Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide"

Transcription

1 Transmembrane proteins span the bilayer α-helix transmembrane domain Hydrophobic R groups of a.a. interact with fatty acid chains Multiple transmembrane helices in one polypeptide Polar a.a. Hydrophilic pore Nonpolar a.a. Membrane transporter for polar or charged molecules ECB Fig Mobility of transmembrane proteins Bleach with laser beam If protein is mobile then fluorescent signal moves back into bleached area Recovery rate measures mobility 2

2 Peripheral membrane proteins (associated with membrane, but not in bilayer) Lecture 5 (cont d) Membrane Proteins Proteins as enzymes Binding sites Free energy Activation energy, enzyme function Enzyme mechanisms Kinetic parameters of enzymes Proteins as membrane transporters Enzymes bind substrates Substrate (ligand) Non-covalent interactions Binding site ECB Fig Enzyme (protein) 3

3 How do enzymes work? Start by considering free energy Free energy is amount of useful energy available to do work G (Delta G) = free energy change (Reactants - Products) In a chemical reaction G = H T S H = heat; heat released is negative S = entropy (randomness); increased randomness is positive Reactions occur spontaneously if G is negative Enzymes lower activation energy but have NO effect on G Energy of reactants Activation energy G Energy of products ECB Fig Uncatalyzed reaction Catalyzed reaction Enzymes accelerate reaction rates X Y Uncatalyzed reaction X Y Enzyme catalyzed reaction ECB Fig

4 How do enzymes accelerate reactions? Enzymes can hold substrates in positions that encourage reactions to occur Enzymes can change the ionic environment of substrates, accelerating the reaction Lower activation energy Enzymes can put physical stress on substrates Adapted from ECB Fig Thermodynamically Unfavorable Reactions ( G+) Many reactions in cells have positive G: e.g. condensation reactions (forming polymers reduces randomness so S -, G +) G = H T S Y G + Solution: couple to reaction where G - (Often hydrolysis of ATP) X Y G + ATP ADP + P i G - X + ATP Y + ADP + Pi + G - Example of coupled reaction: synthesis of sucrose ECB Panel 3-1 G values are additive 5

5 ATP (Nucleotide) G of hydrolysis = -7.3 kcal/mole ADP + P i + energy Enzymes can be regulated Inhibitors can bind to active site Binding in the active site can prevent substrate interaction Enzymes can be regulated at sites other than the active site Example: phosphorylation Fig ECB

6 Lecture 5 Outline Protein Secondary Structure Membrane Proteins Proteins as enzymes Proteins as membrane transporters (Ch 12 ECB) Channel Carrier proteins Facilitated diffusion Active transport Lipid Bilayer Permeability Small hydrophobic Molecules O 2, CO 2, N 2, benzene Properties of a pure synthetic lipid bilayer Small Uncharged polar molecules H 2 O, glycerol, ethanol Large, uncharged Polar molecules Amino acids, glucose, nucleotides IONS H +, Na +, HCO 3 -, K +, Ca 2+, Cl -, Mg 2+ ECB 12-2 Transmembrane proteins allow movement of molecules that cannot move through bilayer ECB 12-1 But it is not that simple 7

7 Membrane impermeability results in electrical and chemical gradients across membrane Charged molecules - transport influenced by concentration gradient and membrane potential (electrochemical (EC) gradient ) out Electrochemical gradient in ECB 12-8 Concentration gradient only Conc.. Gradient with membrane potential (-) inside Ion gradients across the plasma membrane ph 7.2* ph 7.4* Different electrochemical gradient for each ion Electrical and concentration gradient can be opposite (e.g. K + ) Transport problems faced by cells: - Need to get an impermeable molecule across the membrane - going WITH its electrochemical gradient - Need to get a molecule (permeable or impermeable) across the membrane going AGAINST its electrochemical gradient Solution -- specialized membrane proteins for transport functions. 8

8 Two broad classes of transmembrane proteins A. channel protein B. carrier proteins ECB 12-3 Conformational change Transport can be passive or active electrochemical ECB 12-4 Channels - Passive transport down elecrochemical gradient Impermeable Channel protein ECB 12-4 Channel-mediated diffusion (facilitated diffusion) 9

9 Channel structure Aqueous pore due to polar and charged R groups ECB Always passive transport Mechanism of K + channel selectivity ECB 12-7 Carrier mediated Diffusion (facilitated diffusion down EC gradient) Active transport (energy-driven) Carrier Proteins: Transport against EC gradient Transfer across membrane driven by conformational change in transporter Slower than channels Binds transported ligand - highly specific 10

