POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model.
|
|
- Anthony Curtis
- 1 years ago
- Views:
Transcription
1 Polynomial Regression POLYNOMIAL AND MULTIPLE REGRESSION Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. It is a form of linear regression that allows one to predict a single y variable by decomposing the x variable into a n th order polynomial. Generally has the form: y = a + ß 1 x + ß x + ß 3 x 3... ß k x k In polynomial regression, different powers of the x variable are successively added to the equation to see if they increase r significantly. Note, as successive powers of x are added to the equation, the best fit line changes shape. y = a + ß 1 x (a straight line) y = a + ß 1 x + ß x (this quadratic equation produces a parabola) y = a + ß 1 x + ß x + ß 3 x 3 (this cubic equation produces a s-shaped curve) 1
2 An examination of a scatter plot of the data should help you decide to what power to use. For a single curvilinear line use the quadratic equation. If the curve has two bends, you'll need a cubic model. Curves with multiple kinks need even higher-order terms. It's rare to go past a quadratic. Significance tests should be conducted to test if the polynomial regression explains a significant amount of the variance. One conducts hypothesis tests at each step to see if the increase in r is significantly different. Thus you test the difference in the r value between the lower power and next higher power equations asking the question: does an additional term significantly increase the r value? Begin by testing if the data are linear. If so, stop (no polynomial regression is necessary). If the linear regression is insignificant, compare the r for the linear versus the r for the quadratic equation. Continue adding powers and doing tests until significance is reached. H 0 : r i = r j H 1 : r i < r j Where i refers to the lower power equation and j refers to the higher power equation. This test is done using the F test statistic where: r j r i F = df j 1 r j F is distributed with j degrees of freedom in the numerator and n-j-1 degrees of freedom in the denominator where j is the power of the higher order polynomial. Warning. With the addition of successive powers of x, the r will no doubt increase. As the powers of x (k or the order of the polynomial equation) approaches n-1, the equation will begin to give a "perfect fit" by connecting all the data points. This is not what one wants! Best to generally stay within the quadratic (x ) or cubic (x 3 ) orders
3 Multiple Regression (Least Squares) Multiple regression allows one to predict a single variable from a set of k additional variables where k = m-1 Generally has the form: y = a + ß 1 x 1 + ß x... ß k x k a = initial intercept ß = partial regression coefficients for variables x 1... x k Can get the matrix of coefficients (the ß's) by the equation B=A C where... B = vector of regression coefficients A = matrix of sums of squares and cross products (based on mean deviations) C = a vector of sums of cross products of y B ß1 ß k A C Σx 1 Σx 1 x k Σx 1 y = Σx k x 1 Σx k Σx k y To get the initial intercept (a) plug in the means for y and each x, then solve for a a = y ß 1 x 1 ß x... ß k x k The equation values for each regressed object onto the line equals: ˆ y i =a+ß 1 x i1 + ß x i... ß k x ik + e i 3
4 The error term (e i ) for each ˆ y i can be found (y i - ˆ y i) The ß's may be difficult to interpret (but may be thought of as weights or loadings). In matrix form, Y=XB+E where... Y is a vector of independent variables X is the matrix of dependent variables B is the column vector of regression coefficients E is the column vector of residuals (error terms) B is determined to minimize the sums of squares of the residuals and corresponds to finding the best fitting k-dimensional hyper plane in m dimensional space. The least-squares approach minimized the sum of the squared distances parallel to the y-axis Significant tests on multiple regression H 0 : ß 0 = ß 1 = ß... ß k = 0 H 1 : at least one of the ß coefficients 0 Statistics are the same as with bivariate regression and analysis of variance. Partition the variance into three different sums of squares SS r = ( ˆ y i y ) SS D = ( y i ˆ y 1 ) SS T = SS r + SS D Variance explained by regression = S r = SS r / k ( ) Unexplained variance = S D = SS D / n - k -1 ( ) Total variance = S t = SS t / n -1 note: the ratio SS r /SS t = R coefficient where R = the multiple correlation 4
