MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.


 Cora Hunter
 4 years ago
 Views:
Transcription
1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed to the south. Calculate the magnitude and direction of A + B. A) 13 units, north B) 13 units, south C) 5 units, south D) 5 units, north 2) If you were to move into outer space far from any stars or planets, A) your weight would change, but your mass would not change. B) your mass would change, but your weight would not change. C) neither your weight nor your mass would change. D) both your weight and mass would change. E) None of these is true. 1) 2) 3) A child on a sled starts from rest at the top of a 15.0 slope. If the trip to the bottom takes 15.2 s how long is the slope? Assume that frictional forces may be neglected. A) 147 m B) 586 m C) 293 m D) 1130 m 3) 4) Which of the following ideas is true about projectile motion with no air drag? 4) A) ν 2 x + ν 2 y = constant. B) The trajectory will depend on the objectʹs mass as well as its initial velocity and launch angle. C) The velocity of the object is zero at the point of maximum elevation. D) The acceleration is +g when the object is rising and g when falling. E) The horizontal motion is independent of the vertical motion. 5) A large truck collides headon with ʺBettyʺ bumbelbee. During the collision A) the truck exerts a smaller amount of force on the bee than the bee exerts on the truck. B) the truck exerts the same amount of force on the bee as the bee exerts on the truck. C) the truck exerts a greater amount of force on the bee than the bee exerts on the truck. D) the truck exerts a force on the bee, but the bee exerts no force on the truck. 5) 6) It takes 4500 N to accelerate a car at a rate of 3.42 m/s2. What is the mass of the car? A) 1310 kg B) 1700 kg C) 1040 kg D) 1510 kg 6) 7) A ball is thrown straight upward with a velocity of 39 m/s. How much time passes before the ball strikes the ground? (Disregard air resistance.) A) 8.0 s B) 2.4 s C) 1.2 s D) 4.0 s 7) 8) A ball is thrown vertically upward and then comes back down. During the ballʹs flight up and down, its velocity and acceleration vectors are A) always in opposite directions. B) first in opposite directions and then in the same direction. C) always in the same direction. D) first in the same direction and then in opposite directions. 8) 1
2 9) Shown here are the velocity and acceleration vectors for an object in several different types of motion. In which case is the object s velocity changing while its speed is not changing? A) 9) B) C) D) E) None of these cases 10) Consider what happens when you jump up in the air. Which of the following is the most accurate statement? A) When you push down on the earth with a force greater than your weight, the earth will push back with the same magnitude force and thus propel you into the air. B) Since the ground is stationary, it cannot exert the upward force necessary to propel you into the air. Instead, it is the internal forces of your muscles acting on your body itself which propels the body into the air. C) You are able to spring up because the earth exerts a force upward on you which is stronger than the downward force you exert on the earth. D) It is the upward force exerted by the ground that pushes you up, but this force can never exceed your weight. 10) 11) A CDROM disk can store approximately megabytes of information. If an average word requires 9.0 bytes of storage, how many words can be stored on one disk? A) words B) words C) words D) words 11) 12) Suppose you are playing hockey on a newage ice surface in which there is no friction between the ice and the hockey puck. You wind up and hit the puck as hard as you can. Just after the puck loses contact with your stick, the puck A) will speed up a little, and then move at a constant speed. B) will speed up a little, and then slow down. C) will not slow down or speed up. D) will start to slow down. 12) 2
3 13) The following conversion equivalents are given: 1 m = 100 cm 1 in = 2.54 cm 1 ft = 12 in A bin has a volume of 1.5 m3. The volume of the bin, in ft3, is closest to: A) 47 B) 59 C) 41 D) 35 E) 53 13) 14) Which of the following is NOT a vector? A) velocity B) speed C) acceleration D) displacement 14) 15) If you jumped out of a plane, you would begin speeding up as you fall downward. Eventually, due to wind resistance, your velocity would become constant with time. After this occurs, the magnitude of the force of wind resistance is A) equal to the force of gravity acting on you. B) is greater than the force of gravity acting on you. C) is slightly smaller than the force of gravity acting on you. D) is much smaller than the force of gravity acting on you. 15) 16) A skydiver reaches a ʺterminal velocityʺ of 120 km/h. If the skydiver has a mass of 59.0 kg, what is the magnitude of the upward force on the skydiver due to wind resistance? (Use g = 9.8 m/s2.) A) 5.42 N B) 6.02 N C) 578 N D) 636 N 16) 17) Two identical objects A and B fall from rest from different heights to the ground. If object B takes twice as long as A to reach the ground, what is the ratio of the heights from which A and B fell? Neglect air resistance. A) 1 : 2 B) 1 : 4 C) 1 : 2 D) 1 : 8 17) 18) Acceleration is sometimes expressed in multiples of g, where g = 9.8 m/s2 is the acceleration due to the earthʹs gravity. In a car crash, the carʹs velocity may go from 26 m/s to 0 m/s in 0.15 s. How many gʹs are experienced, on average, by the driver? A) 22 g B) 23 g C) 18g D) 13 g 18) 19) A car accelerates from 5.0 m/s to 21 m/s at a rate of 3.0 m/s2. How far does it travel while accelerating? A) 117 m B) 207 m C) 69m D) 41 m 19) 3
4 20) A child standing on a bridge throws a rock straight down (HINT: initial velocity in the negative y direction!). The rock leaves the childʹs hand at t = 0. Which of the graphs shown here best represents the velocity of the stone as a function of time? A) 20) B) C) D) E) 21) The magnitude of A is 5.5. Vector A lies in the second quadrant and forms an angle of 34 degrees with the yaxis. The components, Ax and Ay, are closest to: A) Ax = +4.6, Ay = 3.1 B) Ax = 4.6, Ay = 3.1 C) Ax = 4.6, Ay = +3.1 D) Ax = 3.1, Ay = +4.6 E) Ax = +3.1, Ay = ) 22) Joe and Bill are playing tugofwar. Joe is pulling with a force of 200 N. Bill is simply hanging on to the rope. Neither person is moving. What is the tension of the rope? A) 200 N B) 300 N C) 400 N D) 0 N 22) 4