10 Active transport - three types -uses energy to drive transport against EC gradient through carrier protein ECB 12-9 Coupled transport Down EC gradient Cotransported Molecule (against EC gradient) ECB Symport- - move same direction Antiport- - move opposite directions Na-Glucose symporter Move glucose against its EC gradient, using the energy stored in the Na + gradient. ECB

11 ATP-driven pumps Move against EC gradient ATP ADP + Pi Typically move ions generating EC gradient EC gradient can then be used in coupled transport Na + /K + pump in animal cells ECB Cyclic transport by Na + /K + pump Phosphoryation regulates the enzyme conformation 3 Conf. change 1 Low affinity Na binding sites High affinity K binding sites 3 High affinity Na binding sites Low affinity K+ binding sites 3 2 NaKATPase.avi 2 Conf. change

12 Chemiosmotic coupling of pumps and cotransport H + transporters in vacuole and lysosome are similar Osmosis Osmosis: movement of water from region of low solute concentration to region of high solute concentration (or high water potential to low water potential) How do cells prevent osmotic swelling? ECB

Cells Need to Exchange Materials with the Extracellular Fluid. Membrane Transport. Plasma Membrane. Cells Must Control Movements of Materials

Cells Need to Exchange Materials with the Extracellular Fluid. Membrane Transport. Plasma Membrane. Cells Must Control Movements of Materials Membrane Transport Chapter 6 Cells Need to Exchange Materials with the Extracellular Fluid Take in nutrients O 2 energy substrates building materials cofactors Dispose of wastes CO 2 Urea Cells Must Control

More information

Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial.

Total body water ~(60% of body mass): Intracellular fluid ~2/3 or ~65% Extracellular fluid ~1/3 or ~35% fluid. Interstitial. http://www.bristol.ac.uk/phys-pharm/teaching/staffteaching/sergeykasparov.htmlpharm/teaching/staffteaching/sergeykasparov.html Physiology of the Cell Membrane Membrane proteins and their roles (channels,

More information

Modes of Membrane Transport

Modes of Membrane Transport Modes of Membrane Transport Transmembrane Transport movement of small substances through a cellular membrane (plasma, ER, mitochondrial..) ions, fatty acids, H 2 O, monosaccharides, steroids, amino acids

More information

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY BMLS II / B Pharm II / BDS II VJ Temple

More information

Active Transport Moves solute Against Their Electrochemical Gradient

Active Transport Moves solute Against Their Electrochemical Gradient Active Transport Moves solute Against Their Electrochemical Gradient Active transport of solutes against their electrochemical gradient is essential to maintain the intracellular ionic composition of cells

More information

Cell Membranes. Cell Membranes. Passive and Active Transport. Homeostasis Requires Exchange of Materials. Water and Solute Transport

Cell Membranes. Cell Membranes. Passive and Active Transport. Homeostasis Requires Exchange of Materials. Water and Solute Transport Homeostasis Requires Exchange of Materials Water and Solute Transport Transportation of solutes in solution Movement between external and internal environments Movement between internal environment and

More information

The Lipid Bilayer Is a Two-Dimensional Fluid

The Lipid Bilayer Is a Two-Dimensional Fluid The Lipid Bilayer Is a Two-Dimensional Fluid The aqueous environment inside and outside a cell prevents membrane lipids from escaping from bilayer, but nothing stops these molecules from moving about and

More information

A membrane s structure and functions are determined by its constituents: lipids, proteins, and carbohydrates.

A membrane s structure and functions are determined by its constituents: lipids, proteins, and carbohydrates. A membrane s structure and functions are determined by its constituents: lipids, proteins, and carbohydrates. The general design of membranes is known as the fluid mosaic model. Phospholipids form a continuous

More information

8.2 Cell Transport. **The cell must move different substances into and out of the cell. **8.2 discusses the different methods of cell transport

8.2 Cell Transport. **The cell must move different substances into and out of the cell. **8.2 discusses the different methods of cell transport 8.2 Bellringer.. (1)In your own words, define passive, active, and transport Now, imagine sitting in a boat that is moving downstream with the current. Then, imagine a small motor to move the same boat

