DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9


 Alexander Adams
 2 years ago
 Views:
Transcription
1 DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression
2 So far in this course, we have looked at statistical models for continuous response (or dependent) variables). We have dealt with: Response variable continuous Explanatory variables 1 continuous Method Regression continuous 1 categorical continuous 2 categorical dummy variable regression / ANOVA table independent samples ttest Dummy variable regression/ ANOVA table. Test of interaction posible 2
3 We have used similar techniques in each of these cases. We have fitted a model with one or more explanatory variables, looked at their parameter estimates and used the tvalues to determine whether terms are significant. We continue with continuous covariates, but now look at the situation where there is one categorical and one continuous variable. This type of model has a special name analysis of covariance. We will continue to develop the idea of an interaction term, introducing it into the model and testing its significance. We will, however, be using the same type of approach. 3
4 An example of ANCOVA analysis of covariance BLOCK DESIGNS A sample of 24 children was randomly chosen from the 5 th grade of a state primary school in Sydney. Each child was assigned to one of two experimental groups. The children had to complete four of the 3x3 squared designs in the block design subtest of the Weschler Intelligence Scale for Children (WISC). Children in the first group were told to start with a row of three blocks (the ROW group), and children in the second group were told to start with a corner of three blocks (the CORNER group). The total time to complete the task was then measured. Before the experiment began, the extent of each child s field dependence was measured by using the Embedded Figures Test (EFT), which measures the extent to which subjects can abstract the logical structure of a problem from its context. High scores correspond to high field dependence. 1 We therefore have one continuous explanatory variable EFT, and one categorical variable GROUP. An analysis with mixed types of independent variables is sometimes known as Analysis of Covaraince (ANCOVA) 1 The data is reported in Aitkin,M. Anderson, D., Francis, B. and Hinde, J.(1987) Statistical modelling in GLIM, Oxford University Press 4
5 Row group: time: eft: Corner group: time: eft: The data is stored in blockdesign.dat We read in the data to the dataframe block. block=read.table( blockdesign.dat, header=t) block$groupf=factor(block$group) We define two subsets of data a subset for the row group (group==0) and a subset for the corner group (group==1) row=block[block.group==0, ] corner=block[block.group==1, ] The object block can be thought of as a matrix we are selecting all rows for which group=1, and selecting all columns. names(row); summary(row) We can first plot the data. 5
6 plot(block$eft,block$time,type="n", xlab="eft score", ylab="time to complete") points(row$eft,row$time,pch=1,col=2) points(corner$eft,corner$time,pch=2,col=4) legend(20, 750, c("row group","corner group"), pch=c(1,2), col=c(2,4)) time to complete row group corner group We can see that there appears to be a strong relationship between TIME and EFT, and perhaps the corner group is taking less time. We explore this using statistical modelling. We can consider a number of different models. EFT score 6
7 If we fit a model with no explanatory variables, then we have a null model this says that there is no relationship between the time taken and either EFT or the experimental GROUP. m1=lm(block$time~1) anova(m1) Analysis of Variance Table Response: block$time Df Sum Sq Mean Sq F value Pr(>F) Residuals > summary(m1) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e13 *** The model is ESTIMATED TIME=384.3 The ttest on the estimate of the intercept is simply indicating whether there is evidence that the intercept estimate is different from zero. 7
8 lines(block$eft, m1$fitted.values) title("null model  mean only") null model  mean only time to complete row group corner group Sums of squares = Degrees of freedom = EFT score 8
9 We can then add either EFT or GROUP as explanatory variables. Suppose we add EFT first of all. The model is then EFT there is no group effect, but there is a linear relationship between TIME and EFT. m2=lm(time~ eft, data=block) anova(m2) Response: time Df Sum Sq Mean Sq F value Pr(>F) eft ** Residuals > summary(m2) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e06 *** eft ** The model now becomes ESTIMATED TIME= EFT Thus, for every unit increase of EFT, the TIME to complete the task increases by 2 seconds. Under this mode, the experimental group makes no difference. 9
10 repeating earlier graphics commands, then lines(block$eft, m2$fitted.values) title("model: EFT") model: EFT time to complete row group corner group SS= df= EFT score 10
11 We can then add in the group effect. This main effects model is the following model: TIME= B0 +B1 EFT+B2 GROUP If GROUP is defined to be GROUP=0 (Row group) GROUP=1 (Corner group) then this model becomes: TIME=B0+ B1 EFT (Row group) TIME=B0+B2 + B1 EFT (Corner group) The estimate of the group effect B2 is simply the difference between the fitted line for the row group and the fitted line for the corner group. m3=lm(time~ eft+groupf, data=block) anova(m3) Response: time Df Sum Sq Mean Sq F value Pr(>F) eft ** groupf Residuals
