Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth."

Transcription

1 Gravity and forces unit Teacher notes/ activities Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Galileo, a famous Italian scientist who lived in the 1500's, was the first to discover the force of gravity. In his famous experiment he dropped two cannonballs, one 10 times the mass of the other, at exactly the same time from the Leaning Tower of Pisa. Which cannonball do you think hit first? Before you answer the question set up your own Galilean type experiment. 1. Find two round objects with different masses. 2. Stand on a chair and drop the two objects at exactly the same time from the same height. Explanation: Both objects should hit the ground at the same time. Even though the two objects had different masses, gravity pulls each down to the ground at the same rate. Galileo discovered that gravity accelerates all objects at the same rate. Try dropping a leaf and a rock at the same time from the same height. Which one do you think will hit the ground first? According to the above explanation, they should hit at the same time, but the rock hits first. Why? Both of these objects are still being accelerated by gravity at the same rate but, in this case, since the leaf has a small mass and a large surface area, air resistance is able to oppose the force of gravity and slow the leaf down. Safety concerns: Teachers and students, be sure to use safe operating procedure when dropping the objects to make sure that no one is in the path of the falling objects!

2 Forces A force is a push or a pull. Force gives an object the energy to move, stop moving, or change direction. When you write with a pen you exert a force. When you peddle your bike, blow your nose, turn on a faucet, chew your gum, or swimming in a pool, you are exerting forces on other objects. We would never be able to move without exerting forces on things. Other examples are: * A flag being blown by the force of the wind. * Iron being pulled towards a magnet. * A jet engine propelling an airplane forward. Friction is a force that opposes motion. Friction acts in a direction opposite to the object's direction in motion. Without friction, the object would continue to move at a constant speed forever. There are different forms of friction. One type is called sliding friction. This is when two surfaces slide one over the other. A snow boarder slides over the snow covered slopes using sliding friction everyday. When an object rolls over a surface, the kind of friction that occurs is rolling friction. Skate boarders take advantage of this type of friction all the time. Reducing the amount of friction between the surface and the wheels allow skaters to go really fast. Friction also occurs in fluids (gases and liquids). This is how a surfer glides over the water or a shark glides through the water. This type is called fluid friction. Balanced and Unbalanced Forces A force is a push or a pull. A force can give energy to an object causing the object to start moving, stop moving, or change its motion. Motion, like that of your skateboard, is a result of unbalanced forces. If you and a friend were in an arm wrestling match and you were dead even, your stationary arm position would be an example of a balanced force. If you suddenly gained the advantage over your friend, it would be an example of motion resulting from an unbalanced force. Newton s 3 laws First law Sir Isaac Newton lived during the 1600s. Like any good scientist, he made observations about the world around him. Based on his observations he developed his now famous three laws of motion. Although he lived hundreds of years ago, his work continues to be viewed as one of the most important contributions to science. His laws of motion explain rest, constant motion, accelerated motion, and describe how balanced and unbalanced forces act to cause these states of motion.

3 Have you been riding in a car when the driver suddenly slammed on the brakes? How did your body move as the car came to a stop? You probably felt your body move forward. When you felt this happening you experienced Newton's first law of motion. Newton's first law of motion says that an object in motion will stay in motion and an object at rest will stay at rest unless acted on by an unbalanced force. In the car your body was in motion, traveling at the same speed as the car. When the car stopped, your body stayed in motion. If you were not wearing a seatbelt and you were traveling very fast, your body could continue to move forward through the windshield! Newton called his first law inertia. Try the following activity to demonstrate this law! 1. Place a 3x5 card on top of a glass. 2. Put a coin on the center of the card. 3. Flick the card horizontally with your finger. 4. What happens to the coin? 5. Explain what happened to the coin using Newton's first law. This activity is similar to the magician's trick of pulling a tablecloth out from under dishes on a table. Because the dishes have inertia, they will stay at rest unless acted on by some unbalanced force. If the tablecloth is really smooth and is pulled out fast enough, there is not enough friction created to cause the dishes to move. DO NOT TRY THIS AT HOME WITHOUT PARENT PERMISSION! 2 nd law If a bowling ball and a soccer ball were both dropped at the same time from the roof of a tall building, which would hit the ground with a greater force? Common sense tells us that the bowling ball would. We know that gravity accelerates all objects at the same rate, so both balls would hit the ground at the same time. Therefore the difference in forces would be caused by the different masses of the balls. Newton stated this relationship in his second law, the force of an object is equal to its mass times its acceleration. A karate master can exert a tremendous force by utilizing years of training, proper technique and focus. Although a human hand and forearm may have a mass of.75 kg, with proper technique, a karate sensei (master) will be able to use his entire body's mass in breaking bricks. Combining a possible mass of 70 kg and a acceleration of 50 m/s2, this master will exert 3500 N of force, well more force needed to break several bricks.. A speeding bullet and a slow moving train both have tremendous force. The force of the bullet can be attributed to its incredible acceleration while the force of the train comes from its great mass.

