Size: px
Start display at page:

Transcription

1 Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University

2 Goals of the Lecture Introduce Additive Models Explain how they extend from simple nonparametric regression (i.e., local polynomial regression) Discuss estimation using backfitting Explain how to interpret their results Conclude with some examples of Additive Models applied to real social science data 2

3 Limitations of the Multiple Nonparametric Models Recall that the general nonparametric model (both the lowess smooth and the smoothing spline) takes the following form: As we see here, the multiple nonparametric model allows all possible interactions between the independent variables in their effects on Y we specify a jointly conditional functional form This model is ideal under the following circumstances: 1. There are no more than two predictors 2. The pattern of nonlinearity is complicated and thus cannot be easily modelled with a simple transformation or polynomial regression 3. The sample size is sufficiently large 3

4 Limitations of the Multiple Nonparametric Models (2) The general nonparametric model becomes impossible to interpret and unstable as we add more explanatory variables, however 1. For example, in the lowess case, as the number of variables increases, the window span must become wider in order to ensure that each local regression has enough cases This process can create significant bias (the curve becomes too smooth) 2. It is impossible to interpret general nonparametric regression when there are more than two variables there are no coefficients, and we cannot graph effects more than three dimensions These limitations lead us to the Additive Models 4

5 Additive Regression Models Additive regression models essentially apply local regression to low dimensional projections of the data The nonparametric additive regression model is The f i are arbitrary functions estimated from the data; the errors ε are assumed to have constant variance and a mean of 0 Additive models create an estimate of the regression surface by a combination of a collection of onedimensional functions The estimated functions f i are the analogues of the coefficients in linear regression 5

6 Additive Regression Models (2) The assumption that the contribution of each covariate is additive is analogous to the assumption in linear regression that each component is estimated separately Recall that the linear regression model is where the B j represent linear effects For the additive model we model Y as an additive combination of arbitrary functions of the Xs The f j represent arbitrary functions that can be estimated by lowess or smoothing splines 6

7 Additive Regression Models (3) Now comes the question: How do we find these arbitrary functions? If the X s were completely independent which will not be the case we could simply estimate each functional form using a nonparametric regression of Y on each of the X s separately Similarly in linear regression when the X s are completely uncorrelated the partial regression slopes are identical to the marginal regression slopes Since the X s are related, however, we need to proceed in another way, in effect removing the effects of other predictors which are unknown before we begin We use a procedure called backfitting to find each curve, controlling for the effects of the others 7

8 Estimation and Backfitting Suppose that we had a two predictor additive model: If we unrealistically knew the partial regression function f 2 but not f 1 we could rearrange the equation in order to solve for f 1 In other words, smoothing Y i -f 2 (x i2 ) against x i1 produces an estimate of α+f 1 (x i1 ). Simply put, knowing one function allows us to find the other in the real world, however we don t know either so we must proceed initially with estimates 8

9 Estimation and Backfitting (2) 1. We start by expressing the variables in mean deviation form so that the partial regressions sum to zero, thus eliminating the individual intercepts 2. We then take preliminary estimates of each function from a least-squares regression of Y on the X s 3. These estimates are then used as step (0) in an iterative estimation process 4. We then find the partial residuals for X 1, which removes Y from its linear relationship to X 2 but retains the relationship between Y and X 1 9

10 Estimation and Backfitting (3) The partial residuals for X 1 are then 5. The same procedure in step 4 is done for X 2 6. Next we smooth these partial residuals against their respective X s, providing a new estimate of f where S is the (n n) smoother transformation matrix for X j that depends only on the configuration of X ij for the jth predictor 10

11 Estimation and Backfitting (4) This process of finding new estimates of the functions by smoothing the partial residuals is reiterated until the partial functions converge That is, when the estimates of the smooth functions stabilize from one iteration to the next we stop When this process is done, we obtain estimates of s j (X ij ) for every value of X j More importantly, we will have reduced a multiple regression to a series of two-dimensional partial regression problems, making interpretation easy: Since each partial regression is only two-dimensional, the functional forms can be plotted on two-dimensional plots showing the partial effects of each X j on Y In other words, perspective plots are no longer necessary unless we include an interaction between two smoother terms 11

12 Interpreting the Effects A plot of of X j versus s j (X j ) shows the relationship between X j and Y holding constant the other variables in the model Since Y is expressed in mean deviation form, the smooth term s j (X j ) is also centered and thus each plot represents how Y changes relative to its mean with changes in X Interpreting the scale of the graphs then becomes easy: The value of 0 on the Y-axis is the mean of Y As the line moves away from 0 in a negative direction we subtract the distance from the mean when determining the fitted value. For example, if the mean is 45, and for a particular X-value (say x=15) the curve is at s j (X j )=4, this means the fitted value of Y controlling for all other explanatory variables is 45+4=49. If there are several nonparametric relationships, we can add together the effects on the two graphs for any particular observation to find its fitted value of Y 12