More information

Cell Biology - Part 2 Membranes

Cell Biology - Part 2 Membranes Cell Biology - Part 2 Membranes The organization of cells is made possible by membranes. Membranes isolate, partition, and compartmentalize cells. 1 Membranes isolate the inside of the cell from the outside

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function -plasma membrane acts as a barrier between cells and the surrounding. -plasma membrane is selective permeable -consist of lipids, proteins and carbohydrates -major lipids

More information

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+ 1. Membrane transport. A. (4 pts) What ion couples primary and secondary active transport in animal cells? What ion serves the same function in plant cells? Na+, H+ 2. (4 pts) What is the terminal electron

More information

1. The lipid layer that forms the foundation of cell membranes is primarily composed of molecules called.

1. The lipid layer that forms the foundation of cell membranes is primarily composed of molecules called. Cell Membranes 1. The lipid layer that forms the foundation of cell membranes is primarily composed of molecules called. 2. Due to the repellent nature of the polar water molecules, the tails of the phospholipids

More information

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet AP * BIOLOGY CELL MEMBRANES, TRANSPORT, and COMMUNICATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production

More information

Proteins in Solution and in Membrane. - Proteins exist in solution or embedded in membranes

Proteins in Solution and in Membrane. - Proteins exist in solution or embedded in membranes Proteins in Solution and in Membrane - Proteins exist in solution or embedded in membranes 1 Soluble Proteins Physical and Chemical Properties of Soluble Proteins The folded conformations of native proteins

More information

Six major functions of membrane proteins: Transport Enzymatic activity

Six major functions of membrane proteins: Transport Enzymatic activity CH 7 Membranes Cellular Membranes Phospholipids are the most abundant lipid in the plasma membrane. Phospholipids are amphipathic molecules, containing hydrophobic and hydrophilic regions. The fluid mosaic

More information

AP Biology. The Cell Membrane

AP Biology. The Cell Membrane The Cell Membrane Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water Aaaah, one of those structure function

More information

Transport Across Cell Membranes

Transport Across Cell Membranes Transport Across Cell Membranes CELL MEMBRANE STRUCTURE A phospholipid bilayer makes up the main part of the cell membrane Each phospholipid molecule contains a charged polar head (H 2 O-loving) and non-polar,

More information

Cell Membrane Structure and Function. Prof. Dr. Turgut Ulutin

Cell Membrane Structure and Function. Prof. Dr. Turgut Ulutin Cell Membrane Structure and Function Prof. Dr. Turgut Ulutin Why do we need the plasma membrane? Keeping the goods concentrated Keeping harmful materials out Transports substances in and out of the cell

More information

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 1.2 Cell Membranes Notes & Questions Andy Todd 1 Outline the roles of membranes within cells and at the surface of cells. The main

More information

Allows certain materials and of the cell. The cell membrane is selectively permeable

Allows certain materials and of the cell. The cell membrane is selectively permeable Overview The cell membrane forms a barrier around the cell and separates it from the outside environment What is the main function of the cell membrane? Allows certain materials and of the cell The cell

More information

CHAPTER 5.1 5.2: Plasma Membrane Structure

CHAPTER 5.1 5.2: Plasma Membrane Structure CHAPTER 5.1 5.2: Plasma Membrane Structure 1. Describe the structure of a phospholipid molecule. Be sure to describe their behavior in relationship to water. 2. What happens when a collection of phospholipids

More information

Metabolism & Enzymes AP Biology

Metabolism & Enzymes AP Biology Metabolism & Enzymes 2007-2008 From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions transforming energy from one form to another organic

More information

Ch. 8 - The Cell Membrane

Ch. 8 - The Cell Membrane Ch. 8 - The Cell Membrane 2007-2008 Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water Aaaah, one of those

More information

MASSEY UNIVERSITY MANAWATU AND ALBANY CAMPUSES EXAMINATION FOR BIOCHEMISTRY OF CELLS SECTION A. Semester Two, 2010

MASSEY UNIVERSITY MANAWATU AND ALBANY CAMPUSES EXAMINATION FOR BIOCHEMISTRY OF CELLS SECTION A. Semester Two, 2010 MASSEY UNIVERSITY MANAWATU AND ALBANY CAMPUSES EXAMINATION FOR 122.102 BIOCHEMISTRY OF CELLS SECTION A Semester Two, 2010 This examination is divided into TWO (2) sections A and B Time allowed : THREE

More information

Chapter 2 - Chemical Foundations

Chapter 2 - Chemical Foundations Chapter 2 - Chemical Foundations I. Introduction By weight, cells are about 70% water, about 1% ions, about 6% small organic molecules (including amino acids, sugars, nucleotides), and about 23% macromolecules.