4 3 rd law Imagine a rocket is being launched from the earth. Hot gases are pushed out from the bottom of the rocket as the rocket is thrust upward. The force of the gases pushing against the surface of the earth is equal and opposite to the force with which the rocket moves upward. The motion of the rocket can be explained by Newton's third law, for every action there is an equal and opposite reaction. In other words, when one object exerts a force on another object, the second object exerts a force of equal strength in the opposite direction on the first object. Likewise, when a skeet shooter fires his shotgun at a clay disc flying through the air, he experiences the recoil upon the shotgun. The "kick" felt by the shooter is the reaction force upon the shotgun which is equal in magnitude to the force that pushes the pellets. The following simple activity will help you investigate Newton's third law. 1. Blow up a balloon. 2. Hold the opening downward and release the balloon. 3. Repeat this several times, and observe what happens. 4. Now describe what happened using Newton's third law of motion. Forces lab Marshmallows Away Activity There She Throws This is a great way to demonstrate kinetic and potential energy as well as simple machines. Each student will design and construct a working catapult that will launch a large marshmallow the farthest distance possible along the straightest path possible. This project is worth 50 points. To receive full credit, your device must successfully launch a marshmallow a minimum of 5 feet. Procedures Rules: 1. The dimensions of the catapult will not exceed one cubic feet (12" high X 12" wide X 12" deep) in size for the base. The Lever arm may not exceed 2 feet. 2. You may power your catapult by any means possible. Such as rubberbands, counterbalance weights, or elastic lever arms.

5 3. The winner of the throwing competition is the student that launches the marshmallow the farthest and the straightest. Conclusion Have students complete the calculation sheet during the contest. Lab 2 Roller coaster lab Standard: Students will relate forces and energy to motion. Objective: The student will identify the role of energy in motion. Objective: Analyze energy movement and transformation. Intended Learning Outcomes: 1a. Make observations and measurements (uses instruments as appropriate). 2a. Identify variables and describe relationships between them. 2c. Plan field studies, controlled experiments, and other investigations. 4b. Understand how technological advances have influenced the progress of science, and how science has influenced developments in technology. 4d. Recognize the personal relevance of science in daily life. This is a great activity to teach about energy conversion from Kinetic to Potential energy and back again. Using the materials provided, build a working roller coaster with all the required components. Students must demo their team's coaster to the class and draw their individual blue prints of their ride. This activity is worth 60 pts. Materials (per team) 1-15 foot polyvinyl tube 1/2" dia. 3 - Ring Stands w/ 48" dowel 1 - roll of masking tape 3/4" wide 1 - Film Canister 2 - Steel bearing (must fit in tube easily) identified coasterrequirements 1. Name your roller coaster. (5 pts.) 2. Each roller coaster must have the following components - * Two loops (10 pts.) * Two true hills (10 pts.) * One corkscrew or twist (10 pts.)

6 * Extra credit: Double flat spiral (10 pts.) 3. Each roller coaster must be drawn-up like a blue print. (20 pts.) 4. Included on the drawing: The following must be included on all hills, twists and loops. * Highest Potential Energy (Hi Ep ) * Lowest Potential Energy (Lo Ep ) * Highest Kinetic Energy (Hi Ek ) * Lowest Kinetic Energy (Lo Ek ) * Where rider would feel weightless. (-G) * Where the forces of gravity is greater than one. (+G) Background Form a group of three to four students. Allow the students to place their ring stands on the desk or tables. Set the maximum height a ride may begin. Do not allow them to begin the ride any higher because this will give an unfair advantage by allowing them greater potential energy at the start. Have the students tape the film canister to the end of the tube to prevent the loss of the steel bearing after rolling it through the tube. Have fun with this activity. Conclusion 1. Demonstrate your ride by: a. Stating the rides name. b. Identifying the components of the ride (hills, twists,&;loops) c. Identifying the impact of forces on the ride (Ep, Ek, -G, +G) d. Successfully completing the ride with your steel bearing. Safety: There are no safety concerns with this activity.

