Chapter 8: An Introduction to Metabolism

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 8: An Introduction to Metabolism"

Transcription

1 Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism s chemical reactions, consisting of catabolic and anabolic pathways, which manage the material and energy resources of the organism. 2. There are two types of reactions in metabolic pathways: anabolic and catabolic. a. Which reactions release energy? catabolic b. Which reactions consume energy? anabolic c. Which reactions build up larger molecules? catabolic d. Which reactions break down molecules? catabolic e. Which reactions are considered uphill? anabolic f. What type of reaction is photosynthesis? catabolic g. What type of reaction is cellular respiration? catabolic h. Which reactions require enzymes to catalyze reactions? catabolic, anabolic 3. Contrast kinetic energy with potential energy. Kinetic energy is associated with the relative motion of objects, whereas potential energy refers to an object not presently moving; it is the energy that matter possesses because of its location or structure. 4. Which type of energy does water behind a dam have? A mole of glucose? Water behind a dam has potential energy. A mole of glucose also has potential energy, though more specifically, glucose has chemical energy, a term used by biologists to refer to the potential energy available for release in a chemical reaction. 5. What is meant by a spontaneous process? A process that occurs without an overall input of energy; a process that is energetically favorable

2 Concept 8.2 The free-energy change of a reaction tells us whether the reaction occurs spontaneously 6. What is free energy? What is its symbol? Free energy is the portion of a system s energy that can perform work when temperature and pressure are uniform throughout the system, as in a living cell. Free energy is symbolized by the letter G, after Professor Willard Gibbs. 7. For an exergonic reaction, is G negative or positive? An exergonic reaction proceeds with a net release of free energy. Because the chemical mixture loses free energy, G is negative for an exergonic reaction. 8. Is cellular respiration an endergonic or an exergonic reaction? What is G for this reaction? Cellular respiration is an exergonic reaction. The G for this reaction is: G = 686 kcal/mol ( 2,870 kj/mol) 9. Is photosynthesis endergonic or exergonic? What is the energy source that drives it? Photosynthesis is an endergonic reaction. Plants get the required energy 686 kcal to make a mole of glucose from the environment by capturing light and converting its energy into chemical energy. 10. To summarize, if energy is released, G must be what? G must be negative. Concept 8.3 ATP powers cellular work by coupling exergonic reactions to endergonic reactions 11. List the three main kinds of work that a cell does. Give an example of each. a. Chemical work, the pushing of endergonic reactions that would not occur spontaneously, such as the synthesis of polymers from monomers b. Transport work, the pumping of substances across membranes against the direction of spontaneous movement; possible examples include the sodium-potassium pump and proton pump c. Mechanical work, such as the beating of cilia, the contraction of muscle cells, and the movement of chromosomes during cellular reproduction 12. Here is a molecule of ATP. Label it. Use an arrow to show which bond is likely to break. See page 149 of your text for the labeled figure. a. By what process will that bond break? Hydrolysis - 2 -

3 b. Explain the name ATP by listing all the molecules that make it up. ATP contains the sugar ribose, with the nitrogenous base adenine and a chain of three phosphate groups bonded to it, forming adenosine triphosphate. 13. When the terminal phosphate bond is broken, a molecule of inorganic phosphate P i is formed, and energy is released. For this reaction: ATP ADP + P i, G = 7.3 kcal/mol ( 30.5 kj/mol) Is this reaction endergonic or exergonic? Exergonic FYI: An essay question on the 2009 AP Biology exam asked students to identify the molecules that make up ATP. What are they again? Sugar ribose, with the nitrogenous base adenine and a chain of three phosphate groups 14. What is energy coupling? In cellular metabolism, the use of energy released from an exergonic reaction to drive an endergonic reaction. 15. In many cellular reactions, a phosphate group is transferred from ATP to some other molecule in order to make the second molecule less stable. The second molecule is said to be phosphorylated intermediate. 16. Look for this amazing bit of trivia on page 151: If you could not regenerate ATP by phosphorylating ADP, how much ATP would you need to consume each day? If ATP could not be regenerated by the phosphorylation of ADP, humans would use up nearly their body weight in ATP each day. Concept 8.4 Enzymes speed up metabolic reactions by lowering energy barriers 17. What is a catalyst? A chemical agent that selectively increases the rate of a reaction without being consumed by the reaction. 18. What is activation energy (E A )? The amount of energy that reactants must absorb before a chemical reaction will start; also called free energy of activation. 19. Label the x-axis of this graph Progress of the Reaction and the y-axis Free Energy. Label E A on this sketch, both with and without an enzyme. See page 152 of your text for the labeled figure

