# Learning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr.

Save this PDF as:

Size: px
Start display at page:

Download "Learning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr."

## Transcription

1 Algorithms ad Data Structures Algorithm efficiecy Learig outcomes Able to carry out simple asymptotic aalysisof algorithms Prof. Dr. Qi Xi 2 Time Complexity Aalysis How fast is the algorithm? Code the algorithm ad ru the program, the measure the ruig time 1. Dep o the speed of the computer 2. Waste time codig ad testig if the algorithm is slow Time Complexity Aalysis How to measure efficiecy? Number of operatios usually expressed i terms of iput size If we doubled/trebled the iput size, how much loger would the algorithm take? Idetify some importat operatios/steps ad cout how may times these operatios/steps eeded to be executed 3 4

2 Why efficiecy matters? speed of computatio by hardware has bee improved efficiecy still matters ambitio for computer applicatios grow with computer power demad a great icrease i speed of computatio Amout of data hadled matches speed icrease? Whe computatio speed vastly icreased, ca we hadle much more data? Suppose a algorithm takes 2 comparisos to sort umbers we eed 1 sec to sort 5 umbers (25 comparisos) computig speed icreases by factor of 100 Usig 1 sec, we ca ow perform 100x25 comparisos, i.e., to sort 50 umbers With 100 times speedup, oly sort 10 times more umbers! 5 6 Time/Space Complexity Aalysis Importat operatio of summatio: additio How may additios this algorithm requires? iput sum = 0 for i = 1 to do begi sum = sum + i output sum Look for improvemet Mathematical formula gives us a alterative way to fid the sum of first umbers: = (+1)/2 iput sum = *(+1)/2 output sum We eed additios (dep o the iput size ) We eed 3 variables, sum, & i => eeds 3 memory space We oly eed 3 operatios: 1 additio, 1 multiplicatio, ad 1 divisio (o matter what the iput size is) I other cases, space complexity may dep o the iput size 7 8

3 Improve Searchig We've leart sequetial search ad it takes comparisos i the worst case. If the umbers are pre-sorted, the we ca improve the time complexity of searchig by biary search. Biary Search more efficiet way of searchig whe the sequece of umbers is pre-sorted Iput:a sequece of sortedumbers a 1, a 2,, a i ascig order ad a umber X Idea of algorithm: compare X with umber i the middle the focus o oly the first half or the secod half (dep o whether X is smaller or greater tha the middle umber) reduce the amout of umbers to be searched by half 9 10 Biary Search (2) To fid X foud! 10 os Biary Search (3) To fid X ot foud! 10 os 11 12

4 Biary Search Pseudo Code first = 1 last = while (first <= last) do begi // check with o. i middle report "Not Foud!" is the floor fuctio, trucates the decimal part mid = (first+last)/2 if (X == a[mid]) report "Foud!" & stop if (X < a[mid]) last = mid-1 first = mid+1 Biary Search Pseudo Code while first <= last do begi mid = (first+last)/2 if (X == a[mid]) report "Foud!" & stop if (X < a[mid]) last = mid-1 first = mid+1 Modify it to iclude stoppig coditios i the while loop Best case: Number of Comparisos X is the umber i the middle 1 compariso Worst case: at most log 2 +1 comparisos Why? Every compariso reduces the amout of umbers by at least half E.g., first=1, last= while (first <= last) do begi mid = (first+last)/2 if (X == a[mid]) report "Foud!" & stop if (X < a[mid]) last = mid-1 first = mid+1 report "Not Foud!" Time complexity -Big O otatio 15

5 Note o Logarithm Logarithm is the iverse of the power fuctio log 2 2 x = x log 2 x*y = log 2 x + log 2 y For example, log 21 = log 22 0 = 0 log 2 2 = log = 1 log 2 x/y = log 2 x - log 2 y log 2 4 = log = 2 log 2 16 = log = 4 log = log = 8 log = log = 10 log 2 4*8 = log log 2 8 = 2+3 = 5 log 2 16*16 = log log 2 16 = 8 log 2 32/8 = log log 2 8 = 5-3 = 2 log 2 1/4 = log log 2 4 = 0-2 = -2 Which algorithm is the fastest? Cosider a problem that ca be solved by 5 algorithms A 1, A 2, A 3, A 4, A 5 usig differet umber of operatios (time complexity). f 1 () = f 2 () = 10 log f 3 () = f 4 () = 2 2 f 5 () = 2 /8 - / f 1 () = f 2 () = 10 log f 3 () = E+05 1E+06 4E+06 f 4 () = E+05 2E+06 8E+06 f 5 () = 2 / 8 - / E+08 2E+18 f 5 () f 3 () f 1 () 17 Deps o the size of the iput! What do we observe? Time f1() = ff2() 1 = log ff3() 2 = log f4() = 22 f f5() 3 () = 2/ /4 + 2 f 4 () = 2 2 f 5 () = 2 /8 - / There is huge differece betwee fuctios ivolvig powers of (e.g.,, 2, called polyomial fuctios) ad fuctios ivolvig powerig by (e.g., 2, 3, called expoetial fuctios) Amog polyomial fuctios, those with same order of power are more comparable e.g., f 3 () = ad f 4 () =

