# How Rockets Work Newton s Laws of Motion

Size: px
Start display at page:

## Transcription

1 How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means mission success. In the early days of rocketry, the flight of a fire arrow or other rocket device was largely a matter of chance. It might fly; it might skitter about, shooting sparks and smoke; or it might explode. Through centuries of trial and error, rockets became more reliable. However, real advancements in rocketry depended upon a scientific and mathematical understanding of motion. That came in the seventeenth century with the works of scientists such as Galileo and Isaac Newton. Galileo conducted a wide range of experiments involving motion. Through studies of inclined planes, Galileo concluded that moving objects did not need the continuous application of force (in the absence of friction and drag) to keep moving. Galileo discovered the principle of inertia, that all matter, because of its mass, resists changes in motion. The more mass, the more resistance. Isaac Newton, born the year Galileo died, advanced Galileo s discoveries and those of others by proposing three basic laws of motion. These laws are the foundation of all rocket science. Understand the laws and you know just about everything you need to build successful rockets. Apply the laws and you become a rocket scientist. Newton s Laws of Motion In his master work entitled Philosophia Naturalis Principia Mathematica (usually referred to as Principia), Isaac Newton stated his laws of motion. For the most part, the laws were known intuitively by rocketeers, but their statement in clear form elevated rocketry to a science. Practical application of Newton s laws makes the difference between failure and success. The laws relate force and direction to all forms of motion. 19

2 In simple language, Newton s Laws of Motion: First Law Objects at rest remain at rest and objects in motion remain in motion in a straight line unless acted upon by an unbalanced force. Reach over and pick up the cup. In doing so, you unbalance the forces on the cup. The weight you feel is the force of gravity acting on the mass of the cup. To move the cup upward, you have to exert a force greater than the force of gravity. If you hold the cup steady, the force of gravity and the muscle force you are exerting are in balance. Second Law Force equals mass times acceleration (or f = ma). Third Law For every action there is an equal and opposite reaction. Before looking at each of these laws in detail, a few terms should be explained. Rest and Motion, as they are used in the first law, can be confusing. Both terms are relative. They mean rest or motion in relation to surroundings. You are at rest when sitting in a chair. It doesn t matter if the chair is in the cabin of a jet plane on a cross-country flight. You are still considered to be at rest because the airplane cabin is moving along with you. If you get up from your seat on the airplane and walk down the aisle, you are in relative motion because you are changing your position inside the cabin. Force is a push or a pull exerted on an object. Force can be exerted in many ways, such as muscle power, movement of air, and electromagnetism, to name a few. In the case of rockets, force is usually exerted by burning rocket propellants that expand explosively. Unbalanced Force refers to the sum total or net force exerted on an object. The forces on a coffee cup sitting on a desk, for example, are in balance. Gravity is exerting a downward force on the cup. At the same time, the structure of the desk exerts an upward force, preventing the cup from falling. The two forces are in balance. Unbalanced force Balanced forces Unbalanced force also refers to other motions. The forces on a soccer ball at rest on the playing field are balanced. Give the ball a good kick, and the forces become unbalanced. Gradually, air drag (a force) slows the ball, and gravity causes it to bounce on the field. When the ball stops bouncing and rolling, the forces are in balance again. Take the soccer ball into deep space, far away from any star or other significant gravitational field, and give it a kick. The kick is an unbalanced force exerted on the ball that gets it moving. Once the ball is no longer in contact with the foot, the forces on the ball become balanced again, and the ball will travel in a straight line forever. How can you tell if forces are balanced or unbalanced? If the soccer ball is at rest, 20

3 Balanced Force Unbalanced Force the forces are balanced. If the ball is moving at a constant speed and in a straight line, the forces are balanced. If the ball is accelerating or changing its direction, the forces are unbalanced. Mass is the amount of matter contained in an object. The object does not have to be solid. It could be the amount of air contained in a balloon or the amount of water in a glass. The important thing about mass is that unless you alter it in some way, it remains the same whether the object is on Earth, in Earth orbit, or on the Moon. Mass just refers to the quantity of matter contained in the object. (Mass and weight are often confused. They are not the same thing. Weight is a force and is the product of mass times the acceleration of gravity.) Acceleration relates to motion. It means a change in motion. Usually, change refers to increasing speed, like what occurs when you step on the accelerator pedal of a car. Acceleration also means changing direction. Top view of two riders on a carousel. The carousel platform exerts unbalanced forces on the riders, preventing them from going in straight lines. Instead, the platform continually accelerates the riders in a counterclockwise direction. This is what happens on a carousel. Even though the carousel is turning at a constant rate, the continual change in direction of the horses and riders (circular motion) is an acceleration. Action is the result of a force. A cannon fires, and the cannon ball flies through the air. The movement of the cannon ball is an action. Release air from an inflated balloon. The air shoots out the nozzle. That is also an action. Step off a boat onto a pier. That, too, is an action. Reaction is related to action. When the cannon fires, and the cannon ball flies through the air, the cannon itself recoils backward. That is a reaction. When the air rushes out of the balloon, the balloon shoots the other way, another reaction. Stepping off a boat onto to a pier causes a reaction. Unless the boat is held in some way, it moves in the opposite direction. (Note: The boat example is a great demonstration of the action/reaction principle, providing you are not the one stepping off the boat!) Newton s First Law This law is sometimes referred to as Galileo s law of inertia because Galileo discovered the principle of inertia. This law simply points 21

