Today is Tuesday, November 3 rd, 2015

Size: px
Start display at page:

Download "Today is Tuesday, November 3 rd, 2015"

Transcription

1 In This Lesson: Metabolism and Enzymes (Lesson 1 of 3) Today is Tuesday, November 3 rd, 2015 Pre-Class: List as many things as you can about enzymes. What do you remember? Think: What do we call the molecules it works with? Where on the enzyme does all the action happen? What can break an enzyme? Of what are they made? Oh yeah, get a [small] paper towel too.

2 Today s Agenda Chemical reactions with respect to energy changes. Gibbs Free Energy. Enzymes. Enzyme functions and mechanisms. Where is this in my book? Chapter 8.

3 By the end of this lesson You should be able to distinguish between endergonic and exergonic reactions. You should be able to describe the features of an enzyme. You should be able to use an enzyme, as in, understand how to turn it on and turn it off.

4 Let s not get ahead of ourselves Challenge questions!

5 The Circle of? The Lion King had the Circle of Life:

6 The Circle of? South Park had the Circle of Poo:

7 The Circle of? In reality, it s all a Circle of Energy. Kind of. The sun s energy is converted to ATP and Organic Molecules by plants which are converted to ATP and Organic Molecules by herbivores which are converted to ATP and Organic Molecules by carnivores Simba?

8 Overview Metabolism is really just the chemical reactions of life. Anabolism Forming bonds between molecules. Dehydration synthesis, synthesis of polymers. Fun Fact: Anabolic steroids get their name from this. Catabolism Breaking bonds between molecules. Hydrolysis, digestion, breakdown of molecules. Metabolism can also be considered to include regulation of enzymes as well, even if there s no real product associated with that part of the process.

9 REMINDER Dehydration synthesis: H 2 O Hydrolysis/digestion: H 2 O

10 REMINDER Dehydration synthesis: Hydrolysis

11 Energy Release/Absorption Reactions can further be classified by whether they have a net release or absorption of energy. Exergonic reactions have a net release of energy and are associated with digestion (breaking down) of molecules: -ΔG

12 Energy Release/Absorption Endergonic reactions have a net absorption of energy and are associated with synthesizing (building) molecules: +ΔG

13 Wait ΔG? ΔG is equal to the Gibbs free energy of the reaction. Think of free energy as the ability to do work. When there is an endergonic reaction, energy is put into the molecules that can later be used to do work. Exergonic reactions release energy that can be used elsewhere. You ve already seen this with ATP: Using ATP requires the breaking off of a phosphate group, releasing energy. Rebuilding ATP from ADP requires the addition of a phosphate group, requiring energy.

14 Gibbs Free Energy Gibbs free energy is a product of thermodynamics. Most relevant to biology: First Law: Energy is constant in the universe and reactions. Second Law: Spontaneous reactions increase the entropy (disorder) of the universe. For a basic example, consider that it s far more likely for an egg to break into a bunch of pieces than it is for a bunch of pieces to form an egg. See also: Humpty Dumpty. Obviously what cells do is an exception. Side Note: Don t confuse entropy (disorder) with enthalpy (heat energy change).

15 Gibbs Free Energy Equation ΔG = ΔH T ΔS ΔG = Gibbs Free Energy ΔH = Change in enthalpy (heat) T = Temperature (in Kelvin) ΔS = Change in entropy (disorder)

16 Gibbs Free Energy Equation Units: ΔG and ΔH are given in heat units: calories (cal) or kilocalories (kcal) 1000 cal = 1 kcal ΔS is given as heat/kelvin. Okay, practice problem time!

17 Gibbs Free Energy Example If the change in free energy is kcal for a reaction occurring at 22 C and the change in entropy is 100 cal/k, what is the change in enthalpy? Is the reaction endergonic or exergonic? 22 C = 295 K ΔG = ΔH T ΔS kcal = ΔH (295 K)(100 cal/k) kcal = ΔH cal kcal = ΔH 29.5 kcal ΔH = kcal Which means this is exergonic since free energy decreases. +ΔG = endergonic; -ΔG = exergonic (+ΔH = endothermic; -ΔH = exothermic)

18 Time to Practice Independently Gibbs Free Energy Practice Problems worksheet

19 Thermodynamic Concepts Not incredibly important for Biology but here if you d like to know. ΔG = ΔH T ΔS When you think about it, the free energy equation is really just a relationship between enthalpy and entropy (adjusted for temperature). The T ΔS part of the equation (entropy) needs to be larger than the ΔH part of the equation (enthalpy) to make the reaction exergonic. An exothermic reaction (-ΔH) is not necessarily exergonic, but it s somewhat energetically favorable. If ΔH is negative and ΔS is positive (increase in entropy), the equation is VERY thermodynamically favorable.

20 About P i Did you catch the P i in the first problem? The hydrolysis of ATP goes by this reaction: ATP ADP + P i P i is the notation for a free phosphate group. The i stands for inorganic. Inorganic just means that it s not being pulled off some other molecule.

