER 7 Statistical

Guide to Microsoft Excel for calculations, statistics, and plotting data

Page 1/47 Guide to Microsoft Excel for calculations, statistics, and plotting data Topic Page A. Writing equations and text 2 1. Writing equations with mathematical operations 2 2. Writing equations with

Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce

Statistics Review PSY379

Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL. by Michael L. Orlov Chemistry Department, Oregon State University (1996)

MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL by Michael L. Orlov Chemistry Department, Oregon State University (1996) INTRODUCTION In modern science, regression analysis is a necessary part

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

Predictor Coef StDev T P Constant 970667056 616256122 1.58 0.154 X 0.00293 0.06163 0.05 0.963. S = 0.5597 R-Sq = 0.0% R-Sq(adj) = 0.

Statistical analysis using Microsoft Excel Microsoft Excel spreadsheets have become somewhat of a standard for data storage, at least for smaller data sets. This, along with the program often being packaged

3 The spreadsheet execution model and its consequences

Paper SP06 On the use of spreadsheets in statistical analysis Martin Gregory, Merck Serono, Darmstadt, Germany 1 Abstract While most of us use spreadsheets in our everyday work, usually for keeping track

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010

Curriculum Map Statistics and Probability Honors (348) Saugus High School Saugus Public Schools 2009-2010 Week 1 Week 2 14.0 Students organize and describe distributions of data by using a number of different

SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

Introduction to Statistical Computing in Microsoft Excel By Hector D. Flores; hflores@rice.edu, and Dr. J.A. Dobelman

Introduction to Statistical Computing in Microsoft Excel By Hector D. Flores; hflores@rice.edu, and Dr. J.A. Dobelman Statistics lab will be mainly focused on applying what you have learned in class with

Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

Using Excel s Analysis ToolPak Add-In

Using Excel s Analysis ToolPak Add-In S. Christian Albright, September 2013 Introduction This document illustrates the use of Excel s Analysis ToolPak add-in for data analysis. The document is aimed at

Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares

Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation

Using R for Linear Regression

Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional

Regression step-by-step using Microsoft Excel

Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression

Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools

Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools Occam s razor.......................................................... 2 A look at data I.........................................................

2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or

Simple and Multiple Regression Analysis Example: Explore the relationships among Month, Adv.\$ and Sales \$: 1. Prepare a scatter plot of these data. The scatter plots for Adv.\$ versus Sales, and Month versus

Advanced Excel for Institutional Researchers Presented by: Sandra Archer Helen Fu University Analysis and Planning Support University of Central Florida September 22-25, 2012 Agenda Sunday, September 23,

How To Check For Differences In The One Way Anova

MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

How Does My TI-84 Do That

How Does My TI-84 Do That A guide to using the TI-84 for statistics Austin Peay State University Clarksville, Tennessee How Does My TI-84 Do That A guide to using the TI-84 for statistics Table of Contents

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

EXCEL Analysis TookPak [Statistical Analysis] 1. First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it:

EXCEL Analysis TookPak [Statistical Analysis] 1 First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it: a. From the Tools menu, choose Add-Ins b. Make sure Analysis

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

Normality Testing in Excel

Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation

Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation Leslie Chandrakantha lchandra@jjay.cuny.edu Department of Mathematics & Computer Science John Jay College of

CHAPTER 9 ADD-INS: ENHANCING EXCEL This chapter discusses the following topics: WHAT CAN AN ADD-IN DO? WHY USE AN ADD-IN (AND NOT JUST EXCEL MACROS/PROGRAMS)? ADD INS INSTALLED WITH EXCEL OTHER ADD-INS

Recall this chart that showed how most of our course would be organized:

Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

Education & Training Plan Accounting Math Professional Certificate Program with Externship

University of Texas at El Paso Professional and Public Programs 500 W. University Kelly Hall Ste. 212 & 214 El Paso, TX 79968 http://www.ppp.utep.edu/ Contact: Sylvia Monsisvais 915-747-7578 samonsisvais@utep.edu

Education & Training Plan. Accounting Math Professional Certificate Program with Externship

Office of Professional & Continuing Education 301 OD Smith Hall Auburn, AL 36849 http://www.auburn.edu/mycaa Contact: Shavon Williams 334-844-3108; szw0063@auburn.edu Auburn University is an equal opportunity

Probability Calculator

Chapter 95 Introduction Most statisticians have a set of probability tables that they refer to in doing their statistical wor. This procedure provides you with a set of electronic statistical tables that