More information

The cell. Lecture 5. The Cell membrane and Membrane Proteins. Cellular membranes A cell is the simplest collection of matter that can live

The cell. Lecture 5. The Cell membrane and Membrane Proteins. Cellular membranes A cell is the simplest collection of matter that can live Lecture 5 The cell The Cell membrane and Membrane Proteins Ameoba- single celled organism A single human cell The Cell is the simplest collec4on of ma9er that can live Cells 4ssue organ Cellular membranes

More information

KEY. BI 212 Summer Exam I. July 27 th 2015

KEY. BI 212 Summer Exam I. July 27 th 2015 KEY BI 212 Summer 2015 Exam I July 27 th 2015 On your scantron, please fill in: 1. Your name (First and Last) 2. Exam I 3. Date 4. Lab section: MW at 1 section 010; MW at 4 section 011; TR at 1 section

More information

Cell Membrane Coloring Worksheet

Cell Membrane Coloring Worksheet Cell Membrane Coloring Worksheet Composition of the Cell Membrane & Functions The cell membrane is also called the plasma membrane and is made of a phospholipid bilayer. The phospholipids have a hydrophilic

More information

Solute Transport (Ch. 6) 1. The need for specialized membrane transport systems.

Solute Transport (Ch. 6) 1. The need for specialized membrane transport systems. Solute Transport (Ch. 6) 1. The need for specialized membrane transport systems. 2. Passive vs. Active Transport 3. Membrane Transport Mechanisms Why the need for specialized transport systems? Fig. 1.4

More information

The structure and function of the plasma membrane

The structure and function of the plasma membrane The structure and function of the plasma membrane Our current view of membrane structure is based on the fluid mosaic model. This model proposes that membranes are not rigid, with molecules locked into

More information

The Cell Membrane: Structure and Func4on

The Cell Membrane: Structure and Func4on The Cell Membrane: Structure and Func4on Overview of the Cell Membrane All cells have a cell membrane Separates living cell from nonliving surroundings Mainly made of phospholipids proteins & other macromolecules

More information

NO CALCULATORS OR CELL PHONES ALLOWED

NO CALCULATORS OR CELL PHONES ALLOWED Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.

More information

PART I: Neurons and the Nerve Impulse

PART I: Neurons and the Nerve Impulse PART I: Neurons and the Nerve Impulse Identify each of the labeled structures of the neuron below. A. B. C. D. E. F. G. Identify each of the labeled structures of the neuron below. A. dendrites B. nucleus

More information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Anatomy and Physiology Placement Exam 2 Practice with Answers at End! Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.

More information

Energy Concepts. Study Objectives:

Energy Concepts. Study Objectives: Energy Concepts Study Objectives: 1. Define energy 2.Describe the 1 st law of thermodynamics Compare kinetic and potential energy, be able to give or recognize examples of each 3. Describe the major forms

More information

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to: and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways

More information

Cell Membrane Structure (and How to Get Through One)

Cell Membrane Structure (and How to Get Through One) Cell Membrane Structure (and How to Get Through One) A cell s membrane is a wall of sorts that defines the boundaries of a cell. The membrane provides protection and structure for the cell and acts as

More information

Keystone Study Guide Module A: Cells and Cell Processes

Keystone Study Guide Module A: Cells and Cell Processes Keystone Study Guide Module A: Cells and Cell Processes Topic 1: Biological Principles Cells and the Organization of Life Characteristics of Life all living things share the following characteristics:

More information

Lecture 5. The Cell The cell membrane and Membrane Proteins

Lecture 5. The Cell The cell membrane and Membrane Proteins Lecture 5 The Cell The cell membrane and Membrane Proteins The cell Ameoba- single celled organism A single human cell The Cell is the simplest collec4on of ma9er that can live Cells 4ssue organ The cell

More information

The light comes from a set of chemical reactions, the luciferin-luciferase system Fireflies make light energy from chemical energy

The light comes from a set of chemical reactions, the luciferin-luciferase system Fireflies make light energy from chemical energy Cool Fires Attract Mates and Meals Fireflies use light instead of chemical signals to send a message to potential mates Females can also use light to attract males of other firefly species, as meals not

More information

Nutrient Assimilation - Taking Up the Right Stuff. Each Fundamental Process of Life