5 Use F-test to see if the regression explains a significant proportion of the variance, i.e. the multiple regression coefficients = 0. Observed value of F can be obtained by: F = S r S D and should be tested against a critical value of F from a table for a desired α and k df in numerator and n-k-1 df in denominator. Each individual regression coefficient can also be tested by the t-test by calculating the standard error for each variable. For each coefficient calculate the standard error (se b ) and then calculated t value. for ß coefficient j = se b j = S 1 a D jj where a -1 is element j in the inverses matrix of sums of squares and jj cross products t = ß j 0 se b j test the observed t-value for each coefficient (which is distributed with n-k-1 degrees of freedom 5
6 e.g. Variables measured on trilobites VARIABLES Sample L (Y) W(X1) GSL(X) GA(X3) TH(X4)
Regression III: Advanced Methods
Lecture 5: Linear least-squares Regression III: Advanced Methods William G. Jacoby Department of Political Science Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Simple Linear Regression
Regression, least squares
Regression, least squares Joe Felsenstein Department of Genome Sciences and Department of Biology Regression, least squares p.1/24 Fitting a straight line X Two distinct cases: The X values are chosen
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
Univariate Regression
Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is
12/31/2016. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2
PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Understand linear regression with a single predictor Understand how we assess the fit of a regression model Total Sum of Squares
Chapter 14: Analyzing Relationships Between Variables
Chapter Outlines for: Frey, L., Botan, C., & Kreps, G. (1999). Investigating communication: An introduction to research methods. (2nd ed.) Boston: Allyn & Bacon. Chapter 14: Analyzing Relationships Between
Part 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
Regression III: Advanced Methods
Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models
12-1 Multiple Linear Regression Models
12-1.1 Introduction Many applications of regression analysis involve situations in which there are more than one regressor variable. A regression model that contains more than one regressor variable is
2. Simple Linear Regression
Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according
UNDERSTANDING MULTIPLE REGRESSION
UNDERSTANDING Multiple regression analysis (MRA) is any of several related statistical methods for evaluating the effects of more than one independent (or predictor) variable on a dependent (or outcome)
Testing for Lack of Fit
Chapter 6 Testing for Lack of Fit How can we tell if a model fits the data? If the model is correct then ˆσ 2 should be an unbiased estimate of σ 2. If we have a model which is not complex enough to fit
Module 5: Multiple Regression Analysis
Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College
Elementary Statistics Sample Exam #3
Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to
Chapter 9. Section Correlation
Chapter 9 Section 9.1 - Correlation Objectives: Introduce linear correlation, independent and dependent variables, and the types of correlation Find a correlation coefficient Test a population correlation
A correlation exists between two variables when one of them is related to the other in some way.
Lecture #10 Chapter 10 Correlation and Regression The main focus of this chapter is to form inferences based on sample data that come in pairs. Given such paired sample data, we want to determine whether
Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.
Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate
Lecture 5: Correlation and Linear Regression
Lecture 5: Correlation and Linear Regression 3.5. (Pearson) correlation coefficient The correlation coefficient measures the strength of the linear relationship between two variables. The correlation is
Multiple Regression Analysis in Minitab 1
Multiple Regression Analysis in Minitab 1 Suppose we are interested in how the exercise and body mass index affect the blood pressure. A random sample of 10 males 50 years of age is selected and their
Dimensionality Reduction: Principal Components Analysis
Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely
MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL. by Michael L. Orlov Chemistry Department, Oregon State University (1996)
MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL by Michael L. Orlov Chemistry Department, Oregon State University (1996) INTRODUCTION In modern science, regression analysis is a necessary part
Chapter 7: Simple linear regression Learning Objectives
Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -
Lesson Lesson Outline Outline
Lesson 15 Linear Regression Lesson 15 Outline Review correlation analysis Dependent and Independent variables Least Squares Regression line Calculating l the slope Calculating the Intercept Residuals and
Chapter 11: Two Variable Regression Analysis
Department of Mathematics Izmir University of Economics Week 14-15 2014-2015 In this chapter, we will focus on linear models and extend our analysis to relationships between variables, the definitions
Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur
Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 7 Multiple Linear Regression (Contd.) This is my second lecture on Multiple Linear Regression
Practice 3 SPSS. Partially based on Notes from the University of Reading:
Practice 3 SPSS Partially based on Notes from the University of Reading: http://www.reading.ac.uk Simple Linear Regression A simple linear regression model is fitted when you want to investigate whether
Curvilinear Regression Analysis
Analysis Lecture 18 April 7, 2005 Applied Analysis Lecture #18-4/7/2005 Slide 1 of 29 Today s Lecture ANOVA with a continuous independent variable. Today s Lecture regression analysis. Interactions with
CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression
Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the
Class 6: Chapter 12. Key Ideas. Explanatory Design. Correlational Designs
Class 6: Chapter 12 Correlational Designs l 1 Key Ideas Explanatory and predictor designs Characteristics of correlational research Scatterplots and calculating associations Steps in conducting a correlational
psyc3010 lecture 8 standard and hierarchical multiple regression last week: correlation and regression Next week: moderated regression
psyc3010 lecture 8 standard and hierarchical multiple regression last week: correlation and regression Next week: moderated regression 1 last week this week last week we revised correlation & regression
Calculate Confidence Intervals Using the TI Graphing Calculator
Calculate Confidence Intervals Using the TI Graphing Calculator Confidence Interval for Population Proportion p Confidence Interval for Population μ (σ is known 1 Select: STAT / TESTS / 1-PropZInt x: number
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number
1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression
The aspect of the data that we want to describe/measure is the degree of linear relationship between and The statistic r describes/measures the degree
PS 511: Advanced Statistics for Psychological and Behavioral Research 1 Both examine linear (straight line) relationships Correlation works with a pair of scores One score on each of two variables ( and
Residuals. Residuals = ª Department of ISM, University of Alabama, ST 260, M23 Residuals & Minitab. ^ e i = y i - y i
A continuation of regression analysis Lesson Objectives Continue to build on regression analysis. Learn how residual plots help identify problems with the analysis. M23-1 M23-2 Example 1: continued Case
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
INTERPRETING THE REPEATED-MEASURES ANOVA
INTERPRETING THE REPEATED-MEASURES ANOVA USING THE SPSS GENERAL LINEAR MODEL PROGRAM RM ANOVA In this scenario (based on a RM ANOVA example from Leech, Barrett, and Morgan, 2005) each of 12 participants
X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)
CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.
Statistiek II. John Nerbonne. March 24, 2010. Information Science, Groningen Slides improved a lot by Harmut Fitz, Groningen!
Information Science, Groningen j.nerbonne@rug.nl Slides improved a lot by Harmut Fitz, Groningen! March 24, 2010 Correlation and regression We often wish to compare two different variables Examples: compare
12/31/2016. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2
PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Understand when to use multiple Understand the multiple equation and what the coefficients represent Understand different methods
Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario
Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario I have found that the best way to practice regression is by brute force That is, given nothing but a dataset and your mind, compute everything
Simple Linear Regression
Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression Statistical model for linear regression Estimating
Causal Forecasting Models
CTL.SC1x -Supply Chain & Logistics Fundamentals Causal Forecasting Models MIT Center for Transportation & Logistics Causal Models Used when demand is correlated with some known and measurable environmental
Factors affecting online sales
Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4
Lecture 18 Linear Regression
Lecture 18 Statistics Unit Andrew Nunekpeku / Charles Jackson Fall 2011 Outline 1 1 Situation - used to model quantitative dependent variable using linear function of quantitative predictor(s). Situation
Multiple Regression YX1 YX2 X1X2 YX1.X2