4 a. What effect does an enzyme have on E A? An enzyme catalyzes a reaction by lowering E A barrier. b. Label G. Is it positive or negative? Negative c. How is G affected by the enzyme? It cannot make an endergonic reaction exergonic. 20. Label this figure while you define each of the following terms: See page 155 of your text for the labeled figure. enzyme: A macromolecule serving as a catalyst, a chemical agent that increases the rate of a reaction without being consumed by the reaction. Most enzymes are proteins. substrate: The reactant on which an enzyme works. active site: The specific region of an enzyme that binds the substrate and that forms the pocket in which catalysis occurs. products: A material resulting from a chemical reaction. 21. What is meant by induced fit? How is it shown in the figure in question 20? Caused by entry of the substrate, the change in shape of the active site of an enzyme so that it binds more snugly to the substrate. In Figure 8.14 on page 154, when the substrate enters the active site, it forms weak bonds with the enzyme, inducing a change in the shape of the protein. This change allows additional weak bonds to form, causing the active site to enfold the substrate and hold it in place. 22. Explain how protein structure is involved in enzyme specificity. Enzymes are proteins, and proteins are macromolecules with unique three-dimensioal configuration. The specificity of an enzyme results from its shape, which is a consequence of its amino acid sequence. The specificity of an enzyme is attributed to a compatible fit between the shape of its active site and the shape of the substrate. 23. Enzymes use a variety of mechanisms to lower activation energy. Describe four of these mechanisms. a. In reactions involving two or more reactants, the active site provides a template on which the substrates can come together in the proper orientation for a reaction to occur between them

5 b. As the active site of an enzyme clutches the bound substrate, the enzyme may stretch the substrate molecules toward their transition-state form, stressing and bending critical chemical bonds that must be broken during the reaction. c. The active site may also provide a microenvironment that is more conducive to a particular type of reaction than the solution itself would be without the enzyme. d. Direct participation of the active site in the chemical reaction is another mechanism of catalysis. 24. Many factors can affect the rate of enzyme action. Explain each factor listed here. a. initial concentration of substrate: The more substrate molecules that are available, the more frequently they access the active sites of the enzyme molecules. b. ph: With some exceptions, the optimal ph values for most enzymes fall in the range of ph 6 8. c. temperature: Up to a point, the rate of an enzymatic reaction increases with increasing temperature, partly because substrates collide with active sites more frequently when molecules move rapidly. Above that temperature, however, the speed of the enzymatic reaction drops sharply. 25. Recall that enzymes are globular proteins. Why can extremes of ph or very high temperatures affect enzyme activity? Three-dimensional structures of proteins are sensitive to their environment. As a consequence, each enzyme works better under some conditions than other conditions, because these optimal conditions favor the most active shape for their enzyme molecule. 26. Name a human enzyme that functions well in ph 2. Where is it found? Pepsin, found in the human stomach 27. Distinguish between cofactors and coenzymes. Give examples of each. A cofactor is any nonprotein molecule or ion that is required for the proper functioning of an enzyme. Cofactors can be permanently bound to the active site or may bind loosely and reversibly, along with the substrate, during catalysis. A coenzyme is an organic molecule serving as a cofactor. Most vitamins function as coenzymes in metabolic reactions. 28. Compare and contrast competitive inhibitors and noncompetitive inhibitors. Label each type of inhibitor in this figure. See page 156 of your text for the labeled figure. Competitive inhibitors are substances that reduce the activity of an enzyme by entering the active site in place of the substrate, whose structure it mimics

6 Noncompetitive inhibitors are substances that reduce the activity of an enzyme by binding to a location remote from the active site, changing the enzyme s shape so that the active site no longer effectively catalyzes the conversion of substrate to product. Concept 8.5 Regulation of enzyme activity helps control metabolism 29. What is allosteric regulation? Allosteric regulation is the binding of a regulatory molecule to a protein at one site that affects the function of the protein at a different site. 30. How is allosteric regulation somewhat like noncompetitive inhibition? How might it be different? It is like noncompetitive inhibition in that it may inhibit enzyme activity, but different in that it may also stimulate enzyme activity. 31. Explain the difference between an allosteric activator and an allosteric inhibitor. The binding of an activator to a regulatory site stabilizes the shape that has functional active sites, whereas the binding of an inhibitor stabilizes the inactive form of the enzyme. 32. Although it is not an enzyme, hemoglobin shows cooperativity in binding O 2. Explain how hemoglobin works at the gills of a fish. Hemoglobin is made up of four subunits, each of which has an oxygen-binding site. The binding of an oxygen molecule to one binding site increases the affinity for oxygen of the remaining binding sites. Thus, where oxygen is at high levels, such as in the lungs or gills, hemoglobin s affinity for oxygen increases as more binding sites are filled. 33. Study this figure from your book (Figure 8.21) and answer the questions that follow. See page 160 of your text for the labeled figured. a. What is the substrate molecule to initiate this metabolic pathway? Threonine b. What is the inhibitor molecule? Isoleucine c. What type of inhibitor is it? Noncompetitive inhibitor d. When does it have the most significant regulatory effect? When it binds to an allosteric site - 6 -