4 out that an object at rest, such as a rocket on a launch pad, needs the exertion of an unbalanced force to cause it to lift off. The amount of the thrust (force) produced by the rocket engines has to be greater than the force of gravity holding it down. As long as the thrust of the engines continues, the rocket accelerates. When the rocket runs out of propellant, the forces become unbalanced again. This time, gravity takes over and causes the rocket to fall back to Earth. Following its landing, the rocket is at rest again, and the forces are in balance. There is one very interesting part of this law that has enormous implications for spaceflight. When a rocket reaches space, atmospheric drag (friction) is greatly reduced or eliminated. Within the atmosphere, drag is an important unbalancing force. That force is virtually absent in space. A rocket traveling away from Earth at a speed greater than kilometers per second (6.95 miles per second) or 40,270 kilometers per hour (25,023 mph) will eventually escape Earth s gravity. It will slow down, but Earth s gravity will never slow it down enough to cause it to fall back to Earth. Ultimately, the rocket (actually its payload) will travel to the stars. No additional rocket thrust will be needed. Its inertia will cause it to continue to travel outward. Four spacecraft are actually doing that as you read this. Pioneers 10 and 11 and Voyagers 1 and 2 are on journeys to the stars! Newton s Third Law (It is useful to jump to the third law and come back to the second law later.) This is the law of motion with which many people are familiar. It is the principle of action and reaction. In the case of rockets, the action is the force produced by the expulsion of gas, smoke, and flames from the nozzle end of a rocket engine. The reaction force propels the rocket in the opposite direction. When a rocket lifts off, the combustion products from the burning propellants accelerate rapidly out of the engine. The rocket, on the other hand, slowly accelerates skyward. It would appear that something is wrong here if the action and reaction are supposed to be equal. They are equal, but the mass of the gas, smoke, and flames being propelled by the engine is much less than the mass of the rocket being propelled in the opposite direction. Even though the force is equal on both, the effects are different. Newton s first law, the law of inertia, explains why. The law states that it takes a force to change the motion of an object. The greater the mass, the greater the force required to move it. Newton s Second Law The second law relates force, acceleration, and mass. The law is often written as the equation: f = ma The force or thrust produced by a rocket engine is directly proportional to the mass of the gas and particles produced by burning rocket propellant times the acceleration of those combustion products out the back of the engine. This law only applies to what is actually traveling out of the engine at the moment and not the mass of the rocket propellant contained in the rocket that will be consumed later. The implication of this law for rocketry is that the more propellant (m) you consume at any moment and the greater the acceleration (a) of the combustion products out of the nozzle, the greater the thrust (f). 22