12 summary(m3) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e06 *** eft ** groupf The estimate of the GROUP effect is the corner group is estimated to be performing over 44 seconds faster than the row group. However, the GROUP effect is not significant. The slope of the two lines are the same. The estimates are ESTIMATED TIME = EFT (Row group) = EFT (Corner group) 12
13 repeating earlier graphics commands, then lines( row$eft,m3$fitted.values[block$groupf==0],col=2, lty=1) lines(corner$eft,m3$fitted.values[block$groupf==1],col=4, lty=2) title("model: eft+group") SS= df=21 The fitted lines of this model are parallel. However, the slope in the row group might be different from the slope of the corner group. 13
14 As with the 2way ANOVA model last week, this model is known as an interaction model. We want to specify an interaction between groupf and eft this is saying that the effect of groupf depends on the level of eft. This is a twoway interaction an interaction between two terms in the model. More complex interaction terms can be fitted. We fit the model using m4=lm(time~ eft+groupf+eft:groupf, data=block) anova(m4) Response: time Df Sum Sq Mean Sq F value Pr(>F) eft ** groupf eft:groupf Residuals
15 summary(m4) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) ** eft ** groupf eft:groupf We now see the fitted model is ESTIMATED TIME = EFT (Row group) = EFT (Corner group) The slope of the corner group regression line is estimated to be the group also has a higher intercept. The regression lines show an increasing difference between the estimated times as EFT increases. However, this difference is not statistically significant. We display the plot, as before 15
16 lines( row$eft,m4$fitted.values[block$groupf==0],col=2, lty=1) lines(corner$eft,m4$fitted.values[block$groupf==1],col=4, lty=2) title("model: eft+group+eft:group") model: eft+group+eft:group time to complete row group corner group SS= df= EFT score 16
17 Model simplification There are two strategies. AIC method. We have already seen this method. We can construct a table of AIC values for each model and choose the model with the lowest value. model AIC value eft eft+group eft+group+eft:group From this analysis we choose the model eft as being the best. However, the interaction model has an AIC value which is very close to the minimum and might be an alternative. 17
18 Classic backward elimination: When we examine the significance level of the interaction term, we find that the difference in slopes of is not statistically significant from zero (p=0.13). We reject this model in favour of the main effects model already discussed. The main effects model can also be simplified as there is no evidence that the group effect is significantly different from zero (p=0.33). Our final model is one where there is no group difference and with eft the only single predictor of time. In this example, the two methods give the same result. In general, the AIC method is less parsimonious, and more likely to retain terms in the model. Backward elimination at the 5% level (p=0.05) will be more likely to exclude terms and is a more conservative method. 18
19 Constructing an Analysis of Variance table. We can construct an analysis of variance table by examining the Sums of Squares given for each model, and differencing them.. We start at the most complex model, and use the sums of squares form this model as our estimate of residual variation. Thus the residual sums of squares is on 20 df. We now work backwards, removing the most complex terms first.. So the sums of squares due to the interaction is on degrees of freedom. Sums of squares due to SS df SS df EFT GROUP given EFT INTERACTION Sum of Squares df Mean Fvalue pvalue square EFT GROUP given EFT Interaction Residual
20 Multiple linear regression In simple linear regression, we attempt to explain the dependent variable in terms of an intercept and a single independent variable which is continuous. Multiple linear regression extends these techniques to allow for several independent continuous variables. Least squares is again used to determine the unstandardised coefficients (the Bs) in the more general equation: Dependent = Intercept + B1 x Independent + B2 x Independent +... Variable (or B0) Variable 1 Variable 2 20
21 Example: professor s salary data University students often complain that universities reward professors for research but not for teaching, and argue that professors react to this situation by devoting more time and energy to research publications and less time and energy to classroom activities. Professors counter that research and teaching go hand in hand; more research makes better teachers. A US student organization decided to investigate part of the issue. They randomly selected 50 psychology professors in their area. The students recorded the salaries of the professors, their average teaching evaluations, and the total number of articles published in their careers. salary salary (in 1000$) evalulation average teaching evaluation (10 point scale) articles number of articles published All variables can be treated as continuous ( although there is an argument for categorising evaluation what is it?) We therefore use multiple regression to investigate the relationship between SALARY, teaching quality and research output. 21
22 We look at the correlation between the three variables: profs=read.table( profs.dat,header=t) cor(profs) salary evaluation articles salary evaluation articles There is a strong correlation between every pair of variables. Research is associated with good teaching, and both are correlated with salaries. We could plot each variable against each other to obtain a graphical picture of each relationship pair. We fit a linear model to investigate further. m1=lm(salary~evaluation+articles,data=profs) summary(lm) 22