21 Coupling Reactions Because organisms need to, you know, live, they must couple endergonic reactions with exergonic reactions. To put it another way, think of what we do every day: eating. You eat food which is then digested and broken down to provide your body with energy. That energy is then used to help you grow and do things that require energy. Coupled!

22 Coupling Reactions In other words: + + Energy + +

23 Coupling Reactions One more example. Take a look at the inner membrane of the mitochondria for a great look at coupled reactions. More on this to come later:

24 The Big Picture Keep in mind that big organic compounds with lots of chemical bonds (especially giant hydrocarbons) contain a lot of bonding energy. This explains why fat is such a good source of energy. Remember triglycerides? They re among the most energy-containing molecules out there:

25 Spontaneity Reactions don t just happen spontaneously, however. Imagine immediately losing starch molecules to spontaneous digestion. Consider, for example, the thermite reaction: Thermite is a mix of aluminum powder and iron oxide powder (essentially rust). It was originally used for welding railroad ties together out in the wilderness. However, it s important to note that just mixing the substances does not actually set off the reaction. In the video, watch for the input of energy to kick-start things. Thermite video

26 Activation Energy The use of the sparkler in the video provided the activation energy necessary to start the reaction. Activation energy is the amount of energy needed to destabilize a molecule s bonds. Exergonic reactions can happen spontaneously, but activation energy makes them process sloooooooooowly. Too sloooooooooowly for living things. G is not a part of activation energy. In graph form:

27 Activation Energy Catalysts are substances (not necessarily organic substances) that help lower activation energy. Enzymes are proteins that lower activation energy.

28 Important Distinction Many people realize that enzymes speed up reactions. It s important to realize, however, that they do not increase the movement of the particles involved. Remember, enzymes lower activation energy. Here s a conceptual example:

29 Enzyme Function Example Imagine you earn an allowance of $1 per week. You want to buy a video game system that costs $349. How many weeks do you need? 349. Enjoy that. If the game system goes on sale for $50, how many weeks would you need? 50. So you can get the system sooner, but are you earning money at a faster rate? No. This is how enzymes work they lower the threshold.

30 Enzyme Details Enzymes are biological catalysts: Made of protein or RNA (RNA enzyme = ribozyme). Facilitate chemical reactions by: Lowering activation energy to increase reaction rate. Not being consumed in reactions. A single enzyme can catalyze thousands of reactions per second. Not changing G released or required. Required for most biological reactions. Reactions would take too long otherwise. Highly specific (thousands of different kinds in each cell)

31 Enzymes Enzymes come with their own vocabulary: The reactant which binds to an enzyme is called the substrate. Once bound, they are temporarily called the enzyme-substrate complex. Products are the substrates after the reaction. Exactly where on the enzyme molecule a substrate binds is called the active site.

32 Specificity What s this about being specific? Enzymes fit their substrates and only their substrates through something known as the lock and key model. Quite like a key fitting into a lock, only with hydrogen bonds. This is a functional but simplistic model.

33 Specificity More accurate is the induced fit model: Just like the lock and key model, except the binding of the substrate causes a conformational change in the enzyme that leads to an even closer fit. Functional groups become closer together for catalysis.

34 What s the difference? Imagine a constrictor snake killing its prey: As the prey exhales, the snake coils more tightly, preventing the prey from inhaling again. In the same way, in the induced fit model, the substrate fits the enzyme like a key into a lock, but the binding of the substrate causes it to fit even more tightly.

35 What s in a name? Enzymes also have friendly names, usually: Sucrase breaks down sucrose. Proteases break down proteins. Lipases break down lipids. DNA Polymerase polymerizes DNA. ATP Synthase synthesizes ATP. Pepsin breaks down polypeptides. In other words, enzymes are named for their reactions.

36 Enzyme Mechanisms Without going into tremendous detail, how do enzymes actually do their jobs? Here are a couple of examples: During synthesis reactions, the active site of the enzyme orients the substrates in a correct position so as to bring them closer together. Like a kid that puts two dolls together and says, And now they kiss! During digestion reactions, the active site puts stress on the bonds that must be broken to facilitate breakage.

37 Whew. Okay, that was a lot Time for, you guessed it, a POGIL! Yes! I LOVE POGILS! Note that this one will take you through a review of enzymes and then help you explore some new concepts about them. We ll be exploring those new concepts afterward, so if you don t know a question, leave it blank for now. Mainly these are questions concerning the factors that affect enzyme function.

38 Enzyme Contest I need ten volunteers. Five of you are going to play the role of an enzyme called Splint Splittase. Guess what it does. It splits splints (twice each, into four total pieces). I ll also need five people to act as official judges. You ll count how many splints are split. Remember, one splint needs to be split into four for it to count as one.