Nutrient Assimilation - Taking Up the Right Stuff. Each Fundamental Process of Life Absorption Ingestion Photosynthesis Each Fundamental Process of Life Unity of Life Universal physical and chemical principles Diversity of Life places design constraints on provides certain opportunities

More information

Division Ave High School AP Biology

Division Ave High School AP Biology The Cell Membrane https://youtu.be/y31dlj6ugge Journal Diagrams Shark book pg. 82 Wolves book pg. 88-89 Membrane Proteins Copy table Cell Membrane Proteins Fluid Mosaic Model Cell Membrane Phospholipids

More information

Ions cannot cross membranes. Ions move through pores

Ions cannot cross membranes. Ions move through pores Ions cannot cross membranes Membranes are lipid bilayers Nonpolar tails Polar head Fig 3-1 Because of the charged nature of ions, they cannot cross a lipid bilayer. The ion and its cloud of polarized water

More information

Mitochondria. phosphorylation

Mitochondria. phosphorylation Mitochondria. Mechanism of oxidative phosphorylation p The mitochondrion has been termed the "powerhouse" of the cell. Mitochondria are oval-shaped organelles. They have 2 membrane systems: outer membrane

More information

Cell Membrane & Tonicity Worksheet

Cell Membrane & Tonicity Worksheet NAME ANSWER KEY DATE PERIOD Cell Membrane & Tonicity Worksheet Composition of the Cell Membrane & Functions The cell membrane is also called the PLASMA membrane and is made of a phospholipid BI-LAYER.

More information

The Cell Membrane and Transport

The Cell Membrane and Transport The Cell Membrane and Transport Membrane Structure Fluid Mosaic Structure: The Fluid Part Phospholipids: main lipid in the cell membrane; in a bilayer Polar head = attracted to water - hydrophilic Non-polar

More information

Chapter 8. Movement across the Cell Membrane. AP Biology

Chapter 8. Movement across the Cell Membrane. AP Biology Chapter 8. Movement across the Cell Membrane More than just a barrier Expanding our view of cell membrane beyond just a phospholipid bilayer barrier phospholipids plus Fluid Mosaic Model In 1972, S.J.

More information

Atoms can form ionic or covalent bonds with one another. Hydrogen bonds and van der Waals interactions are weak bonds between molecules.

Atoms can form ionic or covalent bonds with one another. Hydrogen bonds and van der Waals interactions are weak bonds between molecules. BENG 100 Frontiers of Biomedical Engineering Professor Mark Saltzman Chapter 2 SUMMARY This chapter reviewed biochemical concepts that are important in understanding the interaction between molecules with

More information

Learning Objectives. Learning Objectives (cont.) Chapter 6: Metabolism - Energy & Enzymes 1. Lectures by Tariq Alalwan, Ph.D.

Learning Objectives. Learning Objectives (cont.) Chapter 6: Metabolism - Energy & Enzymes 1. Lectures by Tariq Alalwan, Ph.D. Biology, 10e Sylvia S. Mader Lectures by Tariq Alalwan, Ph.D. Learning Objectives Define energy, emphasizing how it is related to work and to heat State and apply two energy laws to energy transformations.

More information

Chemical Basis of Life Module A Anchor 2

Chemical Basis of Life Module A Anchor 2 Chemical Basis of Life Module A Anchor 2 Key Concepts: - Water is a polar molecule. Therefore, it is able to form multiple hydrogen bonds, which account for many of its special properties. - Water s polarity

More information

Mammalian Physiology. Cellular Membranes Membrane Transport UNLV. PHYSIOLOGY, Chapter 1 Berne, Levy, Koeppen, Stanton UNIVERSITY OF NEVADA LAS VEGAS

Mammalian Physiology. Cellular Membranes Membrane Transport UNLV. PHYSIOLOGY, Chapter 1 Berne, Levy, Koeppen, Stanton UNIVERSITY OF NEVADA LAS VEGAS Mammalian Physiology Cellular Membranes Membrane Transport UNLV 1 UNIVERSITY OF NEVADA LAS VEGAS PHYSIOLOGY, Chapter 1 Berne, Levy, Koeppen, Stanton Objectives Describe the structure of the cell membrane

More information

PASSIVE TRANSPORT PROCESSES

PASSIVE TRANSPORT PROCESSES BIOZONE Assignment #2 Cell Membrane Transport PASSIVE TRANSPORT PROCESSES 1. Describe two properties of an exchange surface that would facilitate rapid diffusion rates*: (a) thin membrane (b) porous membrane

More information

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II.