23 Estimate Std. Error t value Pr(> t ) (Intercept) e07 *** evaluation articles e10 *** We look at the first part of the output. This is familiar. We see that the variable evaluation (once articles is in the model) is not significant. However the variable articles is significant. This suggests that we can remove articles from the model. The number of articles appears to determine salary, but the teaching evaluation score does not provide an additional component. Salary is not determined by teaching quality. We look to exclude evaluation from the model But first we look at the other part of the output. 23
24 Residual standard error: on 47 degrees of freedom Multiple RSquared: , Adjusted Rsquared: Fstatistic: 60.7 on 2 and 47 DF, pvalue: 9.453e14 The Multiple Rsquared is a measure of the proportion of variance explained by the model. We can find from anova calculations that the sums of squares from the null ( constant mean) model is sums of squares from the articles+evaluation model is the proportion of variance explained is 1 (2308.8/8272.0) = The adjusted Rsquared provides an unbiased estimate of what the proportion of variance explained might be in the population data. 24
25 > m2=lm(salary~articles,data=profs) > summary(m2) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e16 *** articles e15 *** Multiple RSquared: , Adjusted Rsquared: The estimate for articles remains very close to the value in the previous output. The multiple Rsquared and adjusted rsquared are close to the previous values. Our final model is estimated salary = x (numberof articles) How well does this model fit? 25
26 plot(profs$articles, profs$salary, xlab="number of articles", ylab="salary") lines(profs$articles, m2$fitted.values) salary The straight line seems to fit the data well, and the observed points are well scattered around the line. The next lecture wil look at diagnostics for regression models and how to test the assumptions of the linear model more carefully. The model says that every increase in one published article is associated with a estimated salary increase of $1,112 dollars number of articles 26
27 Assumptions of linear regression. a) effects are linear each covariate has a linear rather than a nonlinear relationship to the dependent variable. b) The residuals have a Normal distribution. c) There is constant variance. The variance does not depend on the covariates or on the mean. d) The observations are independent. Important this is part of the design. In the experiment above, the observations would not be independent if one child copied from another. 27
28 Using SPSS In SPSS, we use the SPSS Linear Regression procedure in ENTER mode (all the independent variables are entered into the model) with SALARY as the Dependent Variable and EVALUATI and ARTICLES as Independent Variables, giving the following (edited) summary results: Model 1 Model Summary Adjusted Std. Error of R R Square R Square the Estimate.849 a a. Predictors: (Constant), articles, evaluati Model 1 (Constant) evaluati articles a. Dependent Variable: salary Unstandardized Coefficients Coefficients a Standardized Coefficients B Std. Error Beta t Sig
29 3D plots A simple 3D scatterplot can be carried out by library(lattice) cloud($profs$salary~profs$articles+profs$evaluation) More complex interactive plots can be carried out if you have the ability to install software. 29
30 Different types of multiple regression The preceding example showed an example of regression for exploration and prediction. We wanted to explore the data set to build a suitable statistical model for salary from the teaching evaluation and research publications. This is akin to separating out the structure of the data from the noise. The regression analysis tells us which independent (or predictor) variables are not needed for the structure and can therefore be considered as part of the noise. However, another reason to carry out multiple regression is to CONTROL for the effect of other variables. We may be interested in the association between levels of a hormone and an aggression score. However, our data is observational, not experimental. Observational data means that we survey people and then measuring both the hormone level and the aggression score. Thus we cannot randomly assign individuals to low or high hormone levels our data will be unbalanced and will depend on who we survey. Additionally, we might imagine that other variables affect aggression score in particular age and gender. We need to control for the effect of these variables in our analysis. 30
Multiple Linear Regression
Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is
More informationThe scatterplot indicates a positive linear relationship between waist size and body fat percentage:
STAT E150 Statistical Methods Multiple Regression Three percent of a man's body is essential fat, which is necessary for a healthy body. However, too much body fat can be dangerous. For men between the
More informationSPSS Guide: Regression Analysis
SPSS Guide: Regression Analysis I put this together to give you a stepbystep guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar
More informationChapter 13 Introduction to Linear Regression and Correlation Analysis
Chapter 3 Student Lecture Notes 3 Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing
More informationRegression in ANOVA. James H. Steiger. Department of Psychology and Human Development Vanderbilt University
Regression in ANOVA James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 30 Regression in ANOVA 1 Introduction 2 Basic Linear
More informationMultiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.
Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.
More information12/31/2016. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2
PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Understand linear regression with a single predictor Understand how we assess the fit of a regression model Total Sum of Squares
More informationSimple Linear Regression One Binary Categorical Independent Variable
Simple Linear Regression Does sex influence mean GCSE score? In order to answer the question posed above, we want to run a linear regression of sgcseptsnew against sgender, which is a binary categorical
More information121 Multiple Linear Regression Models
121.1 Introduction Many applications of regression analysis involve situations in which there are more than one regressor variable. A regression model that contains more than one regressor variable is
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More information, then the form of the model is given by: which comprises a deterministic component involving the three regression coefficients (
Multiple regression Introduction Multiple regression is a logical extension of the principles of simple linear regression to situations in which there are several predictor variables. For instance if we
More informationStatistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 16233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate
More informationPart 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
More informationTesting for Lack of Fit
Chapter 6 Testing for Lack of Fit How can we tell if a model fits the data? If the model is correct then ˆσ 2 should be an unbiased estimate of σ 2. If we have a model which is not complex enough to fit
More informationPractice 3 SPSS. Partially based on Notes from the University of Reading:
Practice 3 SPSS Partially based on Notes from the University of Reading: http://www.reading.ac.uk Simple Linear Regression A simple linear regression model is fitted when you want to investigate whether
More informationPsychology 205: Research Methods in Psychology
Psychology 205: Research Methods in Psychology Using R to analyze the data for study 2 Department of Psychology Northwestern University Evanston, Illinois USA November, 2012 1 / 38 Outline 1 Getting ready
More informationChapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS
Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple
More informationBivariate Analysis. Correlation. Correlation. Pearson's Correlation Coefficient. Variable 1. Variable 2
Bivariate Analysis Variable 2 LEVELS >2 LEVELS COTIUOUS Correlation Used when you measure two continuous variables. Variable 2 2 LEVELS X 2 >2 LEVELS X 2 COTIUOUS ttest X 2 X 2 AOVA (Ftest) ttest AOVA
More information0.1 Multiple Regression Models
0.1 Multiple Regression Models We will introduce the multiple Regression model as a mean of relating one numerical response variable y to two or more independent (or predictor variables. We will see different
More informationLinear Models in STATA and ANOVA
Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 42 A Note on NonLinear Relationships 44 Multiple Linear Regression 45 Removal of Variables 48 Independent Samples
More informationE(y i ) = x T i β. yield of the refined product as a percentage of crude specific gravity vapour pressure ASTM 10% point ASTM end point in degrees F
Random and Mixed Effects Models (Ch. 10) Random effects models are very useful when the observations are sampled in a highly structured way. The basic idea is that the error associated with any linear,
More informationMULTIPLE REGRESSION WITH CATEGORICAL DATA
DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 86 MULTIPLE REGRESSION WITH CATEGORICAL DATA I. AGENDA: A. Multiple regression with categorical variables. Coding schemes. Interpreting
More information1/27/2013. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2
PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Introduce moderated multiple regression Continuous predictor continuous predictor Continuous predictor categorical predictor Understand
More informationCorrelation and Simple Linear Regression
Correlation and Simple Linear Regression We are often interested in studying the relationship among variables to determine whether they are associated with one another. When we think that changes in a
More informationComparing Nested Models
Comparing Nested Models ST 430/514 Two models are nested if one model contains all the terms of the other, and at least one additional term. The larger model is the complete (or full) model, and the smaller
More informationNCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
More informationANOVA. February 12, 2015
ANOVA February 12, 2015 1 ANOVA models Last time, we discussed the use of categorical variables in multivariate regression. Often, these are encoded as indicator columns in the design matrix. In [1]: %%R
More informationUnivariate Regression
Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is
More informationSAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
More informationSimple Linear Regression in SPSS STAT 314
Simple Linear Regression in SPSS STAT 314 1. Ten Corvettes between 1 and 6 years old were randomly selected from last year s sales records in Virginia Beach, Virginia. The following data were obtained,