5 A Taste of Real Rocket Science Naturally, launching rockets into space is more complicated than Newton s laws of motion imply. Designing rockets that can actually lift off Earth and reach orbital velocities or interplanetary space is an extremely complicated process. Newton s laws are the beginning, but many other things come into play. For example, air pressure plays an important role while the rocket is still in the atmosphere. The internal pressure produced by burning rocket propellants inside the rocket engine combustion chamber has to be greater than the outside pressure to escape through the engine nozzle. In a sense, the outside air is like a cork in the engine. It takes some of the pressure generated inside the engine just to exceed the ambient outside pressure. Consequently, the velocity of combustion products passing through the opening or throat of the nozzle is reduced. The good news is that as the rocket climbs into space, the ambient pressure becomes less and less as the atmosphere thins and the engine thrust increases. Another important factor is the changing mass of the rocket. As the rocket is gaining thrust as it accelerates upward due to outside pressure changes, it is also getting a boost due to its changing mass. Every bit of rocket propellant burned has mass. As the combustion products are ejected by the engine, the total mass of the vehicle lessens. As it does its inertia, or resistance to change in motion, becomes less. As a result, upward acceleration of the rocket increases. In practical terms, Newton s second law can be rewritten as this: f = m exit V exit + (p exit - p ambient )A exit f = m exit V exit In real rocket science, many other things also come into play. Even with a low acceleration, the rocket will gain speed over time because acceleration accumulates. Not all rocket propellants are alike. Some produce much greater thrust than others because of their burning rate and mass. It would seem obvious that rocket scientists would always choose the more energetic propellants. Not so. Each choice a rocket scientist makes comes with a cost. Liquid hydrogen and liquid oxygen are very energetic when burned, but they both have to be kept chilled to very low temperatures. Furthermore, their mass is low, and very big tanks are needed to contain enough propellant to do the job. In Conclusion... Newton s laws of motion explain just about everything you need to know to become a rocket scientist. However, knowing the laws is not enough. You have to know how to apply them, such as: - How can you create enough thrust to exceed the weight of the rocket? - What structural materials and propellant combinations should you use? - How big will the rocket have to be? - How can you make the rocket go where you want it to? - How can you bring it back to Earth safely? ( A refers to the area of the engine throat.) When the rocket reaches space, and the exit pressure minus the ambient pressure becomes zero, the equation becomes: 23

### Rocketry for Kids. Science Level 4. Newton s Laws

Rocketry for Kids Science Level 4 Newton s Laws Victorian Space Science Education Centre 400 Pascoe Vale Road Strathmore, Vic 3041 www.vssec.vic.edu.au Some material for this program has been derived from

### Newton s Laws of Motion

Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

### Newton s Laws Force and Motion

CLIL Project Physics in English Anno scolastico 2013-2014 Newton s Laws Force and Motion Lecture 2 Classe 3 a A Linguistico Istituto Superiore Marini-Gioia - AMALFI Content of the unit: Newton s Laws DYNAMIC

### Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

### LAWS OF FORCE AND MOTION

reflect Does anything happen without a cause? Many people would say yes, because that often seems to be our experience. A cup near the edge of a table suddenly crashes to the fl oor. An apple falls from

### Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

### Newton s Wagon Newton s Laws

Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?

### NEWTON S LAWS OF MOTION

Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

### STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

### Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

### Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

### Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### 4 Gravity: A Force of Attraction

CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

### 2.5 Newton s Third Law of Motion. SUMMARY Newton s Second Law of Motion. Section 2.4 Questions

SUMMARY Newton s Second Law of Motion Newton s second law of motion relates the acceleration of an object to the mass of the object and the net force acting on it. The equation is a = F net or F m net

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### Activity: Newton s Third Law of Motion Action and Reaction

Ascent to Orbit Activity: Newton s Third Law of Motion Action and Reaction Background Information for the Teacher: Adapted from www. nasa.gov, and http://suite101.com/article/newtons-laws-for-kids-overview-a41283.

### Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

### Name Class Date. true

Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

### Section 1 Gravity: A Force of Attraction

Section 1 Gravity: A Force of Attraction Key Concept Gravity is a force of attraction between objects that is due to their masses. What You Will Learn Gravity affects all matter, including the parts of

### Newton s Laws of Motion

Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems

### LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes DESCRIPTION Apply the concepts of pressure and Newton s laws of motion to build simple rockets. OBJECTIVE This lesson

### 2 Newton s First Law of Motion Inertia

2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)

### Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

### PHYSICS 149: Lecture 4

PHYSICS 149: Lecture 4 Chapter 2 2.3 Inertia and Equilibrium: Newton s First Law of Motion 2.4 Vector Addition Using Components 2.5 Newton s Third Law 1 Net Force The net force is the vector sum of all

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to well-defined rules. The book Philosophiae

### Conceptual Physics 11 th Edition. Forces and Interactions. Newton s Third Law of Motion. This lecture will help you understand:

This lecture will help you understand: Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION Forces and Interactions Summary of Newton s Laws Vectors Forces and Interactions Interaction

### April 07, 2015. Force motion examples.notebook MOTION AND FORCES. GRAVITY: a force that makes any object pull toward another object.