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

More information

Section 3 Newton s Laws of Motion

Section 3 Newton s Laws of Motion Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that

More information

Isaac Newton was a British scientist whose accomplishments included

Isaac Newton was a British scientist whose accomplishments included 80 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

Warm up. Forces. Sir Issac Newton. Questions to think about

Warm up. Forces. Sir Issac Newton. Questions to think about Warm up Have you ever tried to pull something that just wouldn t budge? Describe a situation in which you pulled or tried to pull something. What made the job easier? Forces Sir Issac Newton Newton said

More information

Experimenting With Forces

Experimenting With Forces Have you heard the story about Isaac Newton and the apple? Newton was a scientist who lived about 300 years ago. He made many important discoveries about how and why things move. The apple story goes like

More information

Here is a list of concepts that you will need to include in your observations and explanations:

Here is a list of concepts that you will need to include in your observations and explanations: NEWTON S LAWS Sir Isaac Newton (1642-1727) is probably one of the most remarkable men in the history of science. He graduated from Cambridge University in England at the age of 23. Records indicate that

More information

Newton s Wagon Newton s Laws

Newton s Wagon Newton s Laws Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?

More information

Friction and Gravity. Friction. Section 2. The Causes of Friction

Friction and Gravity. Friction. Section 2. The Causes of Friction Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

More information

A Place Where Learning is Fun! Student Manual Elementary School

A Place Where Learning is Fun! Student Manual Elementary School A Place Where Learning is Fun! Student Manual Elementary School 1 TO BE READ ON THE BUS ON YOUR WAY TO CAROWINDS! Your bus pulls up to the entrance of Carowinds and you are about to jump out of your seat

More information

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe. Motion, Force, and Gravity Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

More information

Newton's First Law. Newton s Laws. Page 1 of 6

Newton's First Law. Newton s Laws. Page 1 of 6 Newton's First Law Newton s Laws In previous units, the variety of ways by which motion can be described (words, graphs, diagrams, numbers, etc.) was discussed. In this unit (Newton's Laws of Motion),

More information

ACTIVITY 1: Gravitational Force and Acceleration

ACTIVITY 1: Gravitational Force and Acceleration CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve

More information

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

More information

Concepts in Physics. Wednesday, September 16th

Concepts in Physics. Wednesday, September 16th 1206 - Concepts in Physics Wednesday, September 16th Notes First assignment has two errors: 1.) d is obsolete and 1.) b iii had a mistake. It is now fixed on the webpage Please bring the completed assignments

More information

Chapter 12 - Forces and Motion

Chapter 12 - Forces and Motion Chapter 12 - Forces and Motion A. What is a force? 1. It is a push or pull. 2. Force can cause resting objects to move. 3. Force can cause acceleration by changing the object s speed or direction. 4. Newtons

More information

Physics Classroom Website Webquest Lisa Peck

Physics Classroom Website Webquest Lisa Peck Physics Classroom Website Webquest Lisa Peck http://www.physicsclassroom.com/class/newtlaws/newtltoc.html Lesson 1: Newton s 1st Law 1. There are many applications of Newton's first law of motion. Several

More information

Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs

Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs Section 4 Newton s Third Law Reading Preview Key Concepts What is Newton s third law of motion? How can you determine the momentum of an object? What is the law of conservation of momentum? Key Terms momentum

More information

LAWS OF FORCE AND MOTION

LAWS OF FORCE AND MOTION reflect Does anything happen without a cause? Many people would say yes, because that often seems to be our experience. A cup near the edge of a table suddenly crashes to the fl oor. An apple falls from

More information

A Place Where Learning is Fun! Student Manual Middle School

A Place Where Learning is Fun! Student Manual Middle School A Place Where Learning is Fun! Student Manual Middle School 1 TO BE READ ON THE BUS ON YOUR WAY TO CAROWINDS! Your bus pulls up to the entrance of Carowinds and you are about to jump out of your seat with

More information

Newton s Third Law of Motion

Newton s Third Law of Motion Newton s Third Law of Motion Summary of Newton s Laws So Far Newton s 1 st Law of Motion explains the Law of Inertia This law predicts the behavior of objects when all forces acting on them are balanced