BSC 2010 - Exam I Lectures and Text Pages. The Plasma Membrane Structure and Function. Phospholipids. I. Intro to Biology (2-29) II. BSC 2010 - Exam I Lectures and Text Pages I. Intro to Biology (2-29) II. Chemistry of Life Chemistry review (30-46) Water (47-57) Carbon (58-67) Macromolecules (68-91) III. Cells and Membranes Cell structure

More information

Cellular physiology ATP and Biological Energy (Lecture 15)

Cellular physiology ATP and Biological Energy (Lecture 15) Cellular physiology ATP and Biological Energy (Lecture 15) The complexity of metabolism This schematic diagram traces only a few hundred of the thousands of metabolic reactions that occur in a cell. The

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy Module 2D - Energy and Metabolism Objective # 19 All living organisms require energy for survival. In this module we will examine some general principles about chemical reactions and energy usage within

More information

MEMBRANE STRUCTURE AND FUNCTION. Membrane phospholipids form a bilayer. In membranes, phospholipids form a bilayer

MEMBRANE STRUCTURE AND FUNCTION. Membrane phospholipids form a bilayer. In membranes, phospholipids form a bilayer MEMBRANE STRUCTURE AND FUNCTION Membranes organize the chemical activities of cells Membranes provide structural order for metabolism Form most of the cell's organelles Compartmentalize chemical reactions

More information

BCOR 011 Exam 2, 2004

BCOR 011 Exam 2, 2004 BCOR 011 Exam 2, 2004 Name: Section: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. According to the first law of thermodynamics, A. the universe

More information

Chapter 8 An Introduction to Metabolism

Chapter 8 An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Sep 7 9:07 PM 1 Metabolism=all of the chemical reactions within an organism metabolic pathways are chemical reactions that change molecules in a series of steps

More information

AP Biology. From food webs to the life of a cell. Metabolism & Enzymes. Flow of energy through life. Metabolism. Chemical reactions of life

AP Biology. From food webs to the life of a cell. Metabolism & Enzymes. Flow of energy through life. Metabolism. Chemical reactions of life From food webs to the life of a cell energy Metabolism & Enzymes energy energy Flow of energy through life Life is built on chemical reactions sun transforming energy from one form to another organic molecules

More information

MEMBRANE STRUCTURE AND FUNCTION

MEMBRANE STRUCTURE AND FUNCTION Chapter 5 The Working Cell: Membranes, Energy, and s Chapter 5: Big Ideas Cellular respiration Membrane Structure and Function Energy and the Cell How s Function MEMBRANE STRUCTURE AND FUNCTION Membranes

More information

6-5. Pump potential and diffusion potential. How can we determine whether an ion moves in or out by active or passive transport?

6-5. Pump potential and diffusion potential. How can we determine whether an ion moves in or out by active or passive transport? 3. Transport can be active or passive. Passive transport is movement down an electrochemical gradient. Active transport is movement against an electrochemical gradient. F 6-3 Taiz. Microelectrodes are

More information

Intro to Metabolism Campbell Chapter 8

Intro to Metabolism Campbell Chapter 8 Intro to Metabolism Campbell Chapter 8 http://ag.ansc.purdue.edu/sheep/ansc442/semprojs/2003/spiderlamb/eatsheep.gif http://www.gifs.net Section 8.1 An organism s metabolism transforms matter and energy,

More information

PSI Biology Membranes & Enzymes

PSI Biology Membranes & Enzymes Membranes Membranes, Diffusion Classwork 1. How does a phospholipid membrane create an isolated internal environment? 2. Draw and label a phospholipid. 3. In what way do the screen on a window and a cell

More information

FIGURE 2.18. A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water).