Force motion examples.notebook April 07, 2015 MOTION AND FORCES GRAVITY: a force that makes any object pull toward another object Feb 15 12:00 PM 1 FRICTION: a force that acts to slow down moving objects

### Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION This lecture will help you understand: Forces and Interactions Newton s Third Law of Motion Summary of Newton s Laws Vectors Forces

### G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### Newton's First and Second Laws

Name -------------- Class _ Date ------ Newton's First and Second Laws KEY IDEAS As you read this section, keep these questions What makes an object's motion change? What is inertia? What affects how much

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### Newton In Space. Liftoff to Learning. Video Resource Guide. A Videotape for Physical Science and Science and Technology EV-1997-07-009-HQ 1

Educational Product Educators Grades 5-8 National Aeronautics and Space Administration Liftoff to Learning Newton In Space A Videotape for Physical Science and Science and Technology Video Resource Guide

### Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

### Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Chapter 4: NEWTON S LAWS OF MOTION Newton s Laws of Motion I was only a scalar until you came along and gave me direction. Barbara Wolfe This lecture will help you understand:

### Elements of Physics Motion, Force, and Gravity Teacher s Guide

Teacher s Guide Grade Level: 9 12 Curriculum Focus: Physical Science Lesson Duration: Three class periods Program Description Examine Isaac Newton's laws of motion, the four fundamental forces of the universe,

### Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth.

Gravity and forces unit Teacher notes/ activities Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Galileo, a famous Italian scientist

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### Friction and Gravity. Friction. Section 2. The Causes of Friction

Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

### Guiding Questions Activity 5. What is a force? What are Newton s laws of motion? Purpose: To define force and explore Newton s three laws of motion.

Guiding Questions Activity 5 What is a force? What are Newton s laws of motion? Purpose: To define force and explore Newton s three laws of motion. Note: Earlier we established through experimentation

### Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### Force Concept Inventory

Revised form 081695R Force Concept Inventory Originally published in The Physics Teacher, March 1992 by David Hestenes, Malcolm Wells, and Gregg Swackhamer Revised August 1995 by Ibrahim Halloun, Richard

### b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.

I. What is Motion? a. Motion - is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

### 1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

### PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

### Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

### Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

### Notes: Mechanics. The Nature of Force, Motion & Energy

Notes: Mechanics The Nature of Force, Motion & Energy I. Force A push or pull. a) A force is needed to change an object s state of motion. b) Net force- The sum (addition) of all the forces acting on an

### Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

### Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008

Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling

### UNIT 2D. Laws of Motion

Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics- the study of forces that act on bodies in motion. First Law of Motion

### 1. The unit of force, a Newton, is equal to a. The amount of mass in an object c. kg m/s b. Mass X Velocity d. kg m/s 2

Forces in Motion Test- FORM B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The unit of force, a Newton, is equal to a. The amount of mass in an object

### Chapter 7 Newton s Laws of Motion

Chapter 7 Newton s Laws of Motion 7.1 Force and Quantity of Matter... 1 Example 7.1 Vector Decomposition Solution... 3 7.1.1 Mass Calibration... 4 7.2 Newton s First Law... 5 7.3 Momentum, Newton s Second

### Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 5 Physics, 4 th Edition James S. Walker Chapter 5 Newton s Laws of Motion Dynamics Force and Mass Units of Chapter 5 Newton s 1 st, 2 nd and 3 rd Laws of Motion The Vector Nature

### Contents. Stage 7. Stage 8. Stage 9. Contents. Key: Enquiry / Extension / Review BOLD PAGE NO. = in this booklet

Contents Contents Stage 7 1 1.1 Introduction to forces 8 1.2 Balanced forces 10 1.3 Friction 12 1.4 Gravity 14 1.5 Enquiry: Questions, evidence and explanations 16 1.6 Air resistance 18 1.7 Enquiry: Planning

### 1. Mass, Force and Gravity

STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

### Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

### Astro 110-01 Lecture 10 Newton s laws

Astro 110-01 Lecture 10 Newton s laws Twin Sungrazing comets 9/02/09 Habbal Astro110-01 Lecture 10 1 http://umbra.nascom.nasa.gov/comets/movies/soho_lasco_c2.mpg What have we learned? How do we describe

### Physical Science Chapter 2. Forces

Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

### Newton s Third Law of Motion: Symmetry in Forces

Newton s Third Law of Motion: Symmetry in Forces By: OpenStax College Online: This module is copyrig hted by Rice University. It is licensed under the Creative Commons

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### Chapter 7 Momentum and Impulse

Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time

### Aristotelian Physics. Aristotle's physics agrees with most people's common sense, but modern scientists discard it. So what went wrong?