7 e. What is this type of metabolic control called? Feedback inhibition Test Your Understanding Answers Now you should be ready to test your knowledge. Place your answers here: 1. b 2. c 3. b 4. a 5.c 6. e 7. e - 7 -

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2. There are two types of reactions in metabolic pathways: anabolic

More information

Chapter 8 An Introduction to Metabolism

Chapter 8 An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Sep 7 9:07 PM 1 Metabolism=all of the chemical reactions within an organism metabolic pathways are chemical reactions that change molecules in a series of steps

More information

Enzymes and Metabolism

Enzymes and Metabolism Enzymes and Metabolism AP Biology Chapter 8 Metabolism Metabolism are all the chemical reactions in an organism Forming bonds between molecules dehydration synthesis synthesis of new muscle tissue by linking

More information

Cellular physiology ATP and Biological Energy (Lecture 15)

Cellular physiology ATP and Biological Energy (Lecture 15) Cellular physiology ATP and Biological Energy (Lecture 15) The complexity of metabolism This schematic diagram traces only a few hundred of the thousands of metabolic reactions that occur in a cell. The

More information

An Introduction to Metabolism. Chapter 8

An Introduction to Metabolism. Chapter 8 An Introduction to Metabolism Chapter 8 METABOLISM I. Introduction All of an organism s chemical reactions Thousands of reactions in a cell Example: digest starch use sugar for energy and to build new

More information

Intro to Metabolism Campbell Chapter 8

Intro to Metabolism Campbell Chapter 8 Intro to Metabolism Campbell Chapter 8 http://ag.ansc.purdue.edu/sheep/ansc442/semprojs/2003/spiderlamb/eatsheep.gif http://www.gifs.net Section 8.1 An organism s metabolism transforms matter and energy,

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Overview: The Energy of Life The living cell is a miniature chemical factory where thousands of reactions occur The cell extracts energy and applies energy to perform

More information

Learning Objectives. Learning Objectives (cont.) Chapter 6: Metabolism - Energy & Enzymes 1. Lectures by Tariq Alalwan, Ph.D.

Learning Objectives. Learning Objectives (cont.) Chapter 6: Metabolism - Energy & Enzymes 1. Lectures by Tariq Alalwan, Ph.D. Biology, 10e Sylvia S. Mader Lectures by Tariq Alalwan, Ph.D. Learning Objectives Define energy, emphasizing how it is related to work and to heat State and apply two energy laws to energy transformations.

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy Module 2D - Energy and Metabolism Objective # 19 All living organisms require energy for survival. In this module we will examine some general principles about chemical reactions and energy usage within

More information

7/20/2015. Energy. Lecture 4 Outline (Ch. 8) Energy. What is Energy?

7/20/2015. Energy. Lecture 4 Outline (Ch. 8) Energy. What is Energy? Lecture 4 Outline (Ch. 8) I. Overview II. Thermodynamics III. Metabolism and IV. Cellular (ATP) and coupled reactions V. Enzymes and Regulation VI. Summary What is? Where does our (humans) energy come

More information

An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics [2].

An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics [2]. GUIDED READING - Ch. 8 - AN INTRODUCTION TO METABOLISM NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not

More information

Energy Concepts. Study Objectives:

Energy Concepts. Study Objectives: Energy Concepts Study Objectives: 1. Define energy 2.Describe the 1 st law of thermodynamics Compare kinetic and potential energy, be able to give or recognize examples of each 3. Describe the major forms

More information

AP Biology Chapter 8: Additional Notes:

AP Biology Chapter 8: Additional Notes: AP Biology Chapter 8: Additional Notes: I. Entropy(S) a. The entropy of an isolated system increases in the course of spontaneous change i. Examples of spontaneous change are cooling to the temperature

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules

More information

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. 1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. Solar energy A. Answer a is incorrect. Kinetic energy is the energy of

More information

LAWS OF THERMODYNAMICS First Law: E cannot be created or destroyed, only transformed. Second Law: When E is transformed, some cannot be used for work

LAWS OF THERMODYNAMICS First Law: E cannot be created or destroyed, only transformed. Second Law: When E is transformed, some cannot be used for work ENERGY, ENZYMES AND METABOLISM CHAPTER 8 Lecture Objectives What Physical Principles Underlie Biological Energy Transformations? What Is the Role of ATP in Biochemical Energetics? What Are Enzymes? How

More information

Chapter 6: Energy Flow in the Life of a Cell. What is Energy? Answer: The Capacity to do Work. Types of Energy:

Chapter 6: Energy Flow in the Life of a Cell. What is Energy? Answer: The Capacity to do Work. Types of Energy: Chapter 6: Energy Flow in the Life of a Cell What is Energy? Answer: The Capacity to do Work Types of Energy: 1) Kinetic Energy = Energy of movement Light (movement of photons) Heat (movement of particles)

More information

Free Energy and Enzymes (Chapter 6) Outline. 1. The "extra" electrons have been stripped from other atoms in the cell.