More information

Soda Straw Rockets. Prep. Before Class. Objectives. Concepts. Workshop #367 PHY. 1 Copyright 2003, A Schmahl Science Workshop All Rights Reserved

Soda Straw Rockets. Prep. Before Class. Objectives. Concepts. Workshop #367 PHY. 1 Copyright 2003, A Schmahl Science Workshop All Rights Reserved Workshop #187 PHY Workshop #367 PHY Prep. Before Class Get # of Straw Rocket kits needed for class, teacher demo box, and teacher prep box. Set up teacher table with activity materials, and extras. Set

More information

1. The unit of force, a Newton, is equal to a. The amount of mass in an object c. kg m/s b. Mass X Velocity d. kg m/s 2

1. The unit of force, a Newton, is equal to a. The amount of mass in an object c. kg m/s b. Mass X Velocity d. kg m/s 2 Forces in Motion Test- FORM B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The unit of force, a Newton, is equal to a. The amount of mass in an object

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

Section Review Answers. Chapter 12

Section Review Answers. Chapter 12 Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences

More information

The Laws of Newton. Overview. Venn Diagram Positioning. Time Required. Standards Addressed. Materials Required. The Laws of Newton [ 1 ]

The Laws of Newton. Overview. Venn Diagram Positioning. Time Required. Standards Addressed. Materials Required. The Laws of Newton [ 1 ] The Laws of Newton Overview Gravity is one of the fundamental concepts of Physics. It is an abstract concept which can t be explained without the help of activities. Students in the middle grades need

More information

Force and Motion Test

Force and Motion Test Force and Motion Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. (1 point each) 1. Your best guess of how an experiment might turn out

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

More information

The Laws of Newton. Overview. Time Required. Standards Addressed. Objectives. The Laws of Newton [ 1 ] Physical Science Space Science

The Laws of Newton. Overview. Time Required. Standards Addressed. Objectives. The Laws of Newton [ 1 ] Physical Science Space Science The Laws of Newton Overview In this three-part activity, students explore Newton s three Laws of Motion that govern all bodies in motion, from toy cars to spacecraft in orbit around Earth. Each part (experiment)

More information

Name Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is

Name Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is CHAPTER 4 MOTION AND FORCES SECTION 4 1 The Nature of Force and Motion (pages 116-121) This section explains how balanced and unbalanced forces are related to the motion of an object. It also explains

More information

Note: Thrust from the rocket s engines acts downward producing an upward reaction on the rocket

Note: Thrust from the rocket s engines acts downward producing an upward reaction on the rocket Water Rocket Physics Principles Forces and Motion Newton s First Law An object at rest remains at rest, and an object in motion remains in motion at constant speed and in a straight line unless acted on

More information

356 CHAPTER 12 Bob Daemmrich

356 CHAPTER 12 Bob Daemmrich Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

CHAPTER 2: NEWTON S 1 ST LAW OF MOTION-INERTIA 08/24/16

CHAPTER 2: NEWTON S 1 ST LAW OF MOTION-INERTIA 08/24/16 CHAPTER 2: NEWTON S 1 ST LAW OF MOTION-INERTIA 08/24/16 HISTORY OF IDEAS ABOUT MOTION Aristotle (384-322 BC) o Natural Motion An object will strive to get to its proper place determined by its nature or

More information

Newton s Laws Force and Motion

Newton s Laws Force and Motion CLIL Project Physics in English Anno scolastico 2013-2014 Newton s Laws Force and Motion Lecture 2 Classe 3 a A Linguistico Istituto Superiore Marini-Gioia - AMALFI Content of the unit: Newton s Laws DYNAMIC

More information

Newton's First and Second Laws

Newton's First and Second Laws Name -------------- Class _ Date ------ Newton's First and Second Laws KEY IDEAS As you read this section, keep these questions What makes an object's motion change? What is inertia? What affects how much

More information

Honors FORCE Study Guide KEY

Honors FORCE Study Guide KEY Honors FORCE Study Guide KEY Answer the following questions for each objective in your notebook: Objective 1: Students will know the different types of forces and how they affect the movement of objects.

