Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Size: px
Start display at page:

Download "Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question."

Transcription

1 Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity. d. mass. 2. A quantity whose measurement includes both size and direction is a: a. scalar. b. distance. c. magnitude. d. vector. 3. Vector quantities are represented by arrows. If two vector arrows are combined, the vector that represents their sum is called the: a. resultant. b. equilibrant. c. component. d. negligent. 4. A single force can be represented by two forces (F x and F y ) at right angles to each other. The two forces (F x and F y ) are called forces. a. equilibrant b. negligent c. resolution d. component 5. An example of a scalar quantity is: a. velocity. b. force. c. speed. d. acceleration. 1

2 6. 7. Four forces act concurrently on a point as shown above. The resultant of the four forces is: a. 0.0 newtons. b. 5.0 newtons. c. 14. newtons. d. 20. newtons. Using the diagram above, which vector best represents the resultant of forces F 1 and F 2 acting at point P? a. 1 b. 2 c. 3 d An athlete runs 40 meters north and 30 meters south. The resultant displacement of the runner is: a. 70 meters north. b. 10 meters north. c. 70 meters south. d. 10 meters south. 9. Which pair of concurrent forces may produce a resultant force of 20 newtons? a. 5 newtons and 10 newtons b. 20 newtons and 20 newtons c. 20 newtons and 50 newtons d. 30 newtons and 5 newtons 10. A boat sailing at 9 kilometers per hour crosses a lake at an angle of 30 to the shore of the lake.if the lake is 18 kilometers wide, the time required for the sailboat to cross the lake is: a. 0.5 hours. b. 1 hours. c. 2 hours. d. 4 hours. 2

3 11. A flock of Canada geese are flying at 41 miles per hour headed due south. If a 52 mile per hour east wind were to begin blowing, the resultant velocity of the flock would become approximately: a. 11 mph. b. 47 mph. c. 66 mph. d. 93 mph. 12. The normal force is: a. the force acting to always oppose motion. b. the force acting perpendicular to the surface. c. the force from gravity. d. the force acting parallel to the surface. 13. Which force always opposes the motion of an object? a. Gravity b. Normal c. Parallel d. Friction 14. An object is moving at constant speed on a slanted surface while a force is applied on the object parallel to the surface of the inclined plane. Which forces are in equilibrium? a. Gravitational and normal forces b. Frictional and the normal forces c. Normal and parallel forces d. Frictional and parallel forces 15. A 5-newton force directed north and a 5-newton force directed west both act on the same point. The resultant of these two forces is approximately: a. 5 newtons northwest. b. 5 newtons southwest. c. 7 newtons northwest. d. 7 newtons southwest. 16. The diagram above shows an object on an inclined plane. The object does not move on the inclined plane because F gx balances F f and: a. F gx balances F gy b. F g balances F n c. F n balances F gy d. F f balances F n 3

4 17. A 1.0-kilogram block is placed on each of the four frictionless ramps inclined at different angles as shown in the diagram below. Which block will experience the greatest acceleration? a. 1 b. 2 c. 3 d A 75-kilogram block rests on an incline which makes an angle of 35 with the horizontal. The force exerted on the block by the incline is about: a. 420 newtons. b. 515 newtons. c. 600 newtons. d. 735 newtons. 19. Gerry rides down a 25 hill on a snowboard. With a combined mass of 80 kilograms, Gerry and the snowboard accelerate at a rate of 2.0 m/s 2. The force of friction acting on Gerry and the snowboard is approximately: a. 160 newtons. b. 170 newtons. c. 330 newtons. d. 785 newtons. 20. Projectiles travel the greatest distance horizontally when the launch angle is: a. 10 b. 25 c. 45 d A projectile launched at which angle will have the greatest range? a. 60 b. 45 c. 30 d A water balloon is launched horizontally at a height of 1.5 meters above the ground. Its launch speed is 30 m/s. The instant before the balloon hits the ground, its horizontal speed is: a. 0 m/s. b. 1.5 m/s. c. 20 m/s. d. 30 m/s. 4