More informationModule 5: Multiple Regression Analysis
Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College
More informationElementary Statistics Sample Exam #3
Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to
More informationChapter 7: Simple linear regression Learning Objectives
Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) 
More informationANNOTATED OUTPUTSPSS Simple Linear (OLS) Regression
Simple Linear (OLS) Regression Regression is a method for studying the relationship of a dependent variable and one or more independent variables. Simple Linear Regression tells you the amount of variance
More informationSimple linear regression
Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between
More informationRegression III: Dummy Variable Regression
Regression III: Dummy Variable Regression Tom Ilvento FREC 408 Linear Regression Assumptions about the error term Mean of Probability Distribution of the Error term is zero Probability Distribution of
More informationRegression in SPSS. Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology
Regression in SPSS Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology John P. Bentley Department of Pharmacy Administration University of
More informationSPSS: Descriptive and Inferential Statistics. For Windows
For Windows August 2012 Table of Contents Section 1: Summarizing Data...3 1.1 Descriptive Statistics...3 Section 2: Inferential Statistics... 10 2.1 ChiSquare Test... 10 2.2 T tests... 11 2.3 Correlation...
More informationResiduals. Residuals = ª Department of ISM, University of Alabama, ST 260, M23 Residuals & Minitab. ^ e i = y i  y i
A continuation of regression analysis Lesson Objectives Continue to build on regression analysis. Learn how residual plots help identify problems with the analysis. M231 M232 Example 1: continued Case
More informationWeek 5: Multiple Linear Regression
BUS41100 Applied Regression Analysis Week 5: Multiple Linear Regression Parameter estimation and inference, forecasting, diagnostics, dummy variables Robert B. Gramacy The University of Chicago Booth School
More informationCHAPTER 2 AND 10: Least Squares Regression
CHAPTER 2 AND 0: Least Squares Regression In chapter 2 and 0 we will be looking at the relationship between two quantitative variables measured on the same individual. General Procedure:. Make a scatterplot
More informationStat 411/511 ANOVA & REGRESSION. Charlotte Wickham. stat511.cwick.co.nz. Nov 31st 2015
Stat 411/511 ANOVA & REGRESSION Nov 31st 2015 Charlotte Wickham stat511.cwick.co.nz This week Today: Lack of fit Ftest Weds: Review email me topics, otherwise I ll go over some of last year s final exam
More informationLinear Regression in SPSS
Linear Regression in SPSS Data: mangunkill.sav Goals: Examine relation between number of handguns registered (nhandgun) and number of man killed (mankill) checking Predict number of man killed using number
More informationMultiple Linear Regression
Multiple Linear Regression Simple Linear Regression Regression equation for a line (population): y = β 0 + β 1 x + β 0 : point where the line intercepts yaxis β 1 : slope of the line : error in estimating
More information5. Linear Regression
5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4
More informationChapter 11: Two Variable Regression Analysis
Department of Mathematics Izmir University of Economics Week 1415 20142015 In this chapter, we will focus on linear models and extend our analysis to relationships between variables, the definitions
More informationMultiple Regression. Page 24
Multiple Regression Multiple regression is an extension of simple (bivariate) regression. The goal of multiple regression is to enable a researcher to assess the relationship between a dependent (predicted)
More informationFinal Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
More informationSELFTEST: SIMPLE REGRESSION
ECO 22000 McRAE SELFTEST: SIMPLE REGRESSION Note: Those questions indicated with an (N) are unlikely to appear in this form on an inclass examination, but you should be able to describe the procedures
More informationRegression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between
More informationThe general form of the PROC GLM statement is
Linear Regression Analysis using PROC GLM Regression analysis is a statistical method of obtaining an equation that represents a linear relationship between two variables (simple linear regression), or
More informationStat 5303 (Oehlert): Tukey One Degree of Freedom 1
Stat 5303 (Oehlert): Tukey One Degree of Freedom 1 > catch
More informationMultiple Regression in SPSS STAT 314
Multiple Regression in SPSS STAT 314 I. The accompanying data is on y = profit margin of savings and loan companies in a given year, x 1 = net revenues in that year, and x 2 = number of savings and loan
More informationUsing R for Linear Regression
Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional
More information7. Tests of association and Linear Regression
7. Tests of association and Linear Regression In this chapter we consider 1. Tests of Association for 2 qualitative variables. 2. Measures of the strength of linear association between 2 quantitative variables.