39 Enzyme Contest There is a catch, however. To explore the limiting factors of enzymes, we re going to add some details: One of you is a control group. One of you is going to cross your fingers. One of you will have a lot of splints. One of you will have only a few splints total. One of you is going to put your hands in ice water for a while before we start.

40 Factors Affecting Enzyme Function Summary Slide Enzyme Concentration Substrate Concentration Temperature ph Salinity Activators Inhibitors

41 Enzyme Concentration Keep in mind, enzymes aren t intelligent beings. No offense if your friends or family members are enzymes. They need to rely on chance collisions with substrates to be effective, so: As enzyme concentration goes up, so does reaction rate. More enzymes means more collisions with substrates.

42 Reaction Rate Enzyme Concentration: Graph Form Unlimited substrate Limited substrate Enzyme Concentration Whoa. Why the leveling-off point? Eventually, we reach a point at which the substrate concentration limits the enzyme s ability to work. Simulated by the Splint Splittase with too few splints. If, however, we assume that the substrate is unlimited, a different pattern emerges.

43 Substrate Concentration In contrast, if substrate concentrations get very high, the enzyme reaches a point at which reaction rate is maximized. So, as substrate concentration increases, reaction rate increases (until saturation). At saturation, all enzymes active sites are occupied. This was symbolized by the Splint Splittase with a lot of splints. I could have added a truckload more and the rate would not have increased.

44 Reaction Rate Substrate Concentration: Graph Form Saturation reached Substrate Concentration

45 Temperature All enzymes have an optimal temperature (or range of temperatures) for maximizing molecular collisions. Remember that increased temperature is just increased molecular kinetic energy (motion). Human enzymes work best between 35 C and 40 C. Human body temperature = 37 C average. This partly explains why hyperthermia (fevers) and hypothermia can be so dangerous. Heat can denature enzymes by breaking ionic and hydrogen bonds, changing their shape. Lack of heat causes molecules to move too slowly for enzymes to function properly. Symbolized by the Splint Splittase in ice water (since I couldn t start any fires).

46 Reaction Rate Temperature: Graph Form Human Enzyme Thermophilic Bacteria 37 C (98.6 F) Temperature 70 C (158 F)

47 ph Changes in ph can disrupt bonds and thus denature proteins just like heat. Heat just used kinetic energy to destabilize bonds. For ph, the addition or removal of H + ions disrupts the bonds by changing attraction between charged amino acids. Most human enzymes (but not all) work between ph 6 and ph 8. Some others: Pepsin works in the stomach (ph 2-3) Trypsin works in the small intestine (ph 8). This was symbolized by the Splint Splittase with crossed fingers (since I couldn t dump acid everywhere).

48 Reaction Rate ph: Graph Form Pepsin Trypsin 2.5 ph 8

49 Salinity Salinity changes alter the concentrations of cations (positively charged ions) and anions (negatively charged ions). This is any salt, not just NaCl, by the way. This leads to denaturation too. The Dead Sea is dead for a good reason. Today, biologists have come to know a number of extremophiles organisms (usually bacteria or archaea) that live in extremely salty, hot, or acidic/basic environments. Also symbolized by the Splint Splittase with crossed fingers (since I can t dump salt water everywhere).

50 Salinity Reminder: Dissociation Bound ions in component ions out. Ca Cl Cl Ca 2+ Cl - Cl -

51 Reaction Rate Salinity: Graph Form Salinity

52 Activators There are three main types of activators out there: Cofactors are small, inorganic non-proteins that bind to and activate the enzyme. Like how Fe is a part of hemoglobin or Mg is in chlorophyll. Mg, K, Ca, Zn, and Cu also are common cofactors. Coenzymes are small, organic non-proteins that bind temporarily or permanently near an enzyme s active site. Many vitamins are coenzymes: Coenzyme A, NAD (vitamin B 3 : niacin), FAD (vitamin B 2 : riboflavin) Cooperators are substrates that act as activators by changing enzyme shapes. Often the substrate changes the shape of a multi-subunit enzyme to kick-start the rest of it.

53 Inhibitors Summary Slide Broadly, inhibitors work against enzyme activity. Types of inhibition: Competitive inhibition Noncompetitive (allosteric) inhibition Additional inhibition effects/details: Irreversible inhibition Feedback inhibition

54 Inhibition: Competitive Competitive Inhibition: When there s another molecule that isn t a substrate, yet can bind to the active site of an enzyme. Penicillin, for example, blocks an enzyme used by bacteria to make cell walls. Antabuse (disulfiram) is a commercial drug that treats alcoholism by inhibiting the enzyme that breaks down alcohol, leading to severe hangover and illness within 5-10 minutes after drinking. Competitive inhibition can be overcome by increasing substrate concentration. In other words, substrates can outcompete inhibitors. Analogy: Competitive inhibition is like someone sitting in your seat.