5 23. A skateboarder gets a rolling start along a level sidewalk and jumps down meters to a lower level and rolls on. The time the skater is in the air between rolling off the upper level and touching down on the lower level is: a. increased if the skater gets a faster rolling start. b. decreased if the drop is a larger distance. c. unchanged if the skater gets a faster rolling start. d. decreased if the skater gets a faster rolling start. 24. Two projectiles are launched at different angles. One is launched at 30 and the other at 60. Which statement is true? a. The vertical components of velocity for both projectiles are equal. b. The 30 projectile has a greater vertical component of velocity than the 60 projectile. c. The 60 projectile has a greater vertical component of velocity than the 30 projectile. d. The 60 projectile has a greater horizontal component of velocity than the 30 projectile. 25. As the launch angle of a projectile is increased from an angle of 0 to an angle of 90, the range of a projectile will: a. increase then decrease. b. decrease then increase. c. remain unchanged. d. increase only. 26. Which of the following launch angles will give a projectile the same range? a. 15 and 30 b. 15 and 45 c. 15 and 75 d. 20 and When a projectile is launched, the velocity may be described as: a. increasing in the vertical direction. b. decreasing in the horizontal direction. c. constant in the vertical direction. d. constant in the horizontal direction. 28. Two balls are kicked upwards from the ground at an angle of 45 from the horizontal. One ball has a speed of 5 m/s, and the second ball has a speed of 15 m/s. (Assume no air friction.) Compared to the slower ball, the faster ball will travel: a. 3 times farther. b. 9 times farther. c. 75 times farther. d. 1/3 as far. 5

6 A golfer hits a golf ball at a 35 angle at a speed of 37 m/s. The maximum height to which the ball travels is about: a. 1.1 meters. b. 23 meters. c. 47 meters. d. 94 meters. A ball is rolled across the level surface of a desk which is 0.90 meters high at a speed of 3 m/s. A target is placed 0.75 meters from the desk. At approximately what height must the target be placed to ensure contact with the ball? a meters b meters c meters d meters 6

7 Chapter 07 Test A Answer Section MULTIPLE CHOICE 1. ANS: C PTS: 1 DIF: basic REF: section ANS: D PTS: 1 DIF: basic REF: section ANS: A PTS: 1 DIF: basic REF: section ANS: D PTS: 1 DIF: basic REF: section ANS: C PTS: 1 DIF: intermediate REF: section ANS: A PTS: 1 DIF: intermediate REF: section ANS: C PTS: 1 DIF: intermediate REF: section ANS: B PTS: 1 DIF: intermediate REF: section ANS: B PTS: 1 DIF: advanced REF: section ANS: D PTS: 1 DIF: advanced REF: section ANS: C PTS: 1 DIF: advanced REF: section ANS: B PTS: 1 DIF: basic REF: section ANS: D PTS: 1 DIF: basic REF: section ANS: D PTS: 1 DIF: basic REF: section ANS: C PTS: 1 DIF: intermediate REF: section ANS: C PTS: 1 DIF: intermediate REF: section ANS: D PTS: 1 DIF: intermediate REF: section ANS: C PTS: 1 DIF: intermediate REF: section ANS: B PTS: 1 DIF: advanced REF: section ANS: C PTS: 1 DIF: basic REF: section ANS: B PTS: 1 DIF: basic REF: section ANS: D PTS: 1 DIF: basic REF: section ANS: C PTS: 1 DIF: intermediate REF: section ANS: C PTS: 1 DIF: intermediate REF: section ANS: A PTS: 1 DIF: intermediate REF: section ANS: C PTS: 1 DIF: intermediate REF: section ANS: D PTS: 1 DIF: intermediate REF: section ANS: B PTS: 1 DIF: intermediate REF: section ANS: B PTS: 1 DIF: intermediate REF: section ANS: C PTS: 1 DIF: advanced REF: section 7.3 1

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003 Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

More information

Name DATE Per TEST REVIEW. 2. A picture that shows how two variables are related is called a.