Multiple Regression Simple or total correlation: relationship between one dependent and one independent variable, Y versus X Coefficient of simple determination: r (or r, r ) YX YX XX Partial correlation:
Multiple Regression in SPSS STAT 314
Multiple Regression in SPSS STAT 314 I. The accompanying data is on y = profit margin of savings and loan companies in a given year, x 1 = net revenues in that year, and x 2 = number of savings and loan
Regression analysis. Advanced Financial Accounting II Åbo Akademi School of Business
Regression analysis Advanced Financial Accounting II Åbo Akademi School of Business Regression analysis A statistical process for estimating the relationships among variables Includes many techniques for
Regression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9
DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,
Multiple Linear Regression
Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is
Multiple Regression - Selecting the Best Equation An Example Techniques for Selecting the "Best" Regression Equation
Multiple Regression - Selecting the Best Equation When fitting a multiple linear regression model, a researcher will likely include independent variables that are not important in predicting the dependent
Linear Models and Conjoint Analysis with Nonlinear Spline Transformations
Linear Models and Conjoint Analysis with Nonlinear Spline Transformations Warren F. Kuhfeld Mark Garratt Abstract Many common data analysis models are based on the general linear univariate model, including
Simple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
Lecture - 32 Regression Modelling Using SPSS
Applied Multivariate Statistical Modelling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 32 Regression Modelling Using SPSS (Refer
Example: Boats and Manatees
Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant
Simple Linear Regression Chapter 11
Simple Linear Regression Chapter 11 Rationale Frequently decision-making situations require modeling of relationships among business variables. For instance, the amount of sale of a product may be related
t-tests and F-tests in regression
t-tests and F-tests in regression Johan A. Elkink University College Dublin 5 April 2012 Johan A. Elkink (UCD) t and F-tests 5 April 2012 1 / 25 Outline 1 Simple linear regression Model Variance and R
Simple Regression and Correlation
Simple Regression and Correlation Today, we are going to discuss a powerful statistical technique for examining whether or not two variables are related. Specifically, we are going to talk about the ideas
Exercise 1.12 (Pg. 22-23)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
Introduction to Regression. Dr. Tom Pierce Radford University
Introduction to Regression Dr. Tom Pierce Radford University In the chapter on correlational techniques we focused on the Pearson R as a tool for learning about the relationship between two variables.
One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups
One-Way Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The
Using R for Linear Regression
Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional
Multiple Correlation Coefficient
Hervé Abdi 1 1 Overview The multiple correlation coefficient generalizes the standard coefficient of correlation. It is used in multiple regression analysis to assess the quality of the prediction of the
Multiple Linear Regression
Multiple Linear Regression Simple Linear Regression Regression equation for a line (population): y = β 0 + β 1 x + β 0 : point where the line intercepts y-axis β 1 : slope of the line : error in estimating
Pearson s Correlation
Pearson s Correlation Correlation the degree to which two variables are associated (co-vary). Covariance may be either positive or negative. Its magnitude depends on the units of measurement. Assumes the
ANOVA MULTIPLE CHOICE QUESTIONS. In the following multiple-choice questions, select the best answer.
ANOVA MULTIPLE CHOICE QUESTIONS In the following multiple-choice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard
SUBMODELS (NESTED MODELS) AND ANALYSIS OF VARIANCE OF REGRESSION MODELS
1 SUBMODELS (NESTED MODELS) AND ANALYSIS OF VARIANCE OF REGRESSION MODELS We will assume we have data (x 1, y 1 ), (x 2, y 2 ),, (x n, y n ) and make the usual assumptions of independence and normality.
Multiple Regression: What Is It?
Multiple Regression Multiple Regression: What Is It? Multiple regression is a collection of techniques in which there are multiple predictors of varying kinds and a single outcome We are interested in
Least Squares Estimation
Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David
, then the form of the model is given by: which comprises a deterministic component involving the three regression coefficients (
Multiple regression Introduction Multiple regression is a logical extension of the principles of simple linear regression to situations in which there are several predictor variables. For instance if we
Correlation and Regression Analysis: SPSS
Correlation and Regression Analysis: SPSS Bivariate Analysis: Cyberloafing Predicted from Personality and Age These days many employees, during work hours, spend time on the Internet doing personal things,
Regression in ANOVA. James H. Steiger. Department of Psychology and Human Development Vanderbilt University
Regression in ANOVA James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 30 Regression in ANOVA 1 Introduction 2 Basic Linear
Notes on Applied Linear Regression
Notes on Applied Linear Regression Jamie DeCoster Department of Social Psychology Free University Amsterdam Van der Boechorststraat 1 1081 BT Amsterdam The Netherlands phone: +31 (0)20 444-8935 email:
Statistical Modelling in Stata 5: Linear Models
Statistical Modelling in Stata 5: Linear Models Mark Lunt Arthritis Research UK Centre for Excellence in Epidemiology University of Manchester 08/11/2016 Structure This Week What is a linear model? How
Course Objective This course is designed to give you a basic understanding of how to run regressions in SPSS.
