# PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Size: px
Start display at page:

Download "PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question."

Transcription

1 PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels from milepost 493 to milepost 499 in 5 minutes. Which car has the greater average speed? a. Car A b. Car B c. Their average speeds are the same. d. There is not enough information to be able to say. 2. Pat and Chris both travel from Los Angeles to New York along the same route. Pat rides a bicycle while Chris drives a fancy sports car. Unfortunately, Chris's car breaks down in Phoenix for over a week, causing the two to arrive in New York at exactly the same time. Which statement is true? a. Pat and Chris had the same average speed. b. Chris had the higher average speed. c. Pat had the higher average speed. d. Their average speeds cannot be compared. 3. Which of the following strobe diagrams corresponds to the situation where a ball rolls from left to right and continually speeds up? a. o o o o o o o b. o o o o o c. o o o o o o o o o d. o o o o o o o 4. Which statement best describes the motion of the ball shown in the strobe diagram below? (Assume the ball moves from left to right.) The ball is o...o...o...o...o...o..oo a. moving with constant speed. b. speeding up. c. accelerating. d. stopped 5. We claimed that if the air resistance could be neglected, all objects on the moon would fall at a. the same constant speed. b. an increasing acceleration. c. the same constant acceleration. d. a decreasing acceleration. 6. If we ignore air resistance, the acceleration of an object that is falling downward is constant. How do you suppose the acceleration would change if we do not ignore air resistance? a. The acceleration increases. b. The acceleration does not change. c. The acceleration decreases. d. Not enough information to say. 7. A ball is thrown straight up into the air. If we do not ignore air resistance, the acceleration of the ball as it is traveling downward is a. 9.8 m/s 2. b. greater than 9.8 m/s 2. c. less than 9.8 m/s 2. d. zero.

2 8. If the mass of an object in free fall is doubled, its acceleration a. doubles. b. increases by a factor of four. c. stays the same. d. is cut in half. 9. The motion of a ball or cylinder rolling down a ramp is one with a. constant speed. b. increasing acceleration. c. constant acceleration. d. decreasing acceleration. 10. If a ball is dropped from rest, it will fall 5 m during the first second. How far will it fall during the first 2 s? a. 10 m b. 15 m c. 20 m d. 25 m 11. A golf ball is thrown vertically upward with a speed of 30 m/s. How long does it take to get to the top of its path? a. 1 s b. 2 s c. 3 s d. 4 s 12. If we use plus and minus signs to indicate the directions of velocity and acceleration, in which of the following situations does the object speed up? a. positive velocity and negative acceleration b. negative velocity and positive acceleration c. positive velocity and zero acceleration d. negative velocity and negative acceleration 13. If an object moves with a constant velocity, we can conclude that a. it is moving toward its natural place. b. there are no forces acting on it. c. there is no unbalanced (net) force acting on it. d. it has a very large inertia. 14. If the force of friction on a child's wagon is 25 N, how much force must be applied to maintain a constant, non-zero velocity? a. 25 N b. 20 N c. 10 N d. zero 15. There are three forces acting on an object: 6 N to the left, 5 N to the right, and 3 N to the left. What is the net force acting on the object? a. 4 N b. 4 N left c. 4 N right d. 6 N left 16. What is the magnitude of the net force acting on an object which is under the influence of a 3 N force acting south and a 4 N force acting east? a. 3 N b. 4 N c. 5 N

3 d. 7 N 17. Forces of 4 N and 6 N act on an object. What is the minimum value for the sum of these two forces? a. zero b. 2 N c. 4 N d. 10 N 18. What net force is needed to accelerate a 60-kg ice skater at 2 m/s 2? a. zero b. 30 N c. 60 N d. 120 N 19. What acceleration is produced by a force of 100 N acting on a mass of 10 kg if its velocity is 20 m/s and the frictional force is 30 N? a. 10 m/s/s b. 9 m/s/s c. 8 m/s/s d. 7 m/s/s 20. A ball falling from a great height will reach terminal speed when its goes to zero. a. inertia b. net force c. weight d. speed 21. Which of the following is the third-law force that accompanies the force that an apple exerts on a tree? It is the force that the a. earth exerts on the apple. b. apple exerts on the earth. c. tree exerts on the apple. d. air exerts on the apple. Figure 4-1 A racecar is moving counterclockwise on a circular path as shown in the diagram above. Imagine that at this instant, the car is at point P and moving at a speed of 100 mph. 22. Refer to Figure 4-1. In what direction does the net force point? a. b. c. d. 23. Refer to Figure 4-1. In what direction does the acceleration point?

4 a. b. c. d. 24. A car is traveling south at 30 m/s. Later it is observed traveling west at 30 m/s. What is the car's change in velocity? a. 42 m/s north b. 42 m/s west c. 42 m/s southwest d. 42 m/s northwest 25. A cyclist turns a corner with a radius of 50 m at a speed of 20 m/s. What is the magnitude of the cyclist's acceleration? a. 0.4 m/s 2 b. 8 m/s 2 c. 10 m/s 2 d m/s 2 Scenario 4-1 A gun is held horizontally and fired. At the same time the bullet leaves the gun's barrel an identical bullet is dropped from the same height. Neglect air resistance. 26. Refer to Scenario 4-1. Which bullet will hit the ground with the greatest velocity? a. The bullet that was fired. b. The bullet that was dropped. c. It will be a tie. d. The question can't be answered with the information given. 27. A red ball is thrown straight down from the edge of a tall cliff with a speed of 30 m/s. At the same time a green ball is thrown straight up with the same speed. If the green ball travels up, stops, and then drops to the bottom of the cliff, how many seconds later than the red ball will it land? a. 3 s b. 6 s c. 10 s d. There is not enough information to say. 28. A red ball is thrown straight down from the edge of a tall cliff with a speed of 30 m/s. At the same time a green ball is thrown straight up with the same speed. If the green ball travels up, stops, and then drops to the bottom of the cliff, which ball (if either) will be traveling fastest when it reaches the ground below? a. the red ball b. the green ball c. Both balls will be traveling just as fast. d. There is not enough information to say. 29. A football quarterback throws a long pass toward the end zone. Assume that you can neglect the effects of air resistance. At the instant the ball reaches its highest point, what is the acceleration of the ball? a. zero b. 10 m/s/s downward c. 10 m/s/s upward d. There is not enough information to say. 30. A baseball is hit with a vertical speed of 10 m/s and a horizontal speed of 30 m/s. How long will the ball remain in the air? a. 1 s

5 b. 2 s c. 3 s d. 6 s 31. A rock is thrown off a tall cliff with a vertical speed of 25 m/s upward and a horizontal speed of 30 m/s. What will these speeds be 3 s later? a. 25 m/s upward and 30 m/s horizontal b. 5 m/s downward and 30 m/s horizontal c. 25 m/s upward and 0 m/s horizontal d. 30 m/s downward and 60 m/s horizontal 32. Which of the following statements about the moon is not correct? a. The acceleration due to gravity on the moon is weaker than on the earth. b. The earth's gravitational pull on the moon equals the moon's gravitational pull on earth. c. There is a net force acting on the moon. d. The moon is not accelerating. 33. The size of the gravitational force that the earth exerts on the moon is that the moon exerts on the earth. a. greater than b. the same as c. smaller than 34. The gravitational attraction of the sun for the earth is that of the earth for the sun. a. the same as b. greater than c. smaller than 35. A future space traveler, Skip Parsec, lands on the planet MSU3, which has the same mass as Earth but twice the radius. If Skip weighs 800 newtons on Earth's surface, how much does he weigh on MSU3's surface? a. 50 N b. 100 N c. 200 N d. 400 N 36. The gravitational force between two metal spheres in outer space is 1800 N. How large would the force be if the two spheres were twice as far apart? a N b N c. 900 N d. 450 N 37. The numerical value of G, the gravitational constant, was determined a. from knowledge of the earth's mass. b. from the law of universal gravitation and the value of the acceleration due to gravity. c. from the value of the moon's acceleration. d. by measuring the force between masses in the laboratory. 38. Which of the following would not cause the gravitational force on an object near the surface of the earth to increase? a. an ore deposit just under the surface b. a lower elevation c. an increase in its mass d. a horizontal velocity 39. Which of the following celestial bodies has the greatest influence on the earth's tides? a. moon b. sun

6 c. Venus d. Jupiter 40. What is the magnitude of the earth's gravitational field at a distance equal to twice the earth's radius? a. 20 N/kg b. 10 N/kg c. 5 N/kg d. 2.5 N/kg 41. If the mass of Earth were suddenly and magically reduced to half its present value, the magnitude of Earth's acceleration about the Sun would a. reduce by a factor of 4 b. reduce by a factor of 2 c. remain the same d. increase by a factor of The acceleration due to gravity on Titan, Saturn's largest moon, is about 1.4 m/s 2. What would a 60-kg scientific instrument weigh on Titan? a. 43 N b. 60 N c. 84 N d. 600 N 43. Which has the greater momentum, a heavy truck at rest or a moving roller skate? a. Cannot tell from the information given. b. The heavy truck. c. The roller skate. d. They are equal. 44. Newton's second law can be rearranged to show that the is equal to the. a. momentum... impulse b. change in momentum... change in impulse c. change in momentum... impulse d. momentum... change in impulse 45. The stunt person who is shot by a bandit and falls backwards from the balcony into an air bag rather than onto the ground will not be hurt because the a. momentum change is less for the air bag. b. momentum is less for the air bag. c. impulse is less for the air bag. d. increased stopping time means a smaller stopping force. 46. Why is skiing into a wall of deep powder less hazardous to your health than skiing into a wall of bricks? Assume in both cases that you have the same initial speed and come to a complete stop. a. The change in momentum is less in powder. b. The impulse is less in powder. c. The increased stopping time in powder means a smaller stopping force. d. The decreased stopping time in powder means a larger stopping force. 47. A tailgunner jumped from a Lancaster bomber but did not break any bones or die because he fell into the branches of a tree and then into a snow bank. Physics explains this because a. the change in momentum was less than hitting the ground directly. b. the impulse in less in trees and snow than ground. c. the increased stopping time in the tree meant a smaller stopping force. d. the decreased stopping time in the tree meant a smaller stopping force. 48. What change in momentum occurs when a force of 20 N acts for 4 s? a. 5 kg m/s

7 b. 16 kg m/s c. 24 kg m/s d. 80 kg m/s 49. What impulse is need to stop a 1200-kg car traveling at 20 m/s? a. 60 N s b. 240 N s c N s d. 24,000 N s 50. If rockets are fired from an airplane in the forward direction, the momentum of the airplane will a. decrease. b. be unchanged. c. increase. d. There is not enough information to say.

8 PHYS 117- Exam I Answer Section MULTIPLE CHOICE 1. ANS: C DIF: 1 2. ANS: A DIF: 1 3. ANS: B DIF: 1 4. ANS: C DIF: 1 5. ANS: C DIF: 1 6. ANS: C DIF: 1 7. ANS: C DIF: 2 8. ANS: C DIF: 1 9. ANS: C DIF: ANS: C DIF: ANS: C DIF: ANS: D DIF: ANS: C DIF: ANS: A DIF: ANS: B DIF: ANS: C DIF: ANS: B DIF: ANS: D DIF: ANS: D DIF: ANS: B DIF: ANS: C DIF: ANS: D DIF: ANS: D DIF: ANS: D DIF: ANS: B DIF: ANS: A DIF: ANS: B DIF: ANS: C DIF: ANS: B DIF: ANS: B DIF: ANS: B DIF: ANS: D DIF: ANS: B DIF: ANS: A DIF: ANS: C DIF: ANS: D DIF: ANS: D DIF: ANS: D DIF: ANS: A DIF: ANS: D DIF: ANS: C DIF: 1

9 42. ANS: C DIF: ANS: C DIF: ANS: C DIF: ANS: D DIF: ANS: C DIF: ANS: C DIF: ANS: D DIF: ANS: D DIF: ANS: A DIF: 1

### Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

### Projectile Motion 1:Horizontally Launched Projectiles

A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

### Friction and Gravity. Friction. Section 2. The Causes of Friction

Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

### AP Physics C Fall Final Web Review

Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### 8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

### Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

### Practice TEST 2. Explain your reasoning

Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

### Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

### 4 Gravity: A Force of Attraction

CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

### F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

### Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

### Chapter 5: Circular Motion, the Planets, and Gravity

Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but

### A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

### Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

### Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.

### Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined

### Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

### PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

### Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

### Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

### PHY231 Section 1, Form B March 22, 2012

1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

### Work, Energy and Power Practice Test 1

Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

### ACTIVITY 6: Falling Objects

UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.

### Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

### TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

### NEWTON S LAWS OF MOTION

Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

### Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

### Name: Date: Period: Gravity Study Guide

Vocabulary: Define the following terms. Law of Universal Gravitation Gravity Study Guide Weight Weightlessness Gravitational Field Black hole Escape velocity Math: Be able to use the equation for the law

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

### 1. Mass, Force and Gravity

STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

### Supplemental Questions

Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

### GRAVITATIONAL FIELDS PHYSICS 20 GRAVITATIONAL FORCES. Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units:

GRAVITATIONAL FIELDS Gravitational Fields (or Acceleration Due to Gravity) Symbol: Definition: Units: Formula Description This is the formula for force due to gravity or as we call it, weight. Relevant

### Work, Energy and Power

Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed

### Newton s Laws of Motion

Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

### Web review - Ch 3 motion in two dimensions practice test

Name: Class: _ Date: _ Web review - Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity

### Force Concept Inventory

Revised form 081695R Force Concept Inventory Originally published in The Physics Teacher, March 1992 by David Hestenes, Malcolm Wells, and Gregg Swackhamer Revised August 1995 by Ibrahim Halloun, Richard

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I

WWW.MIAMI-BEST-MATH-TUTOR.COM PAGE 1 OF 10 WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I PROJECTILE MOTION 4.1 1. A physics book slides off a horizontal

### AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

### Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

### Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location.

Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. If the mass of the moon were three times as large, what would the force

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

### Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by

### Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008

Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling

### Physics 1401 - Exam 2 Chapter 5N-New

Physics 1401 - Exam 2 Chapter 5N-New 2. The second hand on a watch has a length of 4.50 mm and makes one revolution in 60.00 s. What is the speed of the end of the second hand as it moves in uniform circular

### circular motion & gravitation physics 111N

circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm

More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x

### Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton

Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction

### Exam Three Momentum Concept Questions

Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:

### Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth.

Gravity and forces unit Teacher notes/ activities Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Galileo, a famous Italian scientist

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### 10.1 Quantitative. Answer: A Var: 50+

Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

### Name Class Date. true

Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

### Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### P211 Midterm 2 Spring 2004 Form D

1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### Chapter 3 Practice Test

Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?

### Review Assessment: Lec 02 Quiz

COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

### Name Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy.

Name Period Date WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as energy. 2. The formula for calculating potential energy is. 3. The three factors

### force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.

4 Forces 4-1 Forces and Acceleration Vocabulary Force: A push or a pull. When an unbalanced force is exerted on an object, the object accelerates in the direction of the force. The acceleration is proportional

### 2 Newton s First Law of Motion Inertia

2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)

### WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS

WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that

### Conservative vs. Non-conservative forces Gravitational Potential Energy. Work done by non-conservative forces and changes in mechanical energy

Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

### Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

### 1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

### AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics

AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics. The following( is applicable to this entire document copies for student distribution for exam preparation explicitly

### Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.

### KE =? v o. Page 1 of 12

Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

### TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points

TIME OF COMPLETION NAME DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points 1. Check your examination for completeness prior to starting. There

### Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

### Chapter 9. is gradually increased, does the center of mass shift toward or away from that particle or does it remain stationary.

Chapter 9 9.2 Figure 9-37 shows a three particle system with masses m 1 3.0 kg, m 2 4.0 kg, and m 3 8.0 kg. The scales are set by x s 2.0 m and y s 2.0 m. What are (a) the x coordinate and (b) the y coordinate

### Problem Set #8 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection

### PHYS 211 FINAL FALL 2004 Form A

1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

### Problem Set V Solutions

Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

### Newton s Laws Quiz Review

Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from

### OBJECTIVES. Newton s Laws

Newton s Laws OBJECTIVES Students should be able to: 1. Describe Aristotleʼs Horse Cart theory and what was wrong with it. 2. Describe Galileo's experiment that lead to his conclusions about inertia (a)

### Potential / Kinetic Energy Remedial Exercise

Potential / Kinetic Energy Remedial Exercise This Conceptual Physics exercise will help you in understanding the Law of Conservation of Energy, and its application to mechanical collisions. Exercise Roles:

### Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

### 2After completing this chapter you should be able to

After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

### Practice Test SHM with Answers

Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

### Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

### Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

### BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY Word Bank: Acceleration, mass, inertia, weight, gravity, work, heat, kinetic energy, potential energy, closed systems, open systems,