Free Energy and Enzymes (Chapter 6) Outline. 1. The extra electrons have been stripped from other atoms in the cell. Free Energy and Enzymes (Chapter 6) Outline Growing Old With Molecular Mayhem A. Free radicals are molecules with extra electrons. 1. The "extra" electrons have been stripped from other atoms in the cell.

More information

Define the term energy and distinguish between potential and kinetic energy.

Define the term energy and distinguish between potential and kinetic energy. Energy and Chemical Reactions Objective # 1 All living organisms require energy for survival. In this topic we will examine some general principles about energy usage and chemical reactions within cells.

More information

Chapter Energy & Enzymes

Chapter Energy & Enzymes ANSWERS Chapter 5.2-5.6 Energy & Enzymes 1. Define energy and identify the various forms. Energy is the capacity to do work. Forms light, heat, electricity, motion. 2. Summarize the First and Second Laws

More information

AP Biology. From food webs to the life of a cell. Metabolism & Enzymes. Flow of energy through life. Metabolism. Chemical reactions of life

AP Biology. From food webs to the life of a cell. Metabolism & Enzymes. Flow of energy through life. Metabolism. Chemical reactions of life From food webs to the life of a cell energy Metabolism & Enzymes energy energy Flow of energy through life Life is built on chemical reactions sun transforming energy from one form to another organic molecules

More information

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes CHAPTER 6 AN INTRODUCTION TO METABOLISM Section B: Enzymes 1. Enzymes speed up metabolic reactions by lowering energy barriers 2. Enzymes are substrate specific 3. The active site in an enzyme s catalytic

More information

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it?

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it? Cellular Energy: ATP & Enzymes What is it? Where do organism s get it? How do they use it? Where does Energy come from? Ultimately, from the sun. It is transferred between organisms in the earth s lithosphere,

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name Advanced Biology Enzyme and Cellular Respiration Test Part I Multiple Choice (75 points) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Most components of energy conversion systems evolved very early; thus, the most fundamental aspects of energy metabolism tend to be: A. quite different among a diverse group

More information

Topic 7: METABOLISM: THERMODYNAMICS, CHEMICAL EQUILIBRIA, ENERGY COUPLING and CATALYSIS (lectures 9-10)

Topic 7: METABOLISM: THERMODYNAMICS, CHEMICAL EQUILIBRIA, ENERGY COUPLING and CATALYSIS (lectures 9-10) Topic 7: METABOLISM: THERMODYNAMICS, CHEMICAL EQUILIBRIA, ENERGY COUPLING and CATALYSIS (lectures 9-10) OBJECTIVES: 1. Understand the concepts of kinetic vs. potential energy. 2. Understand the concepts

More information

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential

More information

How Enzymes Lower the E A. Barrier. Substrate Specificity of Enzymes. Enzymes catalyze reac.ons by lowering the E A barrier

How Enzymes Lower the E A. Barrier. Substrate Specificity of Enzymes. Enzymes catalyze reac.ons by lowering the E A barrier How Enzymes Lower the E A Barrier Enzymes catalyze reac.ons by lowering the E A barrier do not affect the change in free energy ( G) Instead hasten reac.ons that would occur eventually Fig. 8 15 Free energy

More information

Enzymes and Metabolic Pathways

Enzymes and Metabolic Pathways Enzymes and Metabolic Pathways Enzyme characteristics Made of protein Catalysts: reactions occur 1,000,000 times faster with enzymes Not part of reaction Not changed or affected by reaction Used over and

More information

Homework. Due in Lab Week 2. Homework #4 (pages 9, 10 & 11) Biomolecules PreLab #2 (handout up front and on Instructor Website)

Homework. Due in Lab Week 2. Homework #4 (pages 9, 10 & 11) Biomolecules PreLab #2 (handout up front and on Instructor Website) Homework Due in Lab Week 2 Homework #4 (pages 9, 10 & 11) Biomolecules PreLab #2 (handout up front and on Instructor Website) Biological Molecules Enzymes Enzymes One of the most important groups of proteins

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

Metabolism & Enzymes AP Biology

Metabolism & Enzymes AP Biology Metabolism & Enzymes 2007-2008 From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions transforming energy from one form to another organic