5 23) A fisherman casts his bait into the river at an angle of 25. As the line unravels, he notices that the bait and hook reach a maximum height of 3.9 m. What was the initial velocity he launched the bait with? A) 8.4 m/s B) 9.2 m/s C) 21 m/s D) 10 m/s 23) 24) Two bullets are fired simultaneously parallel to a horizontal plane. The bullets have different masses and different initial velocities. Which one will strike the plane first? A) the heaviest one B) the slowest one C) the lightest one D) the fastest one E) They strike the plane at the same time. 24) 25) A boy throws a rock with an initial velocity of 3.13 m/s at 30.0 above the horizontal. How long does it take for the rock to reach the maximum height of its trajectory? A) s B) s C) s D) s 25) 26) The plot below shows the position of an object as a function of time. The letters HL represent particular moments of time. At which moment in time is the speed of the object equal to zero? 26) A) I B) H C) J D) K E) L 27) A small boat is moving at a velocity of 3.35 m/s when it is accelerated by a river current perpendicular to the initial direction of motion. If the current acceleration is m/s2, what will the new velocity of the boat be after 33.5 s? A) 25.3 m/s at 7.59 from initial direction of motion B) 25.3 m/s at 82.4 from initial direction of motion C) m/s at 7.59 from initial direction of motion D) m/s at 82.4 from initial direction of motion 27) Extra Bonus: Answers the question. 28) You are in a elevator which starts accelerating upward. Explain what happens to your apparent weight, and why. 28) 5
6 29) What is the minimum number of vectors (none of which have the same magnitude) for which it is theoretically possible that the sum of those vectors can be equal to zero? 29) 30) Three children pull on a toy in three different directions, yet the toy does not move. Explain how this could be possible. 30) 6
7 Answer Key Testname: 201_SUMMER2009_1_V3 1) C 2) A 3) C 4) E 5) B 6) A 7) A 8) B 9) A 10) A 11) D 12) C 13) E 14) B 15) A 16) C 17) B 18) C 19) C 20) C 21) D 22) A 23) C 24) E 25) C 26) A 27) B 28) Your apparent weight will increase. Since your apparent weight is equal in magnitude to the reaction force N which you experience: ΣFy = ma (upward acceleration is positive) N  mg = ma N = m(g + a) Thus N is larger when accelerating upward. 29) It is possible with three (or more) vectors. Three is the minimum number for which the condition may be satisfied. 30) As long as the vector sum of all of the individual forces is equal to zero, there is no net force on the toy, so it does not move. 7
B) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension
Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make
More informationReview Chapters 2, 3, 4, 5
Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freelyfalling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationExam 1 Review Questions PHY 2425  Exam 1
Exam 1 Review Questions PHY 2425  Exam 1 Exam 1H Rev Ques.doc  1  Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that
More informationPhysics 125 Practice Exam #3 Chapters 67 Professor Siegel
Physics 125 Practice Exam #3 Chapters 67 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
More informationCHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More informationPhysics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problemsolving questions, draw appropriate free body diagrams and use the aforementioned problemsolving method.. Define the following
More informationTEACHER ANSWER KEY November 12, 2003. Phys  Vectors 11132003
Phys  Vectors 11132003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
More informationSpeed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
More informationConceptual Questions: Forces and Newton s Laws
Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is
More informationChapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationAP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
More informationWork, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationWeb review  Ch 3 motion in two dimensions practice test
Name: Class: _ Date: _ Web review  Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity
More information9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationChapter 4: Newton s Laws: Explaining Motion
Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state
More informationNewton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.
Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:
More information8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight
1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled
More informationF N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250N force is directed horizontally as shown to push a 29kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
More informationConservative vs. Nonconservative forces Gravitational Potential Energy. Work done by nonconservative forces and changes in mechanical energy
Next topic Conservative vs. Nonconservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by nonconservative forces and changes in mechanical energy
More informationProjectile Motion 1:Horizontally Launched Projectiles
A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More informationPhysics Section 3.2 Free Fall
Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics
More informationChapter 3 Falling Objects and Projectile Motion
Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave
More informationReview Assessment: Lec 02 Quiz
COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points
More informationExam Three Momentum Concept Questions
Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:
More information5. Forces and MotionI. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and MotionI 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
More informationForces. When an object is pushed or pulled, we say that a force is exerted on it.
Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change
More informationCurso20122013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.
1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.
More informationA) N > W B) N = W C) N < W. speed v. Answer: N = W
CTN12. Consider a person standing in an elevator that is moving upward at constant speed. The magnitude of the upward normal force, N, exerted by the elevator floor on the person's feet is (larger than/same
More information2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :
Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocitytime graph. Select and use the equations of motion for constant acceleration in
More informationWork, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions
Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.
More informationPhysics Kinematics Model
Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous
More informationPHYS 117 Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.
PHYS 117 Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels
More informationLAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationKE =? v o. Page 1 of 12
Page 1 of 12 CTEnergy1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal
More information10.1 Quantitative. Answer: A Var: 50+
Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass
More informationWORK DONE BY A CONSTANT FORCE
WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newtonmeter (Nm) = Joule, J If you exert a force of
More informationWork Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.
PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance
More information1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationExperiment 2 Free Fall and Projectile Motion
Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation PreLab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.
More informationWorksheet #1 Free Body or Force diagrams
Worksheet #1 Free Body or Force diagrams Drawing FreeBody Diagrams Freebody diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. (Use g = 9.8 m/s2.) 1) A 21 kg box must be slid across the floor. If
More informationLAB 6  GRAVITATIONAL AND PASSIVE FORCES
L061 Name Date Partners LAB 6  GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
More informationSupplemental Questions
Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?
More informationForce Concept Inventory
Revised form 081695R Force Concept Inventory Originally published in The Physics Teacher, March 1992 by David Hestenes, Malcolm Wells, and Gregg Swackhamer Revised August 1995 by Ibrahim Halloun, Richard
More informationPractice final for Basic Physics spring 2005 answers on the last page Name: Date:
Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible
More informationWorkEnergy Bar Charts
Name: WorkEnergy Bar Charts Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/class/energy/u5l2c.html MOP Connection: Work and Energy:
More informationAP Physics 1 Midterm Exam Review
AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement
More informationWork, Energy and Power Practice Test 1
Name: ate: 1. How much work is required to lift a 2kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill
More informationIII. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument
III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug
More informationphysics 111N work & energy
physics 111N work & energy conservation of energy entirely gravitational potential energy kinetic energy turning into gravitational potential energy gravitational potential energy turning into kinetic
More informationPhysics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:1510:15 Room:
More informationforce (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.
4 Forces 41 Forces and Acceleration Vocabulary Force: A push or a pull. When an unbalanced force is exerted on an object, the object accelerates in the direction of the force. The acceleration is proportional
More informationCatapult Engineering Pilot Workshop. LA Tech STEP 20072008
Catapult Engineering Pilot Workshop LA Tech STEP 20072008 Some Background Info Galileo Galilei (15641642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling
More informationNewton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
More informationIf you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ
Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces
More informationChapter 3 Practice Test
Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?
More informationExam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis
* By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationAP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More informationNEWTON S LAWS OF MOTION
Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict
More informationReview Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion
Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,
More informationProjectile motion simulator. http://www.walterfendt.de/ph11e/projectile.htm
More Chapter 3 Projectile motion simulator http://www.walterfendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x
More informationPRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION
Newton s 3rd Law and Momentum Conservation, p./ PRELAB: NEWTON S 3 RD LAW AND MOMENTUM CONSERVATION Read over the lab and then answer the following questions about the procedures:. Write down the definition
More informationPractice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
More information2After completing this chapter you should be able to
After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time
More informationcircular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
More informationSerway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
More informationTwoBody System: Two Hanging Masses
Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.
More informationPhysics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.
Physics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and noncontact forces. Whats a
More informationPractice TEST 2. Explain your reasoning
Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant
More informationHW Set II page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set II page 1 of 9 450 When a large star becomes a supernova, its core may be compressed so tightly that it becomes a neutron star, with a radius of about 20 km (about the size of the San Francisco
More information1. Mass, Force and Gravity
STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the
More informationFriction and Gravity. Friction. Section 2. The Causes of Friction
Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snowcovered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about
More informationTIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points
TIME OF COMPLETION NAME DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points 1. Check your examination for completeness prior to starting. There
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationNewton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of
Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed
More informationAP Physics  Chapter 8 Practice Test
AP Physics  Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on
More informationFundamental Mechanics: Supplementary Exercises
Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of
More informationChapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.
More informationForce on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
More informationAP physics C Web Review Ch 6 Momentum
Name: Class: _ Date: _ AP physics C Web Review Ch 6 Momentum Please do not write on my tests Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The dimensional
More informationChapter 6. Work and Energy
Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy
More informationProblem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s
Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationSQA Higher Physics Unit 1 Mechanics and Properties of Matter
SCHOLAR Study Guide SQA Higher Physics Unit 1 Mechanics and Properties of Matter John McCabe St Aidan s High School Andrew Tookey HeriotWatt University Campbell White Tynecastle High School HeriotWatt
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More informationAt the skate park on the ramp
At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises
More information