More information

Rocket Principles. Rockets: A Teacher's Guide with Activities in Science, Mathematics, and Technology EG-108 February Outside Air Pressure

Rocket Principles. Rockets: A Teacher's Guide with Activities in Science, Mathematics, and Technology EG-108 February Outside Air Pressure Rocket Principles Outside ir Pressure Inside ir Pressure ir Moves Balloon Moves rocket in its simplest form is a chamber enclosing a gas under pressure. small opening at one end of the chamber allows the

More information

Describe the relationship between gravitational force and distance as shown in the diagram.

Describe the relationship between gravitational force and distance as shown in the diagram. Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read

More information

PHYSICS MIDTERM REVIEW

PHYSICS MIDTERM REVIEW 1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

More information

There are many different types of contact forces. In fact there is four. Book resting on table

There are many different types of contact forces. In fact there is four. Book resting on table You may not know but forces are everyday life movements, by reading a book, talking, running and writing on a page you are applying a force. They cause objects to move or stay stationary. There are two

More information

Rocketry for Kids. Science Level 4. Newton s Laws

Rocketry for Kids. Science Level 4. Newton s Laws Rocketry for Kids Science Level 4 Newton s Laws Victorian Space Science Education Centre 400 Pascoe Vale Road Strathmore, Vic 3041 www.vssec.vic.edu.au Some material for this program has been derived from

More information

Isaac Newton (1642 to 1727) Force. Newton s Three Law s of Motion. The First Law. The First Law. The First Law

Isaac Newton (1642 to 1727) Force. Newton s Three Law s of Motion. The First Law. The First Law. The First Law Isaac Newton (1642 to 1727) Force Chapter 4 Born 1642 (Galileo dies) Invented calculus Three laws of motion Principia Mathematica. Newton s Three Law s of Motion 1. All objects remain at rest or in uniform,

More information

Newton's Laws. Galileo's Inclined Plane Experiment

Newton's Laws. Galileo's Inclined Plane Experiment Newton's Laws I. Newton's First Law A. Galileo's Work In the early 1600's, the Italian Physicist Galileo Galilee made one of the most important discoveries in history. Galileo discovered that when he rolled

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

Gravitation. Gravitation

Gravitation. Gravitation 1 Gravitation Newton s observations A constant center seeking force is required to keep an object moving along a circular path. You know that the moon orbits the earth and hence there should be a force

More information

Summary Notes. to avoid confusion it is better to write this formula in words. time

Summary Notes. to avoid confusion it is better to write this formula in words. time National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

More information

Newton's laws of motion

Newton's laws of motion Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion - Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving

More information

Lesson 2: Force and Motion Part 2

Lesson 2: Force and Motion Part 2 Science Unit: Force and Motion Lesson 2: Force and Motion Part 2 School year: 2004/2005 Developed for: Developed by: Grade level: Duration of lesson: Note: Queen Alexandra Elementary School, Vancouver

More information

Physics 160 Biomechanics. Newton s Laws

Physics 160 Biomechanics. Newton s Laws Physics 160 Biomechanics Newton s Laws Questions to Think About Why does it take more force to cause an object to start sliding than it does to keep it sliding? Why is a ligament more likely to tear during

More information

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed? Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

Name Period Chapter 10 Study Guide

Name Period Chapter 10 Study Guide Name _ Period Chapter 10 Study Guide Modified True/False Indicate whether the statement is true or false. 1. Unbalanced forces do not change an object s motion. 2. Friction depends on the types of surfaces

More information

25 N to the right. F gravity

25 N to the right. F gravity Have you heard the story about Isaac Newton sitting under an apple tree? According to the story, an apple fell from a tree and hit him on the head. From that event, it is said that Newton discovered the

More information

Educational Innovations

Educational Innovations Educational Innovations NA-100/95S Newton s Apple grav i ty (gravitē) noun 1. The force that attracts a body toward the center of the earth, or toward any other physical body having mass. For most purposes

More information

Force & Motion Activity Tub

Force & Motion Activity Tub Force & Motion Activity Tub Designed to meet these objectives: Students will be able to describe Newton s First, Second, and Third Laws of Motion and identify examples of these laws at work in the world

More information

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster. 1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

More information

Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

More information

2.5 Newton s Third Law of Motion. SUMMARY Newton s Second Law of Motion. Section 2.4 Questions

2.5 Newton s Third Law of Motion. SUMMARY Newton s Second Law of Motion. Section 2.4 Questions SUMMARY Newton s Second Law of Motion Newton s second law of motion relates the acceleration of an object to the mass of the object and the net force acting on it. The equation is a = F net or F m net