More information

8/20/2012 H C OH H R. Proteins

8/20/2012 H C OH H R. Proteins Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids

More information

Chapter 19 Enzymes and Vitamins

Chapter 19 Enzymes and Vitamins 1.! What are enzymes? Be able to describe the chemical nature of enzymes and their function in biochemical reactions.! 2.! How do enzymes work, and why are they so specific? Be able to provide an overview

More information

Spontaneous Reactions

Spontaneous Reactions Enzymes Spontaneous Reactions May occur quickly or slowly Enzymes speed up chemical reactions!! (But how, Ms. Robinson????) An enzyme is a macromolecule that acts as a catalyst a chemical agent that speeds

More information

ENZYMES 2H 2 O 2 O 2 + 2H 2 O WHAT ARE ENZYMES? WHAT DO ENZYMES DO?

ENZYMES 2H 2 O 2 O 2 + 2H 2 O WHAT ARE ENZYMES? WHAT DO ENZYMES DO? ENZYMES WHAT ARE ENZYMES? WHAT DO ENZYMES DO? catalase 2H 2 O 2 O 2 + 2H 2 O catalase There are literally thousands of different enzymes which catalyze every major chemical reaction in the cells and bodies

More information

Section 3: Factors That Affect the Rate of Enzyme Catalyzed Reactions best

Section 3: Factors That Affect the Rate of Enzyme Catalyzed Reactions best Biology 12 Name: Metabolism Practice Test Section 1: What is an enzyme? 1. Which of the following statements is true about enzymes? a) 3D shape can vary and still be active b) they may catalyze only 1

More information

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman An Introduction to Metabolism Most biochemical processes occur as biochemical pathways, each individual reaction of which is catalyzed

More information

Energy and Life. Energy= the ability to do work. Autotrophs= use sunlight, CO 2, and water to make their own food (sugars) PHOTOSYNTHESIS

Energy and Life. Energy= the ability to do work. Autotrophs= use sunlight, CO 2, and water to make their own food (sugars) PHOTOSYNTHESIS Energy and Life Energy= the ability to do work Autotrophs= use sunlight, CO 2, and water to make their own food (sugars) PHOTOSYNTHESIS Heterotrophs= can t make their own food, they have to eat autotrophs

More information

BIOCHEMISTRY/MOLECULAR BIOLOGY

BIOCHEMISTRY/MOLECULAR BIOLOGY Enzymes Activation Energy Chemical reactions require an initial input of energy activation energy large biomolecules are stable must absorb energy to break bonds cellulose energy CO 2 + H 2 O + heat Activation

More information

Metabolism Practice Test KEY

Metabolism Practice Test KEY Biology 12 Metabolism Practice Test KEY Name: Section 1: What is an enzyme? 1. Which of the following statements is true about enzymes? a) 3D shape can vary and still be active b) they may catalyze only

More information

Chapter 5 Fundamentals of Human Energy Transfer

Chapter 5 Fundamentals of Human Energy Transfer Chapter 5 Fundamentals of Human Energy Transfer Slide Show developed by: Richard C. Krejci, Ph.D. Professor of Public Health Columbia College 6.18.11 Objectives 1. Describe the first law of thermodynamics

More information

CHAPTER 8: ENERGY AND METABOLISM

CHAPTER 8: ENERGY AND METABOLISM CHAPTER 8: ENERGY AND METABOLISM CHAPTER SYNOPSIS Living organisms transform potential energy into kinetic energy to survive, grow, and reproduce. The energy that the earth receives from the sun is transformed

More information

The light comes from a set of chemical reactions, the luciferin-luciferase system Fireflies make light energy from chemical energy

The light comes from a set of chemical reactions, the luciferin-luciferase system Fireflies make light energy from chemical energy Cool Fires Attract Mates and Meals Fireflies use light instead of chemical signals to send a message to potential mates Females can also use light to attract males of other firefly species, as meals not

More information

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

* Is chemical energy potential or kinetic energy? The position of what is storing energy? Biology 1406 Exam 2 - Metabolism Chs. 5, 6 and 7 energy - capacity to do work 5.10 kinetic energy - energy of motion : light, electrical, thermal, mechanical potential energy - energy of position or stored

More information

ATP The Free Energy Carrier

ATP The Free Energy Carrier Why? ATP The Free Carrier How does the ATP molecule capture, store, and release energy? A sporting goods store might accept a $100 bill for the purchase of a bicycle, but the corner store will not take

More information

2. Give the formula (with names) for the catabolic degradation of glucose by cellular respiration.

2. Give the formula (with names) for the catabolic degradation of glucose by cellular respiration. Chapter 9: Cellular Respiration: Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture.