More information2SLS HATCO SPSS and SHAZAM Example. by Eddie Oczkowski. August X9: Usage Level (how much of the firm s total product is purchased from HATCO).
2SLS HATCO SPSS and SHAZAM Example by Eddie Oczkowski August 200 This example illustrates how to use SPSS to estimate and evaluate a 2SLS latent variable model. The bulk of the example relates to SPSS,
More informationChapter 23. Inferences for Regression
Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily
More informationAn analysis method for a quantitative outcome and two categorical explanatory variables.
Chapter 11 TwoWay ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that
More information1. The parameters to be estimated in the simple linear regression model Y=α+βx+ε ε~n(0,σ) are: a) α, β, σ b) α, β, ε c) a, b, s d) ε, 0, σ
STA 3024 Practice Problems Exam 2 NOTE: These are just Practice Problems. This is NOT meant to look just like the test, and it is NOT the only thing that you should study. Make sure you know all the material
More informationE205 Final: Version B
Name: Class: Date: E205 Final: Version B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of a local nightclub has recently surveyed a random
More informationID X Y
Dale Berger SPSS StepbyStep Regression Introduction: MRC01 This stepbystep example shows how to enter data into SPSS and conduct a simple regression analysis to develop an equation to predict from.
More informatione = random error, assumed to be normally distributed with mean 0 and standard deviation σ
1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.
More informationwhere b is the slope of the line and a is the intercept i.e. where the line cuts the y axis.
Least Squares Introduction We have mentioned that one should not always conclude that because two variables are correlated that one variable is causing the other to behave a certain way. However, sometimes
More informationOutline. Topic 4  Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4  Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test  Fall 2013 R 2 and the coefficient of correlation
More informationStatistical Modelling in Stata 5: Linear Models
Statistical Modelling in Stata 5: Linear Models Mark Lunt Arthritis Research UK Centre for Excellence in Epidemiology University of Manchester 08/11/2016 Structure This Week What is a linear model? How
More informationChapter 10. Analysis of Covariance. 10.1 Multiple regression
Chapter 10 Analysis of Covariance An analysis procedure for looking at group effects on a continuous outcome when some other continuous explanatory variable also has an effect on the outcome. This chapter
More informationRegression stepbystep using Microsoft Excel
Step 1: Regression stepbystep using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression
More information5. Multiple regression
5. Multiple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/5 QBUS6840 Predictive Analytics 5. Multiple regression 2/39 Outline Introduction to multiple linear regression Some useful
More informationPlease follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software
STATA Tutorial Professor Erdinç Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software 1.Wald Test Wald Test is used
More informationHomework 11. Part 1. Name: Score: / null
Name: Score: / Homework 11 Part 1 null 1 For which of the following correlations would the data points be clustered most closely around a straight line? A. r = 0.50 B. r = 0.80 C. r = 0.10 D. There is
More information10. Analysis of Longitudinal Studies Repeatmeasures analysis
Research Methods II 99 10. Analysis of Longitudinal Studies Repeatmeasures analysis This chapter builds on the concepts and methods described in Chapters 7 and 8 of Mother and Child Health: Research methods.
More informationKSTAT MINIMANUAL. Decision Sciences 434 Kellogg Graduate School of Management
KSTAT MINIMANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To
More informationSimple Linear Regression
Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression Statistical model for linear regression Estimating
More informationFactors affecting online sales
Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4
More informationSydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.
Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under
More informationpsyc3010 lecture 8 standard and hierarchical multiple regression last week: correlation and regression Next week: moderated regression
psyc3010 lecture 8 standard and hierarchical multiple regression last week: correlation and regression Next week: moderated regression 1 last week this week last week we revised correlation & regression
More informationEPS 625 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM
EPS 6 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM ANCOVA One Continuous Dependent Variable (DVD Rating) Interest Rating in DVD One Categorical/Discrete Independent Variable
More informationSimple Linear Regression, Scatterplots, and Bivariate Correlation
1 Simple Linear Regression, Scatterplots, and Bivariate Correlation This section covers procedures for testing the association between two continuous variables using the SPSS Regression and Correlate analyses.