FIGURE 2.18. A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water). PLASMA MEMBRANE 1. The plasma membrane is the outermost part of a cell. 2. The main component of the plasma membrane is phospholipids. FIGURE 2.18 A. The phosphate end of the molecule is polar (charged)

More information

Transporting molecules across cell membranes. Nutrients, wastes, hormones, ions

Transporting molecules across cell membranes. Nutrients, wastes, hormones, ions Transporting molecules across cell membranes Nutrients, wastes, hormones, ions Recall phospholipid bilayer It s a barrier! Only a small subset of molecules may pass through without help Cell membrane Sense

More information

Chapter 5: The Working Cell

Chapter 5: The Working Cell Chapter 5: The Working Cell SOME BASIC ENERGY CONCEPTS Energy makes the world go around, but what is energy? Energy is defined as the capacity to perform work. Kinetic energy is the energy of motion. Potential

More information

Section 1 Workbook (unit 3) ANSWERS

Section 1 Workbook (unit 3) ANSWERS Section 1 Workbook (unit 3) ANSWERS Complete the following table: nucleotide DNA RN B1. Analyze the functional inter-relationships of cell structures. 1) Describe the function and structure of these organelles.

More information

Define the term energy and distinguish between potential and kinetic energy.

Define the term energy and distinguish between potential and kinetic energy. Energy and Chemical Reactions Objective # 1 All living organisms require energy for survival. In this topic we will examine some general principles about energy usage and chemical reactions within cells.

More information

Homeostasis & Cell Transport

Homeostasis & Cell Transport In order to maintain life, organisms must regulate the balance of materials inside and outside of the cell. This is accomplished by the transport of materials through the plasma membrane. Homeostasis &

More information

Ch 4: Energy and Cellular Metabolism

Ch 4: Energy and Cellular Metabolism Ch 4: Energy and Cellular Metabolism Energy as it relates to Biology Chemical reactions Enzymes and how they speed rxs Metabolism and metabolic pathways Catabolism (ATP production) Anabolism (Synthesis

More information

24.7 Structure of Cell Membranes

24.7 Structure of Cell Membranes 24.7 Structure of Cell Membranes Phospholipids provide the basic structure of cell membranes, where they aggregate in a closed, sheet-like structure the lipid bilayer. The bilayer is formed by two parallel

More information

Membrane Structure and Function - 1

Membrane Structure and Function - 1 Membrane Structure and Function - 1 The Cell Membrane and Interactions with the Environment As mentioned earlier, the boundary between any cell and its environment is the plasma membrane. Each cell must

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

Membranes very thin films of molecules that enclose cells, organelles, compartments

Membranes very thin films of molecules that enclose cells, organelles, compartments Membranes Overview Membranes very thin films of molecules that enclose cells, organelles, compartments Membrane composition Very different composition in prokaryotes and eukaryotes Typically composed of

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

What will you learn?

What will you learn? What will you learn? Cell Membrane and Transport PLO B9 B10 It is expected that students will analyse the structure and function of the cell membrane explain why cells divide when they reach a particular

More information

Atoms Atom smallest part of an element that has the characteristics of that element. Each element has a distinct atom based on structure.

Atoms Atom smallest part of an element that has the characteristics of that element. Each element has a distinct atom based on structure. Atoms Atom smallest part of an element that has the characteristics of that element. Each element has a distinct atom based on structure. Nucleus- positively charged contains protons (p+), neutrons(n0),

More information

+ΔH gained enthalpy as reaction proceeded -ΔS means we have decreased entropy -ΔH means we have lost enthalpy(heat) (exergonic)

+ΔH gained enthalpy as reaction proceeded -ΔS means we have decreased entropy -ΔH means we have lost enthalpy(heat) (exergonic) CHAPTER ENERGY AND LIVING CELLS Life Requires Free Energy ( Bozeman biology) G= Free energy is the available(useable) energy to do work in the system Q. So during an exothermic reaction does the G go up

More information

Biological cell membranes

Biological cell membranes Unit 14: Cell biology. 14 2 Biological cell membranes The cell surface membrane surrounds the cell and acts as a barrier between the cell s contents and the environment. The cell membrane has multiple

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism Overview: The Energy of Life The living cell is a miniature chemical factory where thousands of reactions occur The cell extracts energy and applies energy to perform

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Most components of energy conversion systems evolved very early; thus, the most fundamental aspects of energy metabolism tend to be: A. quite different among a diverse group

More information

Cells and Their Housekeeping Functions Cell Membrane & Membrane Potential

Cells and Their Housekeeping Functions Cell Membrane & Membrane Potential Cells and Their Housekeeping Functions Cell Membrane & Membrane Potential Shu-Ping Lin, Ph.D. Institute of Biomedical Engineering E-mail: splin@dragon.nchu.edu.tw Website: http://web.nchu.edu.tw/pweb/users/splin/

More information

Unit 2: Cells, Membranes and Signaling CELL MEMBRANE. Chapter 5 Hillis Textbook

Unit 2: Cells, Membranes and Signaling CELL MEMBRANE. Chapter 5 Hillis Textbook Unit 2: Cells, Membranes and Signaling CELL MEMBRANE Chapter 5 Hillis Textbook HOW DOES THE LAB RELATE TO THE NEXT CHAPTER? SURFACE AREA: the entire outer covering of a cell that enables materials pass.