13 Additive Regression Models in R: Example: Canadian prestige data Here we use the Canadian Prestige data to fit an additive model to prestige regressed on income and occupation In R we use the gam function (for generalized additive models) that is found in mgcv package The gam function in mgcv fits only smoothing splines (local polynomial regression can be done in S-PLUS) The formula takes the same form as the glm function except now we have the option of having parametric terms and smoothed estimates Smooths will be fit to any variable specified with the s(variable) argument The simple R-script is as follows: 13

14 Additive Regression Models in R: Example: Canadian prestige data (2) The summary function returns tests for each smooth, the degrees of freedom for each smooth, and an adjusted R- square for the model. The deviance can be obtained from the deviance(model) command 14

15 Additive Regression Models in R: Example: Canadian prestige data (3) Again, as with other nonparametric models, we have no slope parameters to investigate (we do have an intercept, however) A plot of the regression surface is necessary 15

16 Additive Regression Models in R: Example: Canadian prestige data (4) Additive Model: We can see the nonlinear relationship for both education and Income with Prestige but there is no interaction between them i.e., the slope for income is the same at every value of education We can compare this model to the general nonparametric regression model 80 Prestige Income Education 16

17 Additive Regression Models in R: Example: Canadian prestige data (5) General Nonparametric Model: This model is quite similar to the additive model, but there are some nuances particularly in the midrange of income that are not picked up by the additive model because the X s do not interact Prestige Income Education

18 Additive Regression Models in R: Example: Canadian prestige data (6) Perspective plots can also be made automatically using the persp.gam function. These graphs include a 95% confidence region income education red/green are +/-2 se 18

19 Additive Regression Models in R: Example: Canadian prestige data (7) Since the slices of the additive regression in the direction of one predictor (holding the other constant) are parallel, we can graph each partialregression function separately This is the benefit of the additive model we can graph as many plots as there are variables, and allowing us to easily visualize the relationships In other words, a multidimensional regression has been reduced to a series of two-dimensional partial-regression plots To get these in R: 19

20 Additive Regression Models in R: Example: Canadian prestige data (8) income s(education,3.18) s(income,3.12) education 20

21 Additive Regression Models in R: Example: Canadian prestige data (9) s(income,3.12) s(education,3.18) income education 21

22 R-script for previous slide 22

23 Residual Sum of Squares As was the case for smoothing splines and lowess smooths, statistical inference and hypothesis testing is based on the residual sum of squares (or deviance in the case of generalized additive models) and the degrees of freedom The RSS for an additive model is easily defined in the usual manner: The approximate degrees of freedom, however, need to be adjusted from the regular nonparametric case, however, because we are no longer specifying a jointly-conditional functional form 23

24 Degrees of Freedom Recall that for nonparametric regression, the approximate degrees of freedom are equal to the trace of the smoother matrix (the matrix that projects Y onto Y-hat) We extend this to the additive model: 1 is subtracted from each df reflecting the constraint that each partial regression function sums to zero (the individual intercept have been removed) Parametric terms entered in the model each occupy a single degree of freedom as in the linear regression case The individual degrees of freedom are then combined for a single measure: 1 is added to the final degrees of freedom to account for the overall constant in the model 24

25 Testing for Linearity I can compare the linear model of prestige regressed on income and education with the additive model by carrying out an analysis of deviance I begin by fitting the linear model using the gam function Next I want the residual degrees of freedom from the additive model 25

26 Testing for Linearity (2) Now I simply calculate the difference in the deviance between the two model relative to the difference in degrees of freedom (difference in df=7.3-2=5) This gives a Chi-square test for linearity The difference between the models is highly statistically significant the additive model describe the relationship between prestige and education and income much better 26

27 Testing for Linearity An anova function written by John Fox (see the R-script for this class) makes the analysis of deviance simpler to implement: As we see here, the results are identical to those found on the previous slide 27

### POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model.

Polynomial Regression POLYNOMIAL AND MULTIPLE REGRESSION Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. It is a form of linear regression

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### Module 5: Multiple Regression Analysis

Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

### Example: Boats and Manatees

Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant

### Section 14 Simple Linear Regression: Introduction to Least Squares Regression

Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship

### Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Statistics Quiz Correlation and Regression -- ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements

Lecture 4: Transformations Regression III: Advanced Methods William G. Jacoby Michigan State University Goals of the lecture The Ladder of Roots and Powers Changing the shape of distributions Transforming

### Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

### Overview Classes. 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7)

Overview Classes 12-3 Logistic regression (5) 19-3 Building and applying logistic regression (6) 26-3 Generalizations of logistic regression (7) 2-4 Loglinear models (8) 5-4 15-17 hrs; 5B02 Building and