More information

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:

More information

Energy and Metabolism

Energy and Metabolism Energy and Metabolism Bởi: OpenStaxCollege Scientists use the term bioenergetics to describe the concept of energy flow ([link]) through living systems, such as cells. Cellular processes such as the building

More information

MEMBRANE STRUCTURE AND FUNCTION

MEMBRANE STRUCTURE AND FUNCTION Chapter 5 The Working Cell: Membranes, Energy, and s Chapter 5: Big Ideas Cellular respiration Membrane Structure and Function Energy and the Cell How s Function MEMBRANE STRUCTURE AND FUNCTION Membranes

More information

Enzymes and Metabolism

Enzymes and Metabolism Enzymes and Metabolism Enzymes and Metabolism Metabolism: Exergonic and Endergonic Reactions Chemical Reactions: Activation Every chemical reaction involves bond breaking and bond forming A chemical reaction

More information

green B 1 ) into a single unit to model the substrate in this reaction. enzyme

green B 1 ) into a single unit to model the substrate in this reaction. enzyme Teacher Key Objectives You will use the model pieces in the kit to: Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating enzymatic activity.

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

Energy and Metabolism

Energy and Metabolism Chapter 6 6 Energy and Metabolism Chapter Outline 6.1 The Flow of Energy in Living Systems 6.2 The Laws of Thermodynamics and Free Energy 6.3 ATP: The Energy Currency of Cells 6.4 Enzymes: Biological Catalysts

More information

Enzymes and Metabolic Pathways Un-lecture!

Enzymes and Metabolic Pathways Un-lecture! Enzymes and Metabolic Pathways Un-lecture! Numbers correspond to the slides, which are in your lecture notes and also posted on-line on the announcements page. 1. Characteristics of enzymes.we went over

More information

Chapter 2 - Chemical Foundations

Chapter 2 - Chemical Foundations Chapter 2 - Chemical Foundations I. Introduction By weight, cells are about 70% water, about 1% ions, about 6% small organic molecules (including amino acids, sugars, nucleotides), and about 23% macromolecules.

More information

Pathways that Harvest and Store Chemical Energy

Pathways that Harvest and Store Chemical Energy Pathways that Harvest and Store Chemical Energy Chapter 6 Pathways that Harvest and Store Chemical Energy Key Concepts 6.1 ATP, Reduced Coenzymes, and Chemiosmosis Play Important Roles in Biological Energy

More information

Lecture 8 Enzyme Energetics

Lecture 8 Enzyme Energetics Lecture 8 Enzyme Energetics 1 Last Lecture We talked about protein conformational change, signal cascades, phosphorylation, and ATP. We shall review these things even more in depth today 2 In this lecture

More information

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Name: AP Biology Mr. Croft Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second

More information

+ΔH gained enthalpy as reaction proceeded -ΔS means we have decreased entropy -ΔH means we have lost enthalpy(heat) (exergonic)

+ΔH gained enthalpy as reaction proceeded -ΔS means we have decreased entropy -ΔH means we have lost enthalpy(heat) (exergonic) CHAPTER ENERGY AND LIVING CELLS Life Requires Free Energy ( Bozeman biology) G= Free energy is the available(useable) energy to do work in the system Q. So during an exothermic reaction does the G go up

More information

CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. Section A: The Principles of Energy Harvest

CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. Section A: The Principles of Energy Harvest Section A: The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle the ATP they use for work 3. Redox reactions release energy

More information

Metabolism - Part 1 Glycolysis & Respiration

Metabolism - Part 1 Glycolysis & Respiration Metabolism - Part 1 Glycolysis & Respiration Cells harvest chemical energy from foodstuffs in a series of exergonic reactions. The harvested energy can then be used to power energy demanding processes

More information

CHAPTER 4: Enzyme Structure ENZYMES

CHAPTER 4: Enzyme Structure ENZYMES CHAPTER 4: ENZYMES Enzymes are biological catalysts. There are about 40,000 different enzymes in human cells, each controlling a different chemical reaction. They increase the rate of reactions by a factor

More information

Unit 1: Chemistry of Life Guided Reading Questions (70 pts total)

Unit 1: Chemistry of Life Guided Reading Questions (70 pts total) AP Biology Biology, Campbell and Reece, 10th Edition Adapted from chapter reading guides originally created by Lynn Miriello Name: Unit 1: Chemistry of Life Guided Reading Questions (70 pts total) Chapter

More information

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to: and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways

More information

GCE A Level. Biology. Energy and respiration. сᴏᴏʟιᴏ

GCE A Level. Biology. Energy and respiration. сᴏᴏʟιᴏ GCE A Level Biology Energy and respiration сᴏᴏʟιᴏ 2013-2014 Q 1(a) Describe how ATP is synthesized by oxidative phosphorylation. [June 2012 # 1] Reduced NAD and reduced FAD are passed to the electron transport