55 Inhibition: Noncompetitive Noncompetitive (Allosteric) Inhibition: When an inhibitor binds somewhere other than the active site and causes a conformational change that prevents binding with the normal substrate. This is known as an allosteric inhibitor more to come. Some anti-cancer drugs inhibit enzymes that copy DNA, preventing new cell growth. Cyanide poison permanently inhibits Cytochrome C, an enzyme in respiration, preventing cells from making ATP. Analogy: Noncompetitive inhibition is like someone sitting in the row behind you putting their feet or coat on your chair.

56 Effects/Details of Inhibition Irreversible inhibition, as with cyanide, is exactly what it sounds like. For irreversible competitive inhibition, the inhibitor binds permanently to the active site. For irreversible noncompetitive inhibition, the inhibitor binds permanently to the allosteric site. Allo- meaning other and -steric meaning shape-related. These inhibitors permanently change enzyme shape, as in many nerve gases and sarin gas, and in insecticides.

57 Allosteric Regulation In addition to allosteric inhibition, there is also allosteric activation. In other words, shape changes can activate or deactivate an enzyme. Activators and inhibitors stabilize these shape changes.

58 Feedback Inhibition One last dynamic associated with inhibition is feedback inhibition. This is when the final product of a metabolic pathway (next slide) inhibits the earlier step(s). This inhibition prevents unnecessary accumulation of a product. Substance A Substance Substance Substance B C D Substance E Enzyme 2 Enzyme 3 Enzyme 4 Enzyme 1 Substance E Inhibits Enzyme 1

59 Feedback Inhibition Example The amino acid isoleucine is made from another amino acid, threonine. Isoleucine inhibits the first step in the pathway, shutting off its own production. Isoleucine collides with the enzyme more than the initial substrate does.

60 Metabolic Pathways? We ll be exploring this extensively, but now s a good time to mention that metabolic pathways are just various series of reactions associated with metabolism. Like we saw with feedback inhibition, pathways allow for control/regulation of reactions as well as efficiency. Yay evolution!

61 Closure BBC Bitesize Enzymes video

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy Module 2D - Energy and Metabolism Objective # 19 All living organisms require energy for survival. In this module we will examine some general principles about chemical reactions and energy usage within

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism

More information

8/20/2012 H C OH H R. Proteins

8/20/2012 H C OH H R. Proteins Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules

More information

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes CHAPTER 6 AN INTRODUCTION TO METABOLISM Section B: Enzymes 1. Enzymes speed up metabolic reactions by lowering energy barriers 2. Enzymes are substrate specific 3. The active site in an enzyme s catalytic

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Most components of energy conversion systems evolved very early; thus, the most fundamental aspects of energy metabolism tend to be: A. quite different among a diverse group

More information

CHAPTER 4: Enzyme Structure ENZYMES

CHAPTER 4: Enzyme Structure ENZYMES CHAPTER 4: ENZYMES Enzymes are biological catalysts. There are about 40,000 different enzymes in human cells, each controlling a different chemical reaction. They increase the rate of reactions by a factor

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. 1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. Solar energy A. Answer a is incorrect. Kinetic energy is the energy of

More information

Enzymes and Metabolism

Enzymes and Metabolism Enzymes and Metabolism Enzymes and Metabolism Metabolism: Exergonic and Endergonic Reactions Chemical Reactions: Activation Every chemical reaction involves bond breaking and bond forming A chemical reaction

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

Chemistry 20 Chapters 15 Enzymes

Chemistry 20 Chapters 15 Enzymes Chemistry 20 Chapters 15 Enzymes Enzymes: as a catalyst, an enzyme increases the rate of a reaction by changing the way a reaction takes place, but is itself not changed at the end of the reaction. An

More information

Enzymes and Metabolic Pathways

Enzymes and Metabolic Pathways Enzymes and Metabolic Pathways Enzyme characteristics Made of protein Catalysts: reactions occur 1,000,000 times faster with enzymes Not part of reaction Not changed or affected by reaction Used over and

More information

green B 1 ) into a single unit to model the substrate in this reaction. enzyme

green B 1 ) into a single unit to model the substrate in this reaction. enzyme Teacher Key Objectives You will use the model pieces in the kit to: Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating enzymatic activity.

More information

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

Enzymes. OpenStax College

Enzymes. OpenStax College OpenStax-CNX module: m44429 1 Enzymes OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you will be able

More information

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it?

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it? Cellular Energy: ATP & Enzymes What is it? Where do organism s get it? How do they use it? Where does Energy come from? Ultimately, from the sun. It is transferred between organisms in the earth s lithosphere,

More information

Enzymes. Enzymes are characterized by: Specificity - highly specific for substrates

Enzymes. Enzymes are characterized by: Specificity - highly specific for substrates Enzymes Enzymes are characterized by: Catalytic Power - rates are 10 6-10 12 greater than corresponding uncatalyzed reactions Specificity - highly specific for substrates Regulation - acheived in many

More information

pencil. Vocabulary: 1. Reactant 2. Product 3. Activation energy 4. Catalyst 5. substrate 6. Chemical reaction Keep your textbooks when you are done

pencil. Vocabulary: 1. Reactant 2. Product 3. Activation energy 4. Catalyst 5. substrate 6. Chemical reaction Keep your textbooks when you are done Objectives Students will explore the importance of chemical reactions in biology Students will discuss the role of enzymes as catalysts in biological reactions. Students will analyze graphs showing how

More information

General Properties Protein Nature of Enzymes Folded Shape of Enzymes H-bonds complementary

General Properties Protein Nature of Enzymes Folded Shape of Enzymes H-bonds complementary Proteins that function as biological catalysts are called enzymes. Enzymes speed up specific metabolic reactions. Low contamination, low temperature and fast metabolism are only possible with enzymes.