### X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Examining a Fitted Logistic Model

STAT 536 Lecture 16 1 Examining a Fitted Logistic Model Deviance Test for Lack of Fit The data below describes the male birth fraction male births/total births over the years 1931 to 1990. A simple logistic

### Multiple Linear Regression

Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### Multivariate Normal Distribution

Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

### Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

### Penalized regression: Introduction

Penalized regression: Introduction Patrick Breheny August 30 Patrick Breheny BST 764: Applied Statistical Modeling 1/19 Maximum likelihood Much of 20th-century statistics dealt with maximum likelihood

### 2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

### New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction

Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

### Factor Analysis. Chapter 420. Introduction

Chapter 420 Introduction (FA) is an exploratory technique applied to a set of observed variables that seeks to find underlying factors (subsets of variables) from which the observed variables were generated.

### Smoothing and Non-Parametric Regression

Smoothing and Non-Parametric Regression Germán Rodríguez grodri@princeton.edu Spring, 2001 Objective: to estimate the effects of covariates X on a response y nonparametrically, letting the data suggest

### MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group

MISSING DATA TECHNIQUES WITH SAS IDRE Statistical Consulting Group ROAD MAP FOR TODAY To discuss: 1. Commonly used techniques for handling missing data, focusing on multiple imputation 2. Issues that could

### Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

### This chapter will demonstrate how to perform multiple linear regression with IBM SPSS

CHAPTER 7B Multiple Regression: Statistical Methods Using IBM SPSS This chapter will demonstrate how to perform multiple linear regression with IBM SPSS first using the standard method and then using the

### Least Squares Estimation

Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David

### Notes on Applied Linear Regression

Notes on Applied Linear Regression Jamie DeCoster Department of Social Psychology Free University Amsterdam Van der Boechorststraat 1 1081 BT Amsterdam The Netherlands phone: +31 (0)20 444-8935 email:

### ANALYSIS OF TREND CHAPTER 5

ANALYSIS OF TREND CHAPTER 5 ERSH 8310 Lecture 7 September 13, 2007 Today s Class Analysis of trends Using contrasts to do something a bit more practical. Linear trends. Quadratic trends. Trends in SPSS.

### Assumptions. Assumptions of linear models. Boxplot. Data exploration. Apply to response variable. Apply to error terms from linear model

Assumptions Assumptions of linear models Apply to response variable within each group if predictor categorical Apply to error terms from linear model check by analysing residuals Normality Homogeneity

### Statistical Models in R

Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova

### CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

### A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution

A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September

### Using R for Linear Regression

Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional

### Joint models for classification and comparison of mortality in different countries.

Joint models for classification and comparison of mortality in different countries. Viani D. Biatat 1 and Iain D. Currie 1 1 Department of Actuarial Mathematics and Statistics, and the Maxwell Institute

### Statistical Models in R

Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

### Directions for using SPSS

Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...

### What s New in Econometrics? Lecture 8 Cluster and Stratified Sampling

What s New in Econometrics? Lecture 8 Cluster and Stratified Sampling Jeff Wooldridge NBER Summer Institute, 2007 1. The Linear Model with Cluster Effects 2. Estimation with a Small Number of Groups and

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

### A Basic Introduction to Missing Data

John Fox Sociology 740 Winter 2014 Outline Why Missing Data Arise Why Missing Data Arise Global or unit non-response. In a survey, certain respondents may be unreachable or may refuse to participate. Item

### Multiple Regression: What Is It?

Multiple Regression Multiple Regression: What Is It? Multiple regression is a collection of techniques in which there are multiple predictors of varying kinds and a single outcome We are interested in

### Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

### DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

### 17. SIMPLE LINEAR REGRESSION II

17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.

### Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases:

Profile Analysis Introduction Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases: ) Comparing the same dependent variables

### CURVE FITTING LEAST SQUARES APPROXIMATION

CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

### The KaleidaGraph Guide to Curve Fitting

The KaleidaGraph Guide to Curve Fitting Contents Chapter 1 Curve Fitting Overview 1.1 Purpose of Curve Fitting... 5 1.2 Types of Curve Fits... 5 Least Squares Curve Fits... 5 Nonlinear Curve Fits... 6

### Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

### 13. Poisson Regression Analysis

136 Poisson Regression Analysis 13. Poisson Regression Analysis We have so far considered situations where the outcome variable is numeric and Normally distributed, or binary. In clinical work one often

### Dimensionality Reduction: Principal Components Analysis

Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### CAPM, Arbitrage, and Linear Factor Models

CAPM, Arbitrage, and Linear Factor Models CAPM, Arbitrage, Linear Factor Models 1/ 41 Introduction We now assume all investors actually choose mean-variance e cient portfolios. By equating these investors