More information

Newton's Laws of Motion in Motion

Newton's Laws of Motion in Motion Newton's Laws of Motion in Motion Objectives: Students will use simple techniques to demonstrate Newton's 1 st and 3 rd Laws of Motion. Students will demonstrate their understanding of thrust, drag, lift,

More information

Force & Motion. Force & Mass. Friction

Force & Motion. Force & Mass. Friction 1 2 3 4 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the

More information

Physics 101. Chapter 5: Newton s Third Law

Physics 101. Chapter 5: Newton s Third Law Physics 101 Today Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force as an interaction between two objects. You can

More information

Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky?

Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky? October 19, 2015 Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky? Key Words Newton s Laws of motion, and Newton s law of universal gravitation:

More information

Physics Midterm Review. Multiple-Choice Questions

Physics Midterm Review. Multiple-Choice Questions Physics Midterm Review Multiple-Choice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves

More information

Force. A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another.

Force. A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another. Force A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another. Force Weight is the force of the earth's gravity exerted

More information

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors

More information

Aristotelian Physics. Aristotle's physics agrees with most people's common sense, but modern scientists discard it. So what went wrong?

Aristotelian Physics. Aristotle's physics agrees with most people's common sense, but modern scientists discard it. So what went wrong? Aristotelian Physics Aristotle's physics agrees with most people's common sense, but modern scientists discard it. So what went wrong? Here's what Aristotle said: Aristotelian Physics Aristotle s classification

More information

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe. Motion, Force, and Gravity Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

More information

Units DEMO spring scales masses

Units DEMO spring scales masses Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring

More information

PS-5.1 Explain the relationship among distance, time, direction, and the velocity of an object.

PS-5.1 Explain the relationship among distance, time, direction, and the velocity of an object. PS-5.1 Explain the relationship among distance, time, direction, and the velocity of an object. It is essential for students to Understand Distance and Displacement: Distance is a measure of how far an

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

F13--HPhys--Q5 Practice

F13--HPhys--Q5 Practice Name: Class: Date: ID: A F13--HPhys--Q5 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vector is a quantity that has a. time and direction.

More information

More of Newton s Laws

More of Newton s Laws More of Newton s Laws Announcements: Tutorial Assignments due tomorrow. Pages 19-21, 23, 24 (not 22,25) Note Long Answer HW due this week. CAPA due on Friday. Have added together the clicker scores so

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

More information

Midterm 1. C The speed of the cart is constant. For this to happen the forces acting on it must be balanced.

Midterm 1. C The speed of the cart is constant. For this to happen the forces acting on it must be balanced. Midterm 1 1. Shown below is a speed-time graph for a cart moving in front of the motion sensor. For convenience it has been divided into four sections (A,B,C,D). During each of the four separate periods

More information

COURSE CONTENT. Introduction. Definition of a Force Effect of Forces Measurement of forces. Newton s Laws of Motion

COURSE CONTENT. Introduction. Definition of a Force Effect of Forces Measurement of forces. Newton s Laws of Motion CHAPTER 13 - FORCES COURSE CONTENT Introduction Newton s Laws of Motion Definition of a Force Effect of Forces Measurement of forces Examples of Forces A force is just a push or pull. Examples: an object

More information

Newton s Laws of Motion

Newton s Laws of Motion Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

More information

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket. Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 4: NEWTON S LAWS OF MOTION Newton s Laws of Motion I was only a scalar until you came along and gave me direction. Barbara Wolfe This lecture will help you understand:

More information

7 Newton s Third Law of Motion Action and Reaction. For every force, there is an equal and opposite force.

7 Newton s Third Law of Motion Action and Reaction. For every force, there is an equal and opposite force. For every force, there is an equal and opposite force. 7.1 Forces and Interactions A force is always part of a mutual action that involves another force. 7.1 Forces and Interactions In the simplest sense,

More information

Forces of Motion: Rockets

Forces of Motion: Rockets Forces of Motion: Rockets (Adapted from the NASA Aerospace Education Services Program s lesson Industrial Strength Paper Rockets by Gregory Voght/ NASA JSC) Preparation Grade Level: 5-9 Group Size: 24-30