More information

Enzymes: Practice Questions #1

Enzymes: Practice Questions #1 Enzymes: Practice Questions #1 1. Compound X increases the rate of the reaction below. Compound X is most likely A. an enzyme B. a lipid molecule C. an indicator D. an ADP molecule 2. The equation below

More information

Figure 5. Energy of activation with and without an enzyme.

Figure 5. Energy of activation with and without an enzyme. Biology 20 Laboratory ENZYMES & CELLULAR RESPIRATION OBJECTIVE To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate

More information

Biology 3A Laboratory: Enzyme Function

Biology 3A Laboratory: Enzyme Function Biology 3A Laboratory: Enzyme Function Objectives To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate the effect

More information

Chapter 2. The Chemistry of Life Worksheets

Chapter 2. The Chemistry of Life Worksheets Chapter 2 The Chemistry of Life Worksheets (Opening image courtesy of David Iberri, http://en.wikipedia.org/wiki/file:camkii.png, and under the Creative Commons license CC-BY-SA 3.0.) Lesson 2.1: Matter

More information

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is:

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is: Lecture 4 Catalytic proteins Are a type of protein that acts as a catalyst-speeding up chemical reactions A catalyst is defined as a chemical agent that changes the rate of a reaction without being consumed

More information

CHM333 LECTURE 13 14: 2/13 15/12 SPRING 2012 Professor Christine Hrycyna

CHM333 LECTURE 13 14: 2/13 15/12 SPRING 2012 Professor Christine Hrycyna INTRODUCTION TO ENZYMES Enzymes are usually proteins (some RNA) In general, names end with suffix ase Enzymes are catalysts increase the rate of a reaction not consumed by the reaction act repeatedly to

More information

CHM333 LECTURE 13 14: 2/13 15/13 SPRING 2013 Professor Christine Hrycyna

CHM333 LECTURE 13 14: 2/13 15/13 SPRING 2013 Professor Christine Hrycyna INTRODUCTION TO ENZYMES Enzymes are usually proteins (some RNA) In general, names end with suffix ase Enzymes are catalysts increase the rate of a reaction not consumed by the reaction act repeatedly to

More information

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to: and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways

More information

The purpose of this lab is to investigate the impact of temperature, substrate concentration,

The purpose of this lab is to investigate the impact of temperature, substrate concentration, Lee 1 Jessica Lee AP Biology Mrs. Kingston 23 October 2013 Abstract: The purpose of this lab is to investigate the impact of temperature, substrate concentration, enzyme concentration, and the presence

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

Name Date Period. Keystone Review Enzymes

Name Date Period. Keystone Review Enzymes Name Date Period Keystone Review Enzymes 1. In order for cells to function properly, the enzymes that they contain must also function properly. What can be inferred using the above information? A. Cells

More information

Enzymes. A. a lipid B. a protein C. a carbohydrate D. a mineral

Enzymes. A. a lipid B. a protein C. a carbohydrate D. a mineral Enzymes 1. All cells in multicellular organisms contain thousands of different kinds of enzymes that are specialized to catalyze different chemical reactions. Given this information, which of the following

More information

Name: Hour: Elements & Macromolecules in Organisms

Name: Hour: Elements & Macromolecules in Organisms Name: Hour: Elements & Macromolecules in Organisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight. All compounds

More information

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

* Is chemical energy potential or kinetic energy? The position of what is storing energy? Biology 1406 Exam 2 - Metabolism Chs. 5, 6 and 7 energy - capacity to do work 5.10 kinetic energy - energy of motion : light, electrical, thermal, mechanical potential energy - energy of position or stored

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

Microbial Metabolism. Biochemical diversity

Microbial Metabolism. Biochemical diversity Microbial Metabolism Biochemical diversity Metabolism Define Requirements Energy Enzymes Rate Limiting step Reaction time Types Anabolic Endergonic Dehydration Catabolic Exergonic Hydrolytic Metabolism

More information

Catalysis by Enzymes. Enzyme A protein that acts as a catalyst for a biochemical reaction.