More information

The Structure and Hydrolysis of ATP

The Structure and Hydrolysis of ATP The Structure and Hydrolysis of ATP ATP drives endergonic reactions by phosphorylation, transferring a phosphate group to some other molecule, such as a reactant The recipient molecule is now called a

More information

Regulation of Metabolism. Enzymes and Cellular Energy

Regulation of Metabolism. Enzymes and Cellular Energy Regulation of Metabolism Local (intrinsic) Control Mechanisms Enzymes and Cellular Energy Cellular metabolism consists of: Catabolism: the breakdown of organic molecules Anabolism: the synthesis of organic

More information

1. Explain the difference between fermentation and cellular respiration.

1. Explain the difference between fermentation and cellular respiration. : Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture. Photosynthesis and cellular

More information

BIOENERGETICS. Bioenergetics The study of energy transfer within the living things.

BIOENERGETICS. Bioenergetics The study of energy transfer within the living things. BIOENERGETICS Bioenergetics The study of energy transfer within the living things. Why Study Bioenergetics? The understanding of metabolism provides the directions to better understand how skeletal muscles

More information

Chapter 3: Bioenergetics

Chapter 3: Bioenergetics Chapter 3: Bioenergetics Introduction Metabolism: total of all chemical reactions that occur in the body Anabolic reactions Synthesis of molecules Catabolic reactions Breakdown of molecules Bioenergetics

More information

Ch 4: Energy and Cellular Metabolism

Ch 4: Energy and Cellular Metabolism Ch 4: Energy and Cellular Metabolism Energy as it relates to Biology Chemical reactions Enzymes and how they speed rxs Metabolism and metabolic pathways Catabolism (ATP production) Anabolism (Synthesis

More information

Enzymes. OpenStax College

Enzymes. OpenStax College OpenStax-CNX module: m44429 1 Enzymes OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you will be able

More information

AP BIOLOGY 2009 SCORING GUIDELINES

AP BIOLOGY 2009 SCORING GUIDELINES AP BIOLOGY 2009 SCORING GUIDELINES Question 2 ATP and GTP are primary sources of energy for biochemical reactions. (a) Describe the structure of the ATP or the GTP molecule. (1 point each; 2 points maximum)

More information

Chemistry 20 Chapters 15 Enzymes

Chemistry 20 Chapters 15 Enzymes Chemistry 20 Chapters 15 Enzymes Enzymes: as a catalyst, an enzyme increases the rate of a reaction by changing the way a reaction takes place, but is itself not changed at the end of the reaction. An

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

BCOR 011 Exam 2, 2004

BCOR 011 Exam 2, 2004 BCOR 011 Exam 2, 2004 Name: Section: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. According to the first law of thermodynamics, A. the universe

More information

2-An activated enzyme made of polypeptide chain and a co-factor is (A) Coenzyme (B) Substrate (C) Apoenzyme (D) Holoenzyme

2-An activated enzyme made of polypeptide chain and a co-factor is (A) Coenzyme (B) Substrate (C) Apoenzyme (D) Holoenzyme 1-The catalytic activity of an enzyme is restricted to its small portion called (B) Passive site (C) Allosteric site (D) All Choices are correct 2-An activated enzyme made of polypeptide chain and a co-factor

More information

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is:

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is: Lecture 4 Catalytic proteins Are a type of protein that acts as a catalyst-speeding up chemical reactions A catalyst is defined as a chemical agent that changes the rate of a reaction without being consumed

More information

Cofactors and Inhibitors. Looking at enzymes more closely

Cofactors and Inhibitors. Looking at enzymes more closely Cofactors and Inhibitors Looking at enzymes more closely Cofactors Nonprotein helpers that help catalyze reactions Can either bind loosely or permanently on the substrate If the cofactor is organic, it

More information

pencil. Vocabulary: 1. Reactant 2. Product 3. Activation energy 4. Catalyst 5. substrate 6. Chemical reaction Keep your textbooks when you are done

pencil. Vocabulary: 1. Reactant 2. Product 3. Activation energy 4. Catalyst 5. substrate 6. Chemical reaction Keep your textbooks when you are done Objectives Students will explore the importance of chemical reactions in biology Students will discuss the role of enzymes as catalysts in biological reactions. Students will analyze graphs showing how

More information

Lipids (Biologie Woche 1 und 2; Pages 81 and 82)

Lipids (Biologie Woche 1 und 2; Pages 81 and 82) Lipids (Biologie Woche 1 und 2; Pages 81 and 82) Lipids Features Have oily, greasy or waxy consistency Relatively insoluble in water Protein and carbohydrates may be converted into lipids by enzymes an