Aristotelian Physics Aristotle's physics agrees with most people's common sense, but modern scientists discard it. So what went wrong? Here's what Aristotle said: Aristotelian Physics Aristotle s classification

### 5.1 The First Law: The Law of Inertia

The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing

### Force and Motion Notes

Force and Motion Notes NEW UNIT! STEPS: 1. TURN TO THE NEXT CLEAN PAGE IN YOUR JOURNAL 2. G LUE THE TITLE PAGE A ND THE A NTICIPATION GUIDE IN 3. COMPLETE THE ANTICIPATION GUIDE. 4. BE READY TO TAKE NOTES

### Water Rocket Launch. Provided by TryEngineering - www.tryengineering.org

Provided by TryEngineering - Lesson Focus Lesson focuses on aerospace engineering and how space flight has been achieved from an engineering vantage point. Student teams build and launch a rocket made

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY Word Bank: Acceleration, mass, inertia, weight, gravity, work, heat, kinetic energy, potential energy, closed systems, open systems,

### (green chalkboard on screen) VO Newton s Third Law of Motion is also known as the Law of Interaction or Action-Reaction.

Physics 404 - Newton s Third Law and Projectile Motion (Read objectives on screen.) Did you know that it is impossible to touch something or someone without being touched back? That s what Newton s Third

### Force. Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law. Outline

Force Force as a Vector Real Forces versus Convenience The System Mass Newton s Second Law Outline Force as a Vector Forces are vectors (magnitude and direction) Drawn so the vector s tail originates at

### 1.7 Work Done, Potential and Kinetic Energy

Students should be able to: 1.7.1 Define work done, potential energy, kinetic energy, efficiency and power 1.7.2 Recognise that when work is done energy is transferred from one form to another 1.7.3 Calculate

### Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

### Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

### III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

### Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

### Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.

### AS COMPETITION PAPER 2008

AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

### Physics 160 Biomechanics. Newton s Laws

Physics 160 Biomechanics Newton s Laws Questions to Think About Why does it take more force to cause an object to start sliding than it does to keep it sliding? Why is a ligament more likely to tear during

### Newton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1

Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is

### Newton's third law relates action and reaction forces.

Forces and Motion Ch. 2.3 Newton's third law relates action and reaction forces. Newton made an important observation that explains the motion of the jellyfish. He noticed that forces always act in pairs.

### SPEED, VELOCITY, AND ACCELERATION

reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

### Gravity SEN. Answers (in the wrong order) Force Isaac Newton Energy Gravity Apple Powerful engines less Newtons Gravity

Gravity Gravity is a force, which we don t think a lot about. It is gravity that holds things to the Earth s surface and prevents things from floating off into the atmosphere. Isaac Newton was one of the

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### Unit 2 Force and Motion

Force and Motion Unit 2 Force and Motion Learning Goal (TEKS): Identify and describe the changes in position, direction, and speed of an object when acted upon by unbalanced forces. This means: We are

### Practice TEST 2. Explain your reasoning

Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

### 1. Large ships are often helped into port by using two tug boats one either side of the ship. April 5, 1989 (Anchorage Daily News / Erik Hill)

1. Velocity and displacement vectors and scalars Vector and scalar quantities: force, speed, velocity, distance, displacement, acceleration, mass, time and energy. Calculation of the resultant of two vector

### force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.

4 Forces 4-1 Forces and Acceleration Vocabulary Force: A push or a pull. When an unbalanced force is exerted on an object, the object accelerates in the direction of the force. The acceleration is proportional

### Bite 6: Newton s Third Law

Bite 6: Newton s Third Law Newton s three laws of motion predict the motion of virtually all objects on Earth and in space. You are about to know all of them. Newton s 1st law: an object at rest tends

### Our Dynamic Universe

North Berwick High School Department of Physics Higher Physics Unit 1 Section 3 Our Dynamic Universe Collisions and Explosions Section 3 Collisions and Explosions Note Making Make a dictionary with the

### Let's Go Science Show

Let's Go Science Show Take Home Materials *For Grades 4-8* What resource do you possess that grows as you learn? ATM OSPH ER E A transparent substance with EL EC TR ONS curved sides for concentrating or

### Physics 2AB Notes - 2012. Heating and Cooling. The kinetic energy of a substance defines its temperature.

Physics 2AB Notes - 2012 Heating and Cooling Kinetic Theory All matter is made up of tiny, minute particles. These particles are in constant motion. The kinetic energy of a substance defines its temperature.

### Lecture 5: Newton s Laws. Astronomy 111

Lecture 5: Newton s Laws Astronomy 111 Isaac Newton (1643-1727): English Discovered: three laws of motion, one law of universal gravitation. Newton s great book: Newton s laws are universal in scope,

### Newton s Laws Quiz Review

Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from

### Supplemental Questions

Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?