6 Growth of fuctios Relative growth rate 2 2 log c Hierarchy of fuctios We ca defie a hierarchy of fuctios each havig a greater order of growth tha its predecessor: Hierarchy of fuctios (2) 1 log k... 2 costat logarithmic polyomial expoetial 1 log k... 2 costat logarithmic polyomial expoetial We ca further refie the hierarchy by isertig log betwee ad 2, 2 log betwee 2 ad 3, ad so o. Note:as we move from left to right, successive fuctios have greater order of growththa the previous oes. As icreases, the values of the later fuctios icrease more rapidly tha the earlier oes. Relative growth rates icrease 23 24

7 Hierarchy of fuctios (3) What about log 3 &? Which is higher i hierarchy? (log ) 3 Remember: = 2 log So we are comparig (log ) 3 & 2 log log 3 is lower tha i the hierarchy Similarly, log k is lower tha i the hierarchy, for ay costat k Hierarchy of fuctios (4) 1 log k... 2 costat logarithmic polyomial expoetial Now, whe we have a fuctio, we ca classify the fuctio to some fuctio i the hierarchy: For example, f() = The term with the highest power is 2 3. The growth rate of f() is domiated by 3. This cocept is captured by Big-O otatio Big-O otatio f() = O(g()) [read as f() is of order g()] Roughly speakig, this meas f() is at most a costat times g() for all large Examples 2 3 = O( 3 ) 3 2 = O( 2 ) 2 log = O( log ) = O( 3 ) Fuctios o L.H.S ad R.H.S are said to have the same order of growth 27 Determie the order of growthof the followig fuctios log log Exercise O( 3 ) O( 3 ) O( 2 log ) O(2 ) Look for the term highest i the hierarchy 28

8 More Exercise Are the followigs correct? O( 1. 2 log O( 2 log )? ) O()? YES O( 20 )? O(2 ) log + O( 2 log )? O( 3 ) Big-O otatio - formal defiitio f() = O(g()) There exists a costat cad o such that f() cg() for all > o Graphical Illustratio c o > o the f() cg() Time c g() f() iput size () Time = O() c=2, 0 =60 0 Examples iput size () Time costat c & o such that > o, f() c g() c=3, 0 =600 3 log f() Which oe is the fastest? Usually we are oly iterested i the asymptotic time complexity i.e., whe is large O(log ) < O(log 2 ) < O( ) < O() < O( log ) < O( 2 ) < O(2 ) f() = 2log = O( log ) log iput size () 31 32

9 Proof of order of growth Prove that is O( 2 ) Sice 2 1, we have = Therefore, by defiitio, is O( 2 ). Alteratively, Sice 4 2 4, we have = N.B.: plottig a graph is NOT a proof Therefore, by defiitio, is O( 2 ). 33 Proof of order of growth (2) Prove that 2 log + 3 is O( 2 log ) Sice 2 1 ad 1 log 2, we have log 2, ad 2 log log log 2. = 4 2 log Therefore, by defiitio, 2 log + 3 is O( 2 log ). 34 Proof of order of growth (3) Alteratively, Sice 3 2 log 3, we have Prove that 2 log + 3 is O( 2 log ) 2 log log + 2 log = 2 2 log 3. Therefore, by defiitio, 2 log + 3 is O( 2 log ). 35 Exercise Prove the order of growth is O( 3 ) a) 3 = 3 b) c) log is O( 3 ) a) 3 = 3 b) c) a) 2 2 log 3 4 a) 2 2 log b) 3 = 3 b) 3 = 3 c) c) d) 3 1 d) log log