Catalysis by Enzymes. Enzyme A protein that acts as a catalyst for a biochemical reaction. Catalysis by Enzymes Enzyme A protein that acts as a catalyst for a biochemical reaction. Enzymatic Reaction Specificity Enzyme Cofactors Many enzymes are conjugated proteins that require nonprotein portions

More information

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman An Introduction to Metabolism Most biochemical processes occur as biochemical pathways, each individual reaction of which is catalyzed

More information

Chemical Basis of Life Module A Anchor 2

Chemical Basis of Life Module A Anchor 2 Chemical Basis of Life Module A Anchor 2 Key Concepts: - Water is a polar molecule. Therefore, it is able to form multiple hydrogen bonds, which account for many of its special properties. - Water s polarity

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage? Energy Transport Study Island 1. During the process of photosynthesis, plants use energy from the Sun to convert carbon dioxide and water into glucose and oxygen. These products are, in turn, used by the

More information

Key Questions. What happens to chemical bonds during chemical reactions?

Key Questions. What happens to chemical bonds during chemical reactions? LESSON 2.4 Getting Started Objectives 2.4.1 Explain how chemical reactions affect chemical bonds. 2.4.2 Describe how energy changes affect how easily a chemical reaction will occur. 2.4.3 Explain why enzymes

More information

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ENZYMES

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ENZYMES = substances that... biological reactions 1. Provide an alternative reaction route which has a lower... energy 2. Reactions catalysed by enzymes occur under mild conditions + good yield + fast 3. Enzymes

More information

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Cellular Energy. 1. Photosynthesis is carried out by which of the following? Cellular Energy 1. Photosynthesis is carried out by which of the following? A. plants, but not animals B. animals, but not plants C. bacteria, but neither animals nor plants D. all living organisms 2.

More information

Lab 3 Organic Molecules of Biological Importance

Lab 3 Organic Molecules of Biological Importance Name Biology 3 ID Number Lab 3 Organic Molecules of Biological Importance Section 1 - Organic Molecules Section 2 - Functional Groups Section 3 - From Building Blocks to Macromolecules Section 4 - Carbohydrates

More information

What happens to the food we eat? It gets broken down!

What happens to the food we eat? It gets broken down! Enzymes Essential Questions: What is an enzyme? How do enzymes work? What are the properties of enzymes? How do they maintain homeostasis for the body? What happens to the food we eat? It gets broken down!

More information

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons. The Nature of Molecules Chapter 2 Energy and Metabolism Chapter 6 Chemical Bonds Molecules are groups of atoms held together in a stable association. Compounds are molecules containing more than one type

More information

10.1 The function of Digestion pg. 402

10.1 The function of Digestion pg. 402 10.1 The function of Digestion pg. 402 Macromolecules and Living Systems The body is made up of more than 60 % water. The water is found in the cells cytoplasm, the interstitial fluid and the blood (5

More information

Elements & Macromolecules in Organisms

Elements & Macromolecules in Organisms Name: Date: Per: Table # Elements & Macromolecules in rganisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight.

More information

How To Understand The Chemistry Of An Enzyme

How To Understand The Chemistry Of An Enzyme Chapt. 8 Enzymes as catalysts Ch. 8 Enzymes as catalysts Student Learning Outcomes: Explain general features of enzymes as catalysts: Substrate -> Product Describe nature of catalytic sites general mechanisms

More information

Enzymes. Enzyme Structure. Enzyme Classification. CHEM464/Medh, J.D. Reaction Rate and Enzyme Activity

Enzymes. Enzyme Structure. Enzyme Classification. CHEM464/Medh, J.D. Reaction Rate and Enzyme Activity Enzymes Enzymes are biological catalysts They are not consumed or altered during the reaction They do not change the equilibrium, just reduce the time required to reach equilibrium. They increase the rate

More information

Enzymes reduce the activation energy

Enzymes reduce the activation energy Enzymes reduce the activation energy Transition state is an unstable transitory combination of reactant molecules which occurs at the potential energy maximum (free energy maximum). Note - the ΔG of the

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

BCOR 011 Exam 2, 2004

BCOR 011 Exam 2, 2004 BCOR 011 Exam 2, 2004 Name: Section: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. According to the first law of thermodynamics, A. the universe

More information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Anatomy and Physiology Placement Exam 2 Practice with Answers at End! Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.

More information

Test Review # 9. Chemistry R: Form TR9.13A

Test Review # 9. Chemistry R: Form TR9.13A Chemistry R: Form TR9.13A TEST 9 REVIEW Name Date Period Test Review # 9 Collision theory. In order for a reaction to occur, particles of the reactant must collide. Not all collisions cause reactions.

More information

Enzymes. Chapter 3. 3.1 Enzymes and catalysts. Vital mistake. What is an enzyme?