More informationHYPOTHESIS TESTING: CONFIDENCE INTERVALS, TTESTS, ANOVAS, AND REGRESSION
HYPOTHESIS TESTING: CONFIDENCE INTERVALS, TTESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate
More informationData Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression
Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction
More informationWe extended the additive model in two variables to the interaction model by adding a third term to the equation.
Quadratic Models We extended the additive model in two variables to the interaction model by adding a third term to the equation. Similarly, we can extend the linear model in one variable to the quadratic
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationUsing SPSS for Multiple Regression. UDP 520 Lab 7 Lin Lin December 4 th, 2007
Using SPSS for Multiple Regression UDP 520 Lab 7 Lin Lin December 4 th, 2007 Step 1 Define Research Question What factors are associated with BMI? Predict BMI. Step 2 Conceptualizing Problem (Theory) Individual
More informationBasic Statistics and Data Analysis for Health Researchers from Foreign Countries
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association
More informationPremaster Statistics Tutorial 4 Full solutions
Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for
More informationRegression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
More informationStat 412/512 CASE INFLUENCE STATISTICS. Charlotte Wickham. stat512.cwick.co.nz. Feb 2 2015
Stat 412/512 CASE INFLUENCE STATISTICS Feb 2 2015 Charlotte Wickham stat512.cwick.co.nz Regression in your field See website. You may complete this assignment in pairs. Find a journal article in your field
More informationInterpreting Multiple Regression
Fall Semester, 2001 Statistics 621 Lecture 5 Robert Stine 1 Preliminaries Interpreting Multiple Regression Project and assignments Hope to have some further information on project soon. Due date for Assignment
More informationCHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression
Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the
More informationRegression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur
Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Lecture  7 Multiple Linear Regression (Contd.) This is my second lecture on Multiple Linear Regression
More informationSimple Linear Regression Chapter 11
Simple Linear Regression Chapter 11 Rationale Frequently decisionmaking situations require modeling of relationships among business variables. For instance, the amount of sale of a product may be related
More information1. ε is normally distributed with a mean of 0 2. the variance, σ 2, is constant 3. All pairs of error terms are uncorrelated
STAT E150 Statistical Methods Residual Analysis; Data Transformations The validity of the inference methods (hypothesis testing, confidence intervals, and prediction intervals) depends on the error term,
More informationUsing Minitab for Regression Analysis: An extended example
Using Minitab for Regression Analysis: An extended example The following example uses data from another text on fertilizer application and crop yield, and is intended to show how Minitab can be used to
More informationOneWay Analysis of Variance: A Guide to Testing Differences Between Multiple Groups
OneWay Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The
More informationPredictor Coef StDev T P Constant 970667056 616256122 1.58 0.154 X 0.00293 0.06163 0.05 0.963. S = 0.5597 RSq = 0.0% RSq(adj) = 0.
Statistical analysis using Microsoft Excel Microsoft Excel spreadsheets have become somewhat of a standard for data storage, at least for smaller data sets. This, along with the program often being packaged
More informationAPPLICATION OF LINEAR REGRESSION MODEL FOR POISSON DISTRIBUTION IN FORECASTING
APPLICATION OF LINEAR REGRESSION MODEL FOR POISSON DISTRIBUTION IN FORECASTING Sulaimon Mutiu O. Department of Statistics & Mathematics Moshood Abiola Polytechnic, Abeokuta, Ogun State, Nigeria. Abstract
More informationFor example, enter the following data in three COLUMNS in a new View window.
Statistics with Statview  18 Paired ttest A paired ttest compares two groups of measurements when the data in the two groups are in some way paired between the groups (e.g., before and after on the
More informationMain Effects and Interactions
Main Effects & Interactions page 1 Main Effects and Interactions So far, we ve talked about studies in which there is just one independent variable, such as violence of television program. You might randomly
More informationExample: Boats and Manatees
Figure 96 Example: Boats and Manatees Slide 1 Given the sample data in Table 91, find the value of the linear correlation coefficient r, then refer to Table A6 to determine whether there is a significant
More information11/20/2014. Correlational research is used to describe the relationship between two or more naturally occurring variables.
Correlational research is used to describe the relationship between two or more naturally occurring variables. Is age related to political conservativism? Are highly extraverted people less afraid of rejection
More information