More information

ENZYME MECHANISM C H A P T E R 7

ENZYME MECHANISM C H A P T E R 7 C H A P T E R 7 ENZYME MECHANISM Active Site Transition State Catalysis Lock and Key Induced Fit Nonproductive Binding Entropy Strain and Distortion Transition-State Stabilization Transition-State Analogs

More information

Metabolism. Metabolism. Total of all chemical reactions that occur in the body. Bioenergetics. 1. Anabolic reactions Synthesis of molecules

Metabolism. Metabolism. Total of all chemical reactions that occur in the body. Bioenergetics. 1. Anabolic reactions Synthesis of molecules Metabolism Metabolism Total of all chemical reactions that occur in the body 1. Anabolic reactions Synthesis of molecules 2. Catabolic reactions Breakdown of molecules Bioenergetics Converting foodstuffs

More information

ACTIVATION ENERGY AND CATALYSIS

ACTIVATION ENERGY AND CATALYSIS Introduction ACTIVATION ENERGY AND CATALYSIS For a reaction to occur, molecules must collide. The frequency of the collisions affects the rate of the reaction. The frequency can be changed by a. increasing

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy Name Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture.

More information

endergonic exergonic activation energy

endergonic exergonic activation energy Week 5 Last week, we talked about energy and how chemical reactions in biology are often endergonic (energy storing) or exergonic (energy releasing). Let s look at the endergonic and exergonic reaction

More information

Biochemistry Energy and Glycolysis

Biochemistry Energy and Glycolysis MIT Department of Biology 7.014 Introductory Biology, Spring 2005 Recitation Section 4 Answer Key February 14-15, 2005 Biochemistry Energy and Glycolysis A. Why do we care In lecture we discussed the three

More information

BIOCHEMISTRY (I) LIFS2210. Enzymes and Enzyme Reactions

BIOCHEMISTRY (I) LIFS2210. Enzymes and Enzyme Reactions BIOCHEMISTRY (I) LIFS2210 Enzymes and Enzyme Reactions 1 1. Enzymes: Biocatalysts Catalyst: to increase the rate or velocity of a chemical reaction without itself being changed in the overall process Catalyst

More information

Sindh Text Book Board, Jamshoro.

Sindh Text Book Board, Jamshoro. Chapter 3 ENZYMES Life would not be possible with out metabolic activities of the cell. This in turn is depends upon the Catalytic molecules called the enzymes. With-out enzymes, the dynamic, steady state

More information

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery Cellular Respiration & Metabolism Metabolic Pathways: a summary Metabolism Bioenergetics Flow of energy in living systems obeys: 1 st law of thermodynamics: Energy can be transformed, but it cannot be

More information

Chapter 7. Harvesting Energy: Glycolysis and Cellular Respiration

Chapter 7. Harvesting Energy: Glycolysis and Cellular Respiration Chapter 7 Harvesting Energy: Glycolysis and Cellular Respiration Including some materials from lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education,

More information

Cell Energetics Practice

Cell Energetics Practice Cell Energetics Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The ultimate source of energy for almost all living organisms is: a. heat. b.

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

2- The conversion of 1 mol of fructose 1,6-bisphosphate to 2 mol of pyruvate by the glycolytic pathway results in a net formation of:

2- The conversion of 1 mol of fructose 1,6-bisphosphate to 2 mol of pyruvate by the glycolytic pathway results in a net formation of: Section 8 Key 1- During strenuous exercise, the NADH formed in the glyceraldehyde 3-phosphate dehydrogenase reaction in skeletal muscle must be reoxidized to NAD + if glycolysis is to continue. The most

More information

2. Cellular respiration uses oxygen to convert the chemical energy stored in organic molecules into -?-

2. Cellular respiration uses oxygen to convert the chemical energy stored in organic molecules into -?- HB Cell Respiration Questions (1/2 point each question or blank to fill in 37 points) 1. Organisms, such as plants that make their own food are called -?- 2. Cellular respiration uses oxygen to convert

More information

Bioenergetics. Free Energy Change

Bioenergetics. Free Energy Change Bioenergetics Energy is the capacity or ability to do work All organisms need a constant supply of energy for functions such as motion, transport across membrane barriers, synthesis of biomolecules, information

More information

Chemical system. Chemical reaction A rearrangement of bonds one or more molecules becomes one or more different molecules A + B C.

Chemical system. Chemical reaction A rearrangement of bonds one or more molecules becomes one or more different molecules A + B C. Chemical system a group of molecules that can react with one another. Chemical reaction A rearrangement of bonds one or more molecules becomes one or more different molecules A + B C Reactant(s) Product(s)

More information