More information

5.1 The First Law: The Law of Inertia

5.1 The First Law: The Law of Inertia The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing

More information

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE CHAPTER 12 Force 1 12-1 What is a force? 2 Forces and Force Diagrams Enrichment Activity for Lesson 12-1 3 12-2 What is gravity? 4 Gravitational

More information

PHYSICS DAY ELEMENTARY SCHOOL

PHYSICS DAY ELEMENTARY SCHOOL ELEMENTARY SCHOOL PHYSICS DAY Table of Contents Canyon Blaster Sponge Bob 4-D Rim Runner Rockin Canyon Cars Sand Pirate Chaos/Road Runner Newton s Laws of Motion Simple Machines Glossary 2 3 4 5 6 7 8

More information

Unit 3. Forces Part 2

Unit 3. Forces Part 2 Unit 3 Forces Part 2 1 Vocabulary: Force Acceleration Mass Net Force Balanced Forces Unbalanced Forces Friction Air resistance Gravity Weight Inertia Action Force Reaction Force Concepts: How does a force

More information

How Rockets Work Newton s Laws of Motion

How Rockets Work Newton s Laws of Motion How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

More information

Newton s Laws of Motion. Presented by: - Rakhi Gupta(166) Tamanpreet Kaur(211)

Newton s Laws of Motion. Presented by: - Rakhi Gupta(166) Tamanpreet Kaur(211) Newton s Laws of Motion Presented by: - Rakhi Gupta(166) Tamanpreet Kaur(211) Contents of the Presentation Newton s First law of Motion Balance and Unbalanced Force Newton s Second law of Motion Free Falling

More information

Described by Isaac Newton

Described by Isaac Newton Described by Isaac Newton States observed relationships between motion and forces 3 statements cover aspects of motion for single objects and for objects interacting with another object An object at rest

More information

2.2 NEWTON S LAWS OF MOTION

2.2 NEWTON S LAWS OF MOTION 2.2 NEWTON S LAWS OF MOTION Sir Isaac Newton (1642-1727) made a systematic study of motion and extended the ideas of Galileo (1564-1642). He summed up Galileo s observation in his three laws of motion

More information

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes DESCRIPTION Apply the concepts of pressure and Newton s laws of motion to build simple rockets. OBJECTIVE This lesson

More information

PINBALL MACHINE HOW SCIENTIFIC IS A PINBALL MACHINE? WRITTEN AND CREATED BY: KATHRYN WILMOT JAYCE GRUPPEN LUKE HULSMAN

PINBALL MACHINE HOW SCIENTIFIC IS A PINBALL MACHINE? WRITTEN AND CREATED BY: KATHRYN WILMOT JAYCE GRUPPEN LUKE HULSMAN PINBALL MACHINE HOW SCIENTIFIC IS A PINBALL MACHINE? WRITTEN AND CREATED BY: LUKE HULSMAN KATHRYN WILMOT JAYCE GRUPPEN Table of Contents Chapter Author Page Marbles on a ramp Kathryn Wilmot 3 Making a

More information

Sir Isaac Newton and LeBron James

Sir Isaac Newton and LeBron James Sir Isaac Newton and LeBron James Sir Isaac Newton and LeBron James The English physicist and mathematician Sir Isaac Newton discovered three basic laws of motion. The First Law says that objects at rest

More information

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc. Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Chapter 3: Force and Motion

Chapter 3: Force and Motion Force and Motion Cause and Effect Chapter 3 Chapter 3: Force and Motion Homework: All questions on the Multiple- Choice and the odd-numbered questions on Exercises sections at the end of the chapter. In

More information

Newton s Second Law. What is Force Anyway?

Newton s Second Law. What is Force Anyway? Newton s Second Law Newton s second law is the toughest of his laws to understand, but it is very powerful. In its mathematical form, it is so simple it s elegant. Mathematically it is F=MA or Force =

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

More information

Physics 11 Chapter 4 HW Solutions

Physics 11 Chapter 4 HW Solutions Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction

More information

Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

More information

Discovering Newton s Laws of Motion

Discovering Newton s Laws of Motion Discovering Newton s Laws of Motion Intended for Grade: Eighth Subject: Math and Science Description: This project consists of a lesson introducing Newton s three laws of motion, comprehension quizzes

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

More information

Work-Energy Bar Charts

Work-Energy Bar Charts Name: Work-Energy Bar Charts Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/class/energy/u5l2c.html MOP Connection: Work and Energy:

More information