Enzymes. Chapter 3. 3.1 Enzymes and catalysts. Vital mistake. What is an enzyme? Chapter 3 Enzymes Vital mistake We may not be able to see them, but enzymes are absolutely crucial to the lives of ourselves and all other living organisms. The Quarter Horse (Figure 3.1) is a breed of

More information

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery Cellular Respiration & Metabolism Metabolic Pathways: a summary Metabolism Bioenergetics Flow of energy in living systems obeys: 1 st law of thermodynamics: Energy can be transformed, but it cannot be

More information

Lecture 10 Enzymes: Introduction

Lecture 10 Enzymes: Introduction Lecture 10 Enzymes: Introduction Reading: Berg, Tymoczko & Stryer, 6th ed., Chapter 8, pp. 205-217 (These pages in textbook are very important -- concepts of thermodynamics are fundamental to all of biochemistry.)

More information

Worksheet 13.1. Chapter 13: Human biochemistry glossary

Worksheet 13.1. Chapter 13: Human biochemistry glossary Worksheet 13.1 Chapter 13: Human biochemistry glossary α-helix Refers to a secondary structure of a protein where the chain is twisted to form a regular helix, held by hydrogen bonds between peptide bonds

More information

Regulation of enzyme activity

Regulation of enzyme activity 1 Regulation of enzyme activity Regulation of enzyme activity is important to coordinate the different metabolic processes. It is also important for homeostasis i.e. to maintain the internal environment

More information

The Huntington Library, Art Collections, and Botanical Gardens. How Sweet It Is: Enzyme Action in Seed Germination

The Huntington Library, Art Collections, and Botanical Gardens. How Sweet It Is: Enzyme Action in Seed Germination The Huntington Library, Art Collections, and Botanical Gardens How Sweet It Is: Enzyme Action in Seed Germination Overview This experiment is intended to familiarize students with the macromolecule starch,

More information

pathway that involves taking in heat from the environment at each step. C.

pathway that involves taking in heat from the environment at each step. C. Study Island Cell Energy Keystone Review 1. Cells obtain energy by either capturing light energy through photosynthesis or by breaking down carbohydrates through cellular respiration. In both photosynthesis

More information

Carbohydrates, proteins and lipids

Carbohydrates, proteins and lipids Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,

More information

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Name: AP Biology Mr. Croft Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second

More information

Chapter 9 Mitochondrial Structure and Function

Chapter 9 Mitochondrial Structure and Function Chapter 9 Mitochondrial Structure and Function 1 2 3 Structure and function Oxidative phosphorylation and ATP Synthesis Peroxisome Overview 2 Mitochondria have characteristic morphologies despite variable

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

1. Explain the difference between fermentation and cellular respiration.

1. Explain the difference between fermentation and cellular respiration. : Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture. Photosynthesis and cellular

More information

Topic 3: Nutrition, Photosynthesis, and Respiration

Topic 3: Nutrition, Photosynthesis, and Respiration 1. Base your answer to the following question on the chemical reaction represented below and on your knowledge of biology. If this reaction takes place in an organism that requires sunlight to produce

More information

Cellular Respiration: Practice Questions #1

Cellular Respiration: Practice Questions #1 Cellular Respiration: Practice Questions #1 1. Which statement best describes one of the events taking place in the chemical reaction? A. Energy is being stored as a result of aerobic respiration. B. Fermentation

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Organic Compounds. Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for?

Organic Compounds. Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for? Organic Compounds Essential Questions: What is Organic? What are the 4 major Organic Compounds? How are they made? What are they used for? Aristotle: Francesco Redi: What do we already know? Spontaneous

More information

Investigation 2- ENZYME ACTIVITY BACKGROUND catalase Learning Objectives

Investigation 2- ENZYME ACTIVITY BACKGROUND catalase Learning Objectives Investigation 2-13 ENZYME ACTIVITY How do abiotic or biotic factors influence the rates of enzymatic reactions? BACKGROUND Enzymes are the catalysts of biological systems. They speed up chemical reactions

More information

Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide

Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide Transmembrane proteins span the bilayer α-helix transmembrane domain Hydrophobic R groups of a.a. interact with fatty acid chains Multiple transmembrane helices in one polypeptide Polar a.a. Hydrophilic

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs. 1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source

More information

Biochemistry of Cells

Biochemistry of Cells Biochemistry of Cells 1 Carbon-based Molecules Although a cell is mostly water, the rest of the cell consists mostly of carbon-based molecules Organic chemistry is the study of carbon compounds Carbon

More information

Biopharmaceuticals and Biotechnology Unit 2 Student Handout. DNA Biotechnology and Enzymes

Biopharmaceuticals and Biotechnology Unit 2 Student Handout. DNA Biotechnology and Enzymes DNA Biotechnology and Enzymes 35 Background Unit 2~ Lesson 1 The Biotechnology Industry Biotechnology is a process (or a technology) that is used to create products like medicines by using micro-organisms,

More information

LAB 3: DIGESTION OF ORGANIC MACROMOLECULES

LAB 3: DIGESTION OF ORGANIC MACROMOLECULES LAB 3: DIGESTION OF ORGANIC MACROMOLECULES INTRODUCTION Enzymes are a special class of proteins that lower the activation energy of biological reactions. These biological catalysts change the rate of chemical

More information

Laboratory 5: Properties of Enzymes

Laboratory 5: Properties of Enzymes Laboratory 5: Properties of Enzymes Technical Objectives 1. Accurately measure and transfer solutions with pipettes 2. Use a Spectrophotometer to study enzyme action. 3. Properly graph a set of data. Knowledge

More information

AP BIOLOGY 2008 SCORING GUIDELINES

AP BIOLOGY 2008 SCORING GUIDELINES AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.