ESTIMATING THE DISTRIBUTION OF DEMAND USING BOUNDED SALES DATA

ESTIMATING THE DISTRIBUTION OF DEMAND USING BOUNDED SALES DATA Michael R. Middleton, McLaren School of Business, University of San Francisco 0 Fulton Street, San Francisco, CA -00 -- middleton@usfca.edu

Causal Forecasting Models

CTL.SC1x -Supply Chain & Logistics Fundamentals Causal Forecasting Models MIT Center for Transportation & Logistics Causal Models Used when demand is correlated with some known and measurable environmental

Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures

Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone:

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

Quantitative Methods for Finance

Quantitative Methods for Finance Module 1: The Time Value of Money 1 Learning how to interpret interest rates as required rates of return, discount rates, or opportunity costs. 2 Learning how to explain

NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

How To Run Statistical Tests in Excel

How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting

Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

Standard Deviation Estimator

CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

A and B This represents the probability that both events A and B occur. This can be calculated using the multiplication rules of probability.

Glossary Brase: Understandable Statistics, 10e A B This is the notation used to represent the conditional probability of A given B. A and B This represents the probability that both events A and B occur.

An SPSS companion book. Basic Practice of Statistics

An SPSS companion book to Basic Practice of Statistics SPSS is owned by IBM. 6 th Edition. Basic Practice of Statistics 6 th Edition by David S. Moore, William I. Notz, Michael A. Flinger. Published by

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

MS-EXCEL: ANALYSIS OF EXPERIMENTAL DATA

MS-EXCEL: ANALYSIS OF EXPERIMENTAL DATA Rajender Parsad and Shashi Dahiya I.A.S.R.I., Library Avenue, New Delhi-110 012 The inbuilt functions and procedures of MS-EXCEL can be utilized for the analysis

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page

Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8

Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information.

Excel Tutorial Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information. Working with Data Entering and Formatting Data Before entering data

2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

STAT 360 Probability and Statistics. Fall 2012

STAT 360 Probability and Statistics Fall 2012 1) General information: Crosslisted course offered as STAT 360, MATH 360 Semester: Fall 2012, Aug 20--Dec 07 Course name: Probability and Statistics Number

Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

Hypothesis testing - Steps

Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

Measuring Evaluation Results with Microsoft Excel

LAURA COLOSI Measuring Evaluation Results with Microsoft Excel The purpose of this tutorial is to provide instruction on performing basic functions using Microsoft Excel. Although Excel has the ability

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

NCSS Statistical Software. One-Sample T-Test

Chapter 205 Introduction This procedure provides several reports for making inference about a population mean based on a single sample. These reports include confidence intervals of the mean or median,

International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics

International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics Lecturer: Mikhail Zhitlukhin. 1. Course description Probability Theory and Introductory Statistics

NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

Non-Inferiority Tests for One Mean

Chapter 45 Non-Inferiority ests for One Mean Introduction his module computes power and sample size for non-inferiority tests in one-sample designs in which the outcome is distributed as a normal random

Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

II. DISTRIBUTIONS distribution normal distribution. standard scores

Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance

Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

Principles of Hypothesis Testing for Public Health

Principles of Hypothesis Testing for Public Health Laura Lee Johnson, Ph.D. Statistician National Center for Complementary and Alternative Medicine johnslau@mail.nih.gov Fall 2011 Answers to Questions

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

Math 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2

Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable

Chapter 7. Comparing Means in SPSS (t-tests) Compare Means analyses. Specifically, we demonstrate procedures for running Dependent-Sample (or

1 Chapter 7 Comparing Means in SPSS (t-tests) This section covers procedures for testing the differences between two means using the SPSS Compare Means analyses. Specifically, we demonstrate procedures

SPSS Tests for Versions 9 to 13

SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list

An introduction to using Microsoft Excel for quantitative data analysis

Contents An introduction to using Microsoft Excel for quantitative data analysis 1 Introduction... 1 2 Why use Excel?... 2 3 Quantitative data analysis tools in Excel... 3 4 Entering your data... 6 5 Preparing

STA-201-TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance

Principles of Statistics STA-201-TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis

Generalized Linear Models

Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the

Multiple regression - Matrices

Multiple regression - Matrices This handout will present various matrices which are substantively interesting and/or provide useful means of summarizing the data for analytical purposes. As we will see,

2013 MBA Jump Start Program. Statistics Module Part 3

2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just

Fairfield Public Schools

Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

Multiple Choice: 2 points each

MID TERM MSF 503 Modeling 1 Name: Answers go here! NEATNESS COUNTS!!! Multiple Choice: 2 points each 1. In Excel, the VLOOKUP function does what? Searches the first row of a range of cells, and then returns

Gamma Distribution Fitting

Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics