# ACTIVITY 6: Falling Objects

Size: px
Start display at page:

Transcription

1 UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally. However, it can be shown that exactly the same ideas can be applied to objects that move vertically (up and down). You know that if you hold an object up and then release it, it will fall to the floor. In a previous unit you saw that this behavior can be explained using the idea that there is a gravitational interaction between the object and Earth. In this activity you will explore how different objects fall and, in particular, how their mass affects how they fall. You will also consider how the results can be explained using your ideas about forces. For example, suppose you dropped a soccer ball and a bowling ball from the same height at the same time. Which one would reach the ground first and, why? The key question for this lesson is: How does the mass of an object affect how it falls? Initial Ideas If you were to drop a bowling ball and a soccer ball from the same height, at the same time, which one do you think would reach the floor first? Explain your reasoning NextGenPET FM-55

2 Unit FM To help illustrate your thinking about the force(s) acting on each ball, sketch a force diagram for both balls at the same moment in time as they are falling. (Remember, they are released at the same time from the same height.) Be sure to include arrows representing the gravitational force acting on each ball, as well as any speed arrows you think appropriate. Do you think that the strength of the gravitational force acting on each ball would remain constant as it falls or do you think these force strengths would change as the balls get nearer to the ground? Explain why you think so.! Draw your group s force diagrams and graphs on a whiteboard. Participate in a class discussion about everyone s ideas and make a note of any ideas or reasoning different from your own. FM-56

3 Activity 6: Falling Objects Collecting and Interpreting Evidence You will need: Computer with internet connection Two objects with very different masses (e.g. a 1 kg and a 100 g mass) Several objects with different masses (but similar size and shape) Hard board such as a whiteboard (to drop balls onto) Exploration #1: How do falling objects move? STEP 1. In a previous activity you saw that when a ball is dropped from a height of about 2 meters its speed increases as it falls. Suppose a small ball were dropped from the top of a tall building. Do you think its speed would continue to increase all the time it is falling? Why do you think so? (You may assume the effects of the air are negligible.) To check your thinking, watch UCF-A3-Movie 1. It shows a simulation of a young man at the top of a building, holding a baseball in his hand. When you play the movie, he will release the ball and a speed-time graph for the falling ball will be plotted. When you are ready, run the simulation. While the ball was falling, was a force acting on it the whole time? How do you know? FM-57

4 Unit FM Did the strength of the force acting on the ball change significantly as it fell, or did its strength remain approximately constant? How do you know? (Hint: Consider whether the rate which the speed increases stays the same or not.) 1 STEP 2. Now, imagine you were to hold two spheres of a similar size, but different mass, at the same height above the ground and released them at the same time. Which sphere do you think would hit the ground first (if either)? Explain your thinking in terms of the strength of the gravitational force acting on each of the two spheres. STEP 3: Lay the hard board (i.e. one of the whiteboards) on the floor. From those available to you, select two similarly sized spheres of different mass and hold them (one in each hand) at the same height (about head high) above the board. Release them at the same time. 1 Actually, the strength of the gravitational force exerted on an object depends on its distance from the center of the Earth. Thus, even when an object falls to the ground from a great height, such as an aircraft, its distance from the Earth s center changes by only a very small relative amount and so the gravitational force has about the same strength throughout its fall. FM-58

5 Activity 6: Falling Objects ALL of your group members should watch and LISTEN carefully as the spheres hit the board. Listen to see if they hit the board at the same time (single plunk), or at different times (plunk... plunk). Be aware that some of the spheres have a tendency to bounce once they hit the board so you may want to have one group member be in charge of watching to see if one of the spheres bounced. You need to be able to distinguish between a soft plunk... soft plunk (each sphere hitting the board at a different time) and a loud plunk... soft plunk, plunk due to both spheres hitting the board at the same time and then one of the spheres bouncing. You may need to repeat the experiment a few times to check. Make sure that everyone in your group agrees on what you saw and heard. Does the more or the less massive sphere CLEARLY hit the board first or do they both appear to hit at the same time? STEP 4. Now repeat the experiment using different pairs of spheres of varying masses. Describe your observations about which object hits the board first (if either). Based on your observations, when you drop two spheres of different mass, do they increase speed at the same rate as they fall or at different rates depending on their mass? What evidence supports your conclusion? FM-59

7 Activity 6: Falling Objects How does the strength of the upward supporting force of your hand on this second object compare to the strength of the downward gravitational force acting on it? How do you know? Now focus on the effort you are having to exert to hold each object steady and what you can infer from this about the strength of the supporting force being applied to each object by you hand. How do the strengths of the upward supporting forces being applied by each of your hands to the objects on them compare? Is the supporting force being applied by each hand the same strength or is one supporting force stronger than the other, and if so which one? What can you infer from your answers to the previous questions about the strength of the gravitational force acting on the two objects with different masses? Does the gravitational force have the same strength regardless of the object s mass or is it stronger for one of the objects and, if so, which one? Carefully explain your reasoning.! Discuss your answer and reasoning with another group and try to resolve any differences. FM-61

8 Unit FM STEP 3. You have now seen that similarly shaped spheres increase speed at the same rate as they fall regardless of their masses, yet the strength of the gravitational force acting on them depends on their mass. Considering the following questions about some races between fan-carts may help you in understanding these results. Imagine you had a race between two low-friction fan-carts on side-by-side tracks, like those shown here. These carts have different masses (6 kg and 2 kg), but the same strength force (20 N) acting on each of them. Would these two carts increase speed at the same rate, so making the race end in a tie? If so, why? If not, why not and what could you do to make the race end in a tie? Carefully explain your reasoning. Suppose you had a race between two different mass fan-carts that did end in a tie. Would this be evidence that the strength of the fans was the same, or that it was different, and if so which one was stronger? Explain your thinking. Earlier in this activity you saw that objects of different mass all fall at the same rate of increasing speed. Does this evidence support the idea that the strength of the gravitational force acting on them has the same strength, regardless of their mass, or does it support the idea that the strength of the gravitational force acting on an object depends on its mass? FM-62

9 Activity 6: Falling Objects Recall that in the previous unit you saw that the rate at which an object s speed increases is given by the relationship: Rate of change in speed = Strength of net force Mass of object Explain, in terms of this relationship, why it is that all objects fall at the same rate of increasing speed 2. Summarizing Questions S1: Does the strength of the gravitational force of the Earth pulling an object toward the ground depend on the object s mass? What evidence supports your answer? S2: Your observations in this activity suggest that if the 6 kg and 2 kg carts were dropped from the same height at the same time, they would reach 2 Close to the surface of the Earth, and in the absence of any other effects, the rate at which all objects increase speed as they fall has been measured to be approximately 9.8 (m/s)/s. This means their speed increases by 9.8 m/s for every second that they are falling. This value is sometimes called the acceleration due to gravity and is determined by the mass of the Earth. Close to the surface of the Moon the acceleration due to gravity is only 1.6 (m/s)/s because the Moon s mass is much less than that of the Earth. Because all objects fall with the same rate of increasing speed people often say that gravity pulls the same on everything, but we have seen that this is not true. It would be more appropriate to say that the pull of gravity on an object depends on its mass, but the effect it causes (rate of change of speed) is the same for all objects. FM-63

10 Unit FM the ground together. In other words the race to the ground would end in a tie. a) How could you explain such a result in terms of the relative strengths of the gravitational forces pulling the carts downward and their masses? b) Draw force diagrams for both carts as they are falling side-by-side. Be sure to include both force and speed arrows of appropriate lengths? S3: It is common for people to explain that objects of different mass fall together because the gravitational force acting on them is the same strength. If the gravitational forces acting on a bowling ball and a soccer ball were truly the same strength as they fell, which one would actually reach the ground first? Explain your reasoning. FM-64

11 Activity 6: Falling Objects S4: In a previous activity Han and Samantha had the following conversation about the motion of a fan cart. Who do you agree with now? Explain your reasoning. I think that, as long as the fan keeps pushing on it, no matter how long the track is, the cart will keep speeding up. I agree that the cart will speed up to start with, but I just don t believe it could keep speeding up forever. I think that at some point its speed will become constant. Han Samantha FM-65

12 Unit FM FM-66

### 4 Gravity: A Force of Attraction

CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

### LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

### LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

### NEWTON S LAWS OF MOTION

Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

### PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

### TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

### circular motion & gravitation physics 111N

circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

### Friction and Gravity. Friction. Section 2. The Causes of Friction

Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### Name Partners Date. Energy Diagrams I

Name Partners Date Visual Quantum Mechanics The Next Generation Energy Diagrams I Goal Changes in energy are a good way to describe an object s motion. Here you will construct energy diagrams for a toy

### Practice TEST 2. Explain your reasoning

Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY Word Bank: Acceleration, mass, inertia, weight, gravity, work, heat, kinetic energy, potential energy, closed systems, open systems,

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes.

When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes. mass M, the force of attraction exerted by the Earth on an object, acts downwards.

### A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

### Section 1 Gravity: A Force of Attraction

Section 1 Gravity: A Force of Attraction Key Concept Gravity is a force of attraction between objects that is due to their masses. What You Will Learn Gravity affects all matter, including the parts of

### Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon?

Katie Chang 3A For this balloon rocket experiment, we learned how to plan a controlled experiment that also deepened our understanding of the concepts of acceleration and force on an object. My partner

### Newton s Laws of Motion

Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

### Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### Lesson 39: Kinetic Energy & Potential Energy

Lesson 39: Kinetic Energy & Potential Energy Total Mechanical Energy We sometimes call the total energy of an object (potential and kinetic) the total mechanical energy of an object. Mechanical energy

### Aristotelian Physics. Aristotle's physics agrees with most people's common sense, but modern scientists discard it. So what went wrong?

Aristotelian Physics Aristotle's physics agrees with most people's common sense, but modern scientists discard it. So what went wrong? Here's what Aristotle said: Aristotelian Physics Aristotle s classification

### Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

### Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined

### Acceleration of Gravity Lab Basic Version

Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration

### Work, Energy and Power Practice Test 1

Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

### Projectile Motion 1:Horizontally Launched Projectiles

A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two

### Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

### AP Physics C. Oscillations/SHM Review Packet

AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by

### 1. Mass, Force and Gravity

STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

### Unit 2 Force and Motion

Force and Motion Unit 2 Force and Motion Learning Goal (TEKS): Identify and describe the changes in position, direction, and speed of an object when acted upon by unbalanced forces. This means: We are

### Contents. Stage 7. Stage 8. Stage 9. Contents. Key: Enquiry / Extension / Review BOLD PAGE NO. = in this booklet

Contents Contents Stage 7 1 1.1 Introduction to forces 8 1.2 Balanced forces 10 1.3 Friction 12 1.4 Gravity 14 1.5 Enquiry: Questions, evidence and explanations 16 1.6 Air resistance 18 1.7 Enquiry: Planning

### Unit 3 Work and Energy Suggested Time: 25 Hours

Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense

### Experiment 2 Free Fall and Projectile Motion

Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8

### Newton s Law of Universal Gravitation describes the attractive gravitational force that exists between any two bodies with the following equation:

Newton s Laws & Gravitation Newton s Law of Universal Gravitation describes the attractive gravitational force that exists between any two bodies with the following equation: F G = GMm 2 r G is the gravitational

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### Work, Energy and Power

Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed

### Pushes and Pulls. TCAPS Created June 2010 by J. McCain

Pushes and Pulls K i n d e r g a r t e n S c i e n c e TCAPS Created June 2010 by J. McCain Table of Contents Science GLCEs incorporated in this Unit............... 2-3 Materials List.......................................

### Freely Falling Objects

Freely Falling Objects Physics 1425 Lecture 3 Michael Fowler, UVa. Today s Topics In the previous lecture, we analyzed onedimensional motion, defining displacement, velocity, and acceleration and finding

### 5-Minute Refresher: FRICTION

5-Minute Refresher: FRICTION Friction Key Ideas Friction is a force that occurs when two surfaces slide past one another. The force of friction opposes the motion of an object, causing moving objects to

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

### Balanced and Unbalanced Forces

1 Balanced and Unbalanced Forces Lesson Created by Carlos Irizarry, George B. Swift Specialty School, Chicago, Illinois Purpose To fully appreciate and make a connection to Newton s Laws, students must

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

### 2 Newton s First Law of Motion Inertia

2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)

### The University of Texas at Austin. Gravity and Orbits

UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the

### Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.

### How To Explain Why A Car Is Constant After A Push

Practice Final Exam (Answers keys) Booklet Number Instructions: This is a combined essay and multiple-choice exam. Choose the best single answer for each question and clearly mark your choice in the appropriate

### ENERGYand WORK (PART I and II) 9-MAC

ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:

### AP Physics C Fall Final Web Review

Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

### What Do You Think? For You To Do GOALS

Activity 2 Newton s Law of Universal Gravitation GOALS In this activity you will: Explore the relationship between distance of a light source and intensity of light. Graph and analyze the relationship

### SPEED, VELOCITY, AND ACCELERATION

reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

### Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

### Balanced & Unbalanced Forces

3 rd Grade Force in Motion An object's motion changes because of force. Pushing and Pulling are Kinds of Forces Motion is movement that changes an object's position. Pushing or pulling forces can be used

### Supplemental Questions

Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

### Prelab Exercises: Hooke's Law and the Behavior of Springs

59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

### Bounce! Name. Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure.

Bounce 1 Name Bounce! Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure. Background information: Energy causes things to happen. During the day, the sun gives

### EDUH 1017 - SPORTS MECHANICS

4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

### Practice Test SHM with Answers

Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

### Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

### WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS

WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that

### Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

### The Universal Laws of Gravitation. Copyright 2012 Joseph A. Rybczyk

The Universal Laws of Gravitation Copyright 2012 Joseph A. Rybczyk Abstract Close examination of Newton s universal law of gravitation and Galileo s discovery that all objects fall to Earth at the same

### III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

### Laboratory Report Scoring and Cover Sheet

Laboratory Report Scoring and Cover Sheet Title of Lab _Newton s Laws Course and Lab Section Number: PHY 1103-100 Date _23 Sept 2014 Principle Investigator _Thomas Edison Co-Investigator _Nikola Tesla

### W02D2-2 Table Problem Newton s Laws of Motion: Solution

ASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 W0D- Table Problem Newton s Laws of otion: Solution Consider two blocks that are resting one on top of the other. The lower block

### Interaction at a Distance

Interaction at a Distance Lesson Overview: Students come in contact with and use magnets every day. They often don t consider that there are different types of magnets and that they are made for different

### Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location.

Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. If the mass of the moon were three times as large, what would the force

### Newton s Law of Motion

chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

### Name Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy.

Name Period Date WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as energy. 2. The formula for calculating potential energy is. 3. The three factors

### Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton

Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction

### Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

### Lift vs. Gravity Questions:

LIFT vs GRAVITY Sir Isaac Newton, an English scientist, observed the force of gravity when he was sitting under a tree and an apple fell on his head! It is a strong force that pulls everything down toward

### The Effect of Dropping a Ball from Different Heights on the Number of Times the Ball Bounces

The Effect of Dropping a Ball from Different Heights on the Number of Times the Ball Bounces Or: How I Learned to Stop Worrying and Love the Ball Comment [DP1]: Titles, headings, and figure/table captions

### Name: Date: Period: Gravity Study Guide

Vocabulary: Define the following terms. Law of Universal Gravitation Gravity Study Guide Weight Weightlessness Gravitational Field Black hole Escape velocity Math: Be able to use the equation for the law

### Physical Science Chapter 2. Forces

Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

### Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

### 5.1 The First Law: The Law of Inertia

The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing

### Acceleration Introduction: Objectives: Methods:

Acceleration Introduction: Acceleration is defined as the rate of change of velocity with respect to time, thus the concepts of velocity also apply to acceleration. In the velocity-time graph, acceleration

### Oscillations: Mass on a Spring and Pendulums

Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that

### Potential / Kinetic Energy Remedial Exercise

Potential / Kinetic Energy Remedial Exercise This Conceptual Physics exercise will help you in understanding the Law of Conservation of Energy, and its application to mechanical collisions. Exercise Roles:

### physics 111N work & energy

physics 111N work & energy conservation of energy entirely gravitational potential energy kinetic energy turning into gravitational potential energy gravitational potential energy turning into kinetic

### Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth.

Gravity and forces unit Teacher notes/ activities Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Galileo, a famous Italian scientist

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

### Newton s Law of Gravitation

Newton s Law of Gravitation Duration: 1-2 class periods Essential Questions: How do the acceleration and force due to gravity depend on the radius and mass of a planet? How does the mass of a falling body

### 9. Momentum and Collisions in One Dimension*

9. Momentum and Collisions in One Dimension* The motion of objects in collision is difficult to analyze with force concepts or conservation of energy alone. When two objects collide, Newton s third law

### LAB 4: MOMENTUM AND COLLISIONS

1 Name Date Day/Time of Lab Partner(s) Lab TA LAB 4: MOMENTUM AND COLLISIONS NEWTON S THIRD LAW OBJECTIVES To examine action-reaction force pairs To examine collisions and relate the law of conservation