More information

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

More information

Chapter 2 Chemical Principles

Chapter 2 Chemical Principles Chapter 2 Chemical Principles I. Chemistry. [Students should read this section on their own]. a. Chemistry is the study of the interactions between atoms and molecules. b. The atom is the smallest unit

More information

Chemical reactions allow living things to grow, develop, reproduce, and adapt.

Chemical reactions allow living things to grow, develop, reproduce, and adapt. Section 2: Chemical reactions allow living things to grow, develop, reproduce, and adapt. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the parts of a chemical reaction?

More information

Investigating cells. Cells are the basic units of living things (this means that all living things are made up of one or more cells).

Investigating cells. Cells are the basic units of living things (this means that all living things are made up of one or more cells). SG Biology Summary notes Investigating cells Sub-topic a: Investigating living cells Cells are the basic units of living things (this means that all living things are made up of one or more cells). Cells

More information

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells.

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells. Cellular respiration - how cells make energy - Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - ATP - this is provided by the lungs - lungs provide oxygen to blood, blood

More information

How To Understand Enzyme Kinetics

How To Understand Enzyme Kinetics Chapter 12 - Reaction Kinetics In the last chapter we looked at enzyme mechanisms. In this chapter we ll see how enzyme kinetics, i.e., the study of enzyme reaction rates, can be useful in learning more

More information

Copyright 2000-2003 Mark Brandt, Ph.D. 54

Copyright 2000-2003 Mark Brandt, Ph.D. 54 Pyruvate Oxidation Overview of pyruvate metabolism Pyruvate can be produced in a variety of ways. It is an end product of glycolysis, and can be derived from lactate taken up from the environment (or,

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. AP bio fall 2014 final exam prep Multiple Choice Identify the choice that best completes the statement or answers the question. 1. According to the first law of thermodynamics, a. the energy of a system

More information

Activity Sheets Enzymes and Their Functions

Activity Sheets Enzymes and Their Functions Name: Date: Activity Sheets Enzymes and Their Functions amylase What are Enzymes? starch glucose Enzymes are compounds that assist chemical reactions by increasing the rate at which they occur. For example,

More information

Lecture 15: Enzymes & Kinetics Mechanisms

Lecture 15: Enzymes & Kinetics Mechanisms ROLE OF THE TRANSITION STATE Lecture 15: Enzymes & Kinetics Mechanisms Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products Margaret A. Daugherty Fall 2004

More information

21.8 The Citric Acid Cycle

21.8 The Citric Acid Cycle 21.8 The Citric Acid Cycle The carbon atoms from the first two stages of catabolism are carried into the third stage as acetyl groups bonded to coenzyme A. Like the phosphoryl groups in ATP molecules,

More information

Chapter 7 Cellular Respiration

Chapter 7 Cellular Respiration Phases of aerobic cellular respiration 1. Glycolysis 2. Transition or Acetyl-CoA reaction 3. Krebs cycle 4. Electron transport system Chapter 7 Cellular Respiration These phases are nothing more than metabolic

More information

Unit 5 Photosynthesis and Cellular Respiration

Unit 5 Photosynthesis and Cellular Respiration Unit 5 Photosynthesis and Cellular Respiration Advanced Concepts What is the abbreviated name of this molecule? What is its purpose? What are the three parts of this molecule? Label each part with the

More information

Working With Enzymes. a world of learning. Introduction. How Enzymes Work. Types and Sources of Enzymes

Working With Enzymes. a world of learning. Introduction. How Enzymes Work. Types and Sources of Enzymes Working With Enzymes a world of learning Presented by Peter J Ball, Southern Biological. For further information, please contact the author by phone (03) 9877-4597 or by email peterjball@southernbiological.com.

More information

Digestive System Module 7: Chemical Digestion and Absorption: A Closer Look

Digestive System Module 7: Chemical Digestion and Absorption: A Closer Look OpenStax-CNX module: m49457 1 Digestive System Module 7: Chemical Digestion and Absorption: A Closer Look Donna Browne Based on Chemical Digestion and Absorption: A Closer Look by OpenStax This work is

More information

008 Chapter 8. Student:

008 Chapter 8. Student: 008 Chapter 8 Student: 1. Some bacteria are strict aerobes and others are strict anaerobes. Some bacteria, however, are facultative anaerobes and can live with or without oxygen. If given the choice of

More information

NO CALCULATORS OR CELL PHONES ALLOWED

NO CALCULATORS OR CELL PHONES ALLOWED Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.

More information