10 Exercise Prove the order of growth is O( 3 ) a) 3 = 3 b) c) log is O( 3 ) a) 2 2 log 3 4 b) 3 = 3 c) d) log log > 3 for 2<<4 2 log Exercise cot d Prove the order of growth log is O( 2 log ) a) log 4 b) 2 log = 2 log log 2 2 log is O(2 ) a) b) 2 = *2 7 a) log 2 b) 2 log = 2 log log 3 2 log 2 a) 2 2 2*2 4 b) 2 = * Some algorithms we leart Sum of 1 st o. iput sum = *(+1)/2 output sum O(1) O(?) iput sum = 0 for i = 1 to do begi sum = sum + i output sum O() O(?) Time complexity of this? for i = 1 to 2 do for j = 1 to do x = x + 1 O( 2 ) O(?) Mi value amog o. loc = 1 for i = 2 to do if (a[i] < a[loc]) the loc = i output a[loc] O() O(?) The outer loop iterates for 2 times. The ier loop iterates for times for each i. Total: 2 * =

11 What about this? i = 1 O(log ) cout = 0 while i < begi O(?) i = 2 * i cout = cout + 1 output cout suppose =8 of ) iteratio i cout suppose =32 of ) iteratio i cout

### Searching Algorithm Efficiencies

Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay

### Running Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis

Ruig Time ( 3.) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

### Section IV.5: Recurrence Relations from Algorithms

Sectio IV.5: Recurrece Relatios from Algorithms Give a recursive algorithm with iput size, we wish to fid a Θ (best big O) estimate for its ru time T() either by obtaiig a explicit formula for T() or by

### A Gentle Introduction to Algorithms: Part II

A Getle Itroductio to Algorithms: Part II Cotets of Part I:. Merge: (to merge two sorted lists ito a sigle sorted list.) 2. Bubble Sort 3. Merge Sort: 4. The Big-O, Big-Θ, Big-Ω otatios: asymptotic bouds

### Asymptotic Growth of Functions

CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

### Soving Recurrence Relations

Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

### SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

### 1 The Binomial Theorem: Another Approach

The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets

### Chapter 5 An Introduction to Vector Searching and Sorting

Chapter 5 A Itroductio to Vector Searchig ad Sortig Searchig ad sortig are two of the most frequetly performed computig tasks. I this chapter we will examie several elemetary searchig ad sortig algorithms

### ORDERS OF GROWTH KEITH CONRAD

ORDERS OF GROWTH KEITH CONRAD Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really wat to uderstad their behavior It also helps you better grasp topics i calculus

### CS 253: Algorithms. Chapter 4. Divide-and-Conquer Recurrences Master Theorem. Credit: Dr. George Bebis

CS 5: Algorithms Chapter 4 Divide-ad-Coquer Recurreces Master Theorem Credit: Dr. George Bebis Recurreces ad Ruig Time Recurreces arise whe a algorithm cotais recursive calls to itself Ruig time is represeted

### Section 9.2 Series and Convergence

Sectio 9. Series ad Covergece Goals of Chapter 9 Approximate Pi Prove ifiite series are aother importat applicatio of limits, derivatives, approximatio, slope, ad cocavity of fuctios. Fid challegig atiderivatives

### Properties of MLE: consistency, asymptotic normality. Fisher information.

Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

### The second difference is the sequence of differences of the first difference sequence, 2

Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

### In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

### Page 2 of 14 = T(-2) + 2 = [ T(-3)+1 ] + 2 Substitute T(-3)+1 for T(-2) = T(-3) + 3 = [ T(-4)+1 ] + 3 Substitute T(-4)+1 for T(-3) = T(-4) + 4 After i

Page 1 of 14 Search C455 Chapter 4 - Recursio Tree Documet last modified: 02/09/2012 18:42:34 Uses: Use recursio tree to determie a good asymptotic boud o the recurrece T() = Sum the costs withi each level

### Algorithms and Data Structures DV3. Arne Andersson

Algorithms ad Data Structures DV3 Are Adersso Today s lectures Textbook chapters 1-4, 5 Iformatiostekologi Itroductio Overview of Algorithmic Mathematics Recurreces Itroductio to Recurreces The Substitutio

### Solving Divide-and-Conquer Recurrences

Solvig Divide-ad-Coquer Recurreces Victor Adamchik A divide-ad-coquer algorithm cosists of three steps: dividig a problem ito smaller subproblems solvig (recursively) each subproblem the combiig solutios

### Chapter 5: Inner Product Spaces

Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

### CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

### Lesson 15 ANOVA (analysis of variance)

Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

### 4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then

SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or p-series (the Compariso Test), but of

### Section 11.3: The Integral Test

Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

### Basic Elements of Arithmetic Sequences and Series

MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

### Divide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016

CS 6, Lecture 3 Divide ad Coquer, Solvig Recurreces, Iteger Multiplicatio Scribe: Juliaa Cook (05, V Williams Date: April 6, 06 Itroductio Today we will cotiue to talk about divide ad coquer, ad go ito

### 13 Fast Fourier Transform (FFT)

13 Fast Fourier Trasform FFT) The fast Fourier trasform FFT) is a algorithm for the efficiet implemetatio of the discrete Fourier trasform. We begi our discussio oce more with the cotiuous Fourier trasform.

### Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

### Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4

3330_0903qxd /5/05 :3 AM Page 663 Sectio 93 93 Geometric Sequeces ad Series 663 Geometric Sequeces ad Series What you should lear Recogize, write, ad fid the th terms of geometric sequeces Fid th partial

### Module 4: Mathematical Induction

Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

### Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

### 6 Algorithm analysis

6 Algorithm aalysis Geerally, a algorithm has three cases Best case Average case Worse case. To demostrate, let us cosider the a really simple search algorithm which searches for k i the set A{a 1 a...

### CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

### Exponential function: For a > 0, the exponential function with base a is defined by. f(x) = a x

MATH 11011 EXPONENTIAL FUNCTIONS KSU AND THEIR APPLICATIONS Defiitios: Expoetial fuctio: For a > 0, the expoetial fuctio with base a is defied by fx) = a x Horizotal asymptote: The lie y = c is a horizotal

### Infinite Sequences and Series

CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

### Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

### Recursion and Recurrences

Chapter 5 Recursio ad Recurreces 5.1 Growth Rates of Solutios to Recurreces Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer. Cosider, for example,

### Measurable Functions

Measurable Fuctios Dug Le 1 1 Defiitio It is ecessary to determie the class of fuctios that will be cosidered for the Lebesgue itegratio. We wat to guaratee that the sets which arise whe workig with these

### Incremental calculation of weighted mean and variance

Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

### THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

### A probabilistic proof of a binomial identity

A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

### The Euler Totient, the Möbius and the Divisor Functions

The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

### Output Analysis (2, Chapters 10 &11 Law)

B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

### The Field of Complex Numbers

The Field of Complex Numbers S. F. Ellermeyer The costructio of the system of complex umbers begis by appedig to the system of real umbers a umber which we call i with the property that i = 1. (Note that

### SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

### Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

### Riemann Sums y = f (x)

Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

### Handout: How to calculate time complexity? CSE 101 Winter 2014

Hadout: How to calculate time complexity? CSE 101 Witer 014 Recipe (a) Kow algorithm If you are usig a modied versio of a kow algorithm, you ca piggyback your aalysis o the complexity of the origial algorithm

### COMP 251 Assignment 2 Solutions

COMP 251 Assigmet 2 Solutios Questio 1 Exercise 8.3-4 Treat the umbers as 2-digit umbers i radix. Each digit rages from 0 to 1. Sort these 2-digit umbers ith the RADIX-SORT algorithm preseted i Sectio

### 0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

### Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

### 3. Greatest Common Divisor - Least Common Multiple

3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

### + 1= x + 1. These 4 elements form a field.

Itroductio to fiite fields II Fiite field of p elemets F Because we are iterested i doig computer thigs it would be useful for us to costruct fields havig elemets. Let s costruct a field of elemets; we

### Sequences II. Chapter 3. 3.1 Convergent Sequences

Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

### Alternatives To Pearson s and Spearman s Correlation Coefficients

Alteratives To Pearso s ad Spearma s Correlatio Coefficiets Floreti Smaradache Chair of Math & Scieces Departmet Uiversity of New Mexico Gallup, NM 8730, USA Abstract. This article presets several alteratives

### 8.1 Arithmetic Sequences

MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

### Solving Logarithms and Exponential Equations

Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

### MESSAGE TO TEACHERS: NOTE TO EDUCATORS:

MESSAGE TO TEACHERS: NOTE TO EDUCATORS: Attached herewith, please fid suggested lesso plas for term 1 of MATHEMATICS Grade 12. Please ote that these lesso plas are to be used oly as a guide ad teachers

### 1 Computing the Standard Deviation of Sample Means

Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

### {{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers

. Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,

### Review for College Algebra Final Exam

Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 1-4. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i

### Integer Factorization Algorithms

Iteger Factorizatio Algorithms Coelly Bares Departmet of Physics, Orego State Uiversity December 7, 004 This documet has bee placed i the public domai. Cotets I. Itroductio 3 1. Termiology 3. Fudametal

### Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please

### Mathematical goals. Starting points. Materials required. Time needed

Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

### The geometric series and the ratio test

The geometric series ad the ratio test Today we are goig to develop aother test for covergece based o the iterplay betwee the it compariso test we developed last time ad the geometric series. A ote about