### Introduction to nonparametric regression: Least squares vs. Nearest neighbors

Introduction to nonparametric regression: Least squares vs. Nearest neighbors Patrick Breheny October 30 Patrick Breheny STA 621: Nonparametric Statistics 1/16 Introduction For the remainder of the course,

### Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression

Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction

### LOGIT AND PROBIT ANALYSIS

LOGIT AND PROBIT ANALYSIS A.K. Vasisht I.A.S.R.I., Library Avenue, New Delhi 110 012 amitvasisht@iasri.res.in In dummy regression variable models, it is assumed implicitly that the dependent variable Y

### Specifications for this HLM2 run

One way ANOVA model 1. How much do U.S. high schools vary in their mean mathematics achievement? 2. What is the reliability of each school s sample mean as an estimate of its true population mean? 3. Do

### Factor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models

Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

### Chapter 1 Introduction. 1.1 Introduction

Chapter 1 Introduction 1.1 Introduction 1 1.2 What Is a Monte Carlo Study? 2 1.2.1 Simulating the Rolling of Two Dice 2 1.3 Why Is Monte Carlo Simulation Often Necessary? 4 1.4 What Are Some Typical Situations

### HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

### Factors affecting online sales

Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4

### Linear Approximations ACADEMIC RESOURCE CENTER

Linear Approximations ACADEMIC RESOURCE CENTER Table of Contents Linear Function Linear Function or Not Real World Uses for Linear Equations Why Do We Use Linear Equations? Estimation with Linear Approximations

### Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

### Correlation and Simple Linear Regression

Correlation and Simple Linear Regression We are often interested in studying the relationship among variables to determine whether they are associated with one another. When we think that changes in a

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### II. DISTRIBUTIONS distribution normal distribution. standard scores

Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

### 2013 MBA Jump Start Program. Statistics Module Part 3

2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just

### QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS

QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

### The Graphical Method: An Example

The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

### INTRODUCTORY STATISTICS

INTRODUCTORY STATISTICS FIFTH EDITION Thomas H. Wonnacott University of Western Ontario Ronald J. Wonnacott University of Western Ontario WILEY JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore

### The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy

BMI Paper The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy Faculty of Sciences VU University Amsterdam De Boelelaan 1081 1081 HV Amsterdam Netherlands Author: R.D.R.

### UNDERSTANDING ANALYSIS OF COVARIANCE (ANCOVA)

UNDERSTANDING ANALYSIS OF COVARIANCE () In general, research is conducted for the purpose of explaining the effects of the independent variable on the dependent variable, and the purpose of research design

### UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Objectives. Materials

Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways

### Statistics in Retail Finance. Chapter 6: Behavioural models

Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural

### business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

### Introduction to Matrix Algebra

Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

### Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model

Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model Xavier Conort xavier.conort@gear-analytics.com Motivation Location matters! Observed value at one location is

### 5 Systems of Equations

Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

### data visualization and regression

data visualization and regression Sepal.Length 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 I. setosa I. versicolor I. virginica I. setosa I. versicolor I. virginica Species Species

### Module 3: Correlation and Covariance

Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

### Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure?

Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure? Harvey Motulsky hmotulsky@graphpad.com This is the first case in what I expect will be a series of case studies. While I mention

### Equations, Inequalities & Partial Fractions

Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

### 11. Analysis of Case-control Studies Logistic Regression

Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

### Nonlinear Regression:

Zurich University of Applied Sciences School of Engineering IDP Institute of Data Analysis and Process Design Nonlinear Regression: A Powerful Tool With Considerable Complexity Half-Day : Improved Inference

### exspline That: Explaining Geographic Variation in Insurance Pricing

Paper 8441-2016 exspline That: Explaining Geographic Variation in Insurance Pricing Carol Frigo and Kelsey Osterloo, State Farm Insurance ABSTRACT Generalized linear models (GLMs) are commonly used to

### Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round \$200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

### Integration. Topic: Trapezoidal Rule. Major: General Engineering. Author: Autar Kaw, Charlie Barker. http://numericalmethods.eng.usf.

Integration Topic: Trapezoidal Rule Major: General Engineering Author: Autar Kaw, Charlie Barker 1 What is Integration Integration: The process of measuring the area under a function plotted on a graph.

### Introduction to Principal Component Analysis: Stock Market Values

Chapter 10 Introduction to Principal Component Analysis: Stock Market Values The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from

### INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

### 1. The parameters to be estimated in the simple linear regression model Y=α+βx+ε ε~n(0,σ) are: a) α, β, σ b) α, β, ε c) a, b, s d) ε, 0, σ

STA 3024 Practice Problems Exam 2 NOTE: These are just Practice Problems. This is NOT meant to look just like the test, and it is NOT the only thing that you should study. Make sure you know all the material

### Simple Predictive Analytics Curtis Seare

Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use