More information

Chapter Energy & Enzymes

Chapter Energy & Enzymes ANSWERS Chapter 5.2-5.6 Energy & Enzymes 1. Define energy and identify the various forms. Energy is the capacity to do work. Forms light, heat, electricity, motion. 2. Summarize the First and Second Laws

More information

Carbohydrates, proteins and lipids

Carbohydrates, proteins and lipids Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,

More information

7/20/2015. Energy. Lecture 4 Outline (Ch. 8) Energy. What is Energy?

7/20/2015. Energy. Lecture 4 Outline (Ch. 8) Energy. What is Energy? Lecture 4 Outline (Ch. 8) I. Overview II. Thermodynamics III. Metabolism and IV. Cellular (ATP) and coupled reactions V. Enzymes and Regulation VI. Summary What is? Where does our (humans) energy come

More information

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs. 1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source

More information

Membrane Structure, Transport, and Cell Junctions

Membrane Structure, Transport, and Cell Junctions Membrane Structure, Transport, and Cell Junctions 5 A model for the structure of aquaporin. This protein, found in the plasma membrane of many cell types, such as red blood cells and plant cells, forms

More information

Ordered Structures of Lipids - Bilayers form spontaneously over large areas

Ordered Structures of Lipids - Bilayers form spontaneously over large areas Membranes What are the purposes of membranes? Physical barriers/compartmentalization Gatekeepers exclusion of toxic molecules Energy and signal transduction Aid in cell locomotion Cell-cell interactions

More information

Diffusion and Transport Across Cell Membranes

Diffusion and Transport Across Cell Membranes Tracy B. Fulton, Ph.D. Diffusion and Transport Across Cell Membranes (Lecture) OBJECTIVES List the general mechanisms by which molecules cross membranes. For each, give a specific example of a that would

More information

An outline of glycolysis.

An outline of glycolysis. An outline of glycolysis. Each of the 10 steps shown is catalyzed by a different enzyme. Note that step 4 cleaves a six-carbon sugar into two three-carbon sugars, so that the number of molecules at every

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules

More information

The Cell Membrane MEMBRANE STRUCTURE AND FUNCTION. Mader: Chapter Membranes are a fluid mosaic of phospholipids and proteins

The Cell Membrane MEMBRANE STRUCTURE AND FUNCTION. Mader: Chapter Membranes are a fluid mosaic of phospholipids and proteins The Cell Membrane Mader: Chapter 4 MEMBRANE STRUCTURE AND FUNCTION 5.1 Membranes are a fluid mosaic of! Membranes are composed of phospholipids and proteins Membranes are commonly described as a fluid

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism

More information

Exchange & Transport in Vascular Plants. Plant Exchange & Transport

Exchange & Transport in Vascular Plants. Plant Exchange & Transport Exchange & Transport in Vascular Plants Plant Exchange & Transport I. II. Local Transport III. Long Distance Transport IV. Gas Exchange Water and Solutes - Uptake by Cells Passive Transport (Diffusion)

More information

8/20/2012 H C OH H R. Proteins

8/20/2012 H C OH H R. Proteins Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids

More information

GCE A Level. Biology. Energy and respiration. сᴏᴏʟιᴏ

GCE A Level. Biology. Energy and respiration. сᴏᴏʟιᴏ GCE A Level Biology Energy and respiration сᴏᴏʟιᴏ 2013-2014 Q 1(a) Describe how ATP is synthesized by oxidative phosphorylation. [June 2012 # 1] Reduced NAD and reduced FAD are passed to the electron transport

More information

Proteins. Molecular Physiology: Enzymes and Cell Signaling. Binding. Protein Specificity. Enzymes. Enzymatic Reactions

Proteins. Molecular Physiology: Enzymes and Cell Signaling. Binding. Protein Specificity. Enzymes. Enzymatic Reactions Proteins Molecular Physiology: Enzymes and Cell Signaling Polymers of amino acids Have complex 3D structures Are the basis of most of the structure and physiological function of cells Binding Much of protein

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information