SPSS Regressions Social Science Research Lab American University, Washington, D.C. Web. www.american.edu/provost/ctrl/pclabs.cfm Tel. x3862 Email. SSRL@American.edu Course Objective This course is designed
Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation
AMS7: WEEK 8. CLASS 1. Correlation Monday May 18th, 2015
AMS7: WEEK 8. CLASS 1 Correlation Monday May 18th, 2015 Type of Data and objectives of the analysis Paired sample data (Bivariate data) Determine whether there is an association between two variables This
EPS 625 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM
EPS 6 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM ANCOVA One Continuous Dependent Variable (DVD Rating) Interest Rating in DVD One Categorical/Discrete Independent Variable
Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk
Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:
0.1 Multiple Regression Models
0.1 Multiple Regression Models We will introduce the multiple Regression model as a mean of relating one numerical response variable y to two or more independent (or predictor variables. We will see different
ANALYSIS OF TREND CHAPTER 5
ANALYSIS OF TREND CHAPTER 5 ERSH 8310 Lecture 7 September 13, 2007 Today s Class Analysis of trends Using contrasts to do something a bit more practical. Linear trends. Quadratic trends. Trends in SPSS.
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.
Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.
ALGEBRA I A PLUS COURSE OUTLINE
ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best
REGRESSION LINES IN STATA
REGRESSION LINES IN STATA THOMAS ELLIOTT 1. Introduction to Regression Regression analysis is about eploring linear relationships between a dependent variable and one or more independent variables. Regression
Regression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between
, has mean A) 0.3. B) the smaller of 0.8 and 0.5. C) 0.15. D) which cannot be determined without knowing the sample results.
BA 275 Review Problems - Week 9 (11/20/06-11/24/06) CD Lessons: 69, 70, 16-20 Textbook: pp. 520-528, 111-124, 133-141 An SRS of size 100 is taken from a population having proportion 0.8 of successes. An
Statistics for Management II-STAT 362-Final Review
Statistics for Management II-STAT 362-Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to
A. Karpinski
Chapter 3 Multiple Linear Regression Page 1. Overview of multiple regression 3-2 2. Considering relationships among variables 3-3 3. Extending the simple regression model to multiple predictors 3-4 4.
Section 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
Regression III: Advanced Methods
Lecture 11: Outliers and Influential data Regression III: Advanced Methods William G. Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Outlying Observations: Why pay attention?
SPSS Guide: Regression Analysis
SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar
Introduction to General and Generalized Linear Models
Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby
General Regression Formulae ) (N-2) (1 - r 2 YX
General Regression Formulae Single Predictor Standardized Parameter Model: Z Yi = β Z Xi + ε i Single Predictor Standardized Statistical Model: Z Yi = β Z Xi Estimate of Beta (Beta-hat: β = r YX (1 Standard
Obtaining Uncertainty Measures on Parameters of a
Obtaining Uncertainty Measures on Parameters of a Polynomial Least Squares Fit with Excel s LINEST Professor of Chemical Engineering Michigan Technological University, Houghton, MI 39931 24 June 2015 In
Inferential Statistics
Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
ModuMath Algebra Lessons
ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations
where b is the slope of the line and a is the intercept i.e. where the line cuts the y axis.
Least Squares Introduction We have mentioned that one should not always conclude that because two variables are correlated that one variable is causing the other to behave a certain way. However, sometimes