### TAYLOR SERIES, POWER SERIES

TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the

### CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

### Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

### 4.3. The Integral and Comparison Tests

4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

### Problem Set 1 Oligopoly, market shares and concentration indexes

Advaced Idustrial Ecoomics Sprig 2016 Joha Steek 29 April 2016 Problem Set 1 Oligopoly, market shares ad cocetratio idexes 1 1 Price Competitio... 3 1.1 Courot Oligopoly with Homogeous Goods ad Differet

### CHAPTER 11 Financial mathematics

CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula

### I. Chi-squared Distributions

1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

### Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

### Arithmetic of Triangular Fuzzy Variable from Credibility Theory

Vol., Issue 3, August 0 Arithmetic of Triagular Fuzzy Variable from Credibility Theory Ritupara Chutia (Correspodig Author) Departmet of Mathematics Gauhati Uiversity, Guwahati, Assam, Idia. Rituparachutia7@rediffmail.com

### Data Structures. Outline

Data Structures Solvig Recurreces Tzachi (Isaac) Rose 1 Outlie Recurrece The Substitutio Method The Iteratio Method The Master Method Tzachi (Isaac) Rose 2 1 Recurrece A recurrece is a fuctio defied i

### 1.3 Binomial Coefficients

18 CHAPTER 1. COUNTING 1. Biomial Coefficiets I this sectio, we will explore various properties of biomial coefficiets. Pascal s Triagle Table 1 cotais the values of the biomial coefficiets ( ) for 0to

### Chapter One BASIC MATHEMATICAL TOOLS

Chapter Oe BAIC MATHEMATICAL TOOL As the reader will see, the study of the time value of moey ivolves substatial use of variables ad umbers that are raised to a power. The power to which a variable is

### COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S 2 CONTROL CHART FOR THE CHANGES IN A PROCESS

COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S CONTROL CHART FOR THE CHANGES IN A PROCESS Supraee Lisawadi Departmet of Mathematics ad Statistics, Faculty of Sciece ad Techoology, Thammasat

### B1. Fourier Analysis of Discrete Time Signals

B. Fourier Aalysis of Discrete Time Sigals Objectives Itroduce discrete time periodic sigals Defie the Discrete Fourier Series (DFS) expasio of periodic sigals Defie the Discrete Fourier Trasform (DFT)

### 7. Sample Covariance and Correlation

1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y

### Modified Line Search Method for Global Optimization

Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

### when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.

Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

### PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

### Domain 1: Designing a SQL Server Instance and a Database Solution

Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a

### hp calculators HP 30S Base Conversions Numbers in Different Bases Practice Working with Numbers in Different Bases

Numbers i Differet Bases Practice Workig with Numbers i Differet Bases Numbers i differet bases Our umber system (called Hidu-Arabic) is a decimal system (it s also sometimes referred to as deary system)

### Math 114- Intermediate Algebra Integral Exponents & Fractional Exponents (10 )

Math 4 Math 4- Itermediate Algebra Itegral Epoets & Fractioal Epoets (0 ) Epoetial Fuctios Epoetial Fuctios ad Graphs I. Epoetial Fuctios The fuctio f ( ) a, where is a real umber, a 0, ad a, is called

### THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

### Sequences and Series

CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

### .04. This means \$1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

### Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51

Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

### ARITHMETIC AND GEOMETRIC PROGRESSIONS

Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives

### Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015

CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a

### Sequences, Series and Convergence with the TI 92. Roger G. Brown Monash University

Sequeces, Series ad Covergece with the TI 92. Roger G. Brow Moash Uiversity email: rgbrow@deaki.edu.au Itroductio. Studets erollig i calculus at Moash Uiversity, like may other calculus courses, are itroduced

### Mocks.ie Maths LC HL Further Calculus mocks.ie Page 1

Maths Leavig Cert Higher Level Further Calculus Questio Paper By Cillia Fahy ad Darro Higgis Mocks.ie Maths LC HL Further Calculus mocks.ie Page Further Calculus ad Series, Paper II Q8 Table of Cotets:.

### Power Factor in Electrical Power Systems with Non-Linear Loads

Power Factor i Electrical Power Systems with No-Liear Loads By: Gozalo Sadoval, ARTECHE / INELAP S.A. de C.V. Abstract. Traditioal methods of Power Factor Correctio typically focus o displacemet power

### Multiplexers and Demultiplexers

I this lesso, you will lear about: Multiplexers ad Demultiplexers 1. Multiplexers 2. Combiatioal circuit implemetatio with multiplexers 3. Demultiplexers 4. Some examples Multiplexer A Multiplexer (see