Name DATE Per TEST REVIEW. 2. A picture that shows how two variables are related is called a. Name DATE Per Completion Complete each statement. TEST REVIEW 1. The two most common systems of standardized units for expressing measurements are the system and the system. 2. A picture that shows how

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

F13--HPhys--Q5 Practice

F13--HPhys--Q5 Practice Name: Class: Date: ID: A F13--HPhys--Q5 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vector is a quantity that has a. time and direction.

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Work, Energy and Power Practice Test 1

Work, Energy and Power Practice Test 1 Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Web review - Ch 3 motion in two dimensions practice test

Web review - Ch 3 motion in two dimensions practice test Name: Class: _ Date: _ Web review - Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

DISPLACEMENT AND FORCE IN TWO DIMENSIONS

DISPLACEMENT AND FORCE IN TWO DIMENSIONS DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient

More information

Projectile Motion 1:Horizontally Launched Projectiles

Projectile Motion 1:Horizontally Launched Projectiles A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two

More information

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight 1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Notes: Mechanics. The Nature of Force, Motion & Energy

Notes: Mechanics. The Nature of Force, Motion & Energy Notes: Mechanics The Nature of Force, Motion & Energy I. Force A push or pull. a) A force is needed to change an object s state of motion. b) Net force- The sum (addition) of all the forces acting on an

More information

Chapter 10: Linear Kinematics of Human Movement

Chapter 10: Linear Kinematics of Human Movement Chapter 10: Linear Kinematics of Human Movement Basic Biomechanics, 4 th edition Susan J. Hall Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University Objectives Discuss the interrelationship

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

Chapter 3 Practice Test

Chapter 3 Practice Test Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?

More information

Newton s Laws of Motion

Newton s Laws of Motion Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems

More information

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

Steps to Solving Newtons Laws Problems.

Steps to Solving Newtons Laws Problems. Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis * By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams

More information

Supplemental Questions

Supplemental Questions Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

More information

Physics 590 Homework, Week 6 Week 6, Homework 1

Physics 590 Homework, Week 6 Week 6, Homework 1 Physics 590 Homework, Week 6 Week 6, Homework 1 Prob. 6.1.1 A descent vehicle landing on the moon has a vertical velocity toward the surface of the moon of 35 m/s. At the same time it has a horizontal

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

1. Large ships are often helped into port by using two tug boats one either side of the ship. April 5, 1989 (Anchorage Daily News / Erik Hill)

1. Large ships are often helped into port by using two tug boats one either side of the ship. April 5, 1989 (Anchorage Daily News / Erik Hill) 1. Velocity and displacement vectors and scalars Vector and scalar quantities: force, speed, velocity, distance, displacement, acceleration, mass, time and energy. Calculation of the resultant of two vector

More information

Friction and Gravity. Friction. Section 2. The Causes of Friction

Friction and Gravity. Friction. Section 2. The Causes of Friction Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

More information

Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

More information

UNIT 2D. Laws of Motion

UNIT 2D. Laws of Motion Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics- the study of forces that act on bodies in motion. First Law of Motion

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR

Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR Candidates should be able to : Examples of Scalar and Vector Quantities 1 QUANTITY VECTOR SCALAR Define scalar and vector quantities and give examples. Draw and use a vector triangle to determine the resultant

More information

SPEED, VELOCITY, AND ACCELERATION

SPEED, VELOCITY, AND ACCELERATION reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

More information

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

More information

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital

More information

Uniformly Accelerated Motion

Uniformly Accelerated Motion Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations

More information

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

More information

Difference between a vector and a scalar quantity. N or 90 o. S or 270 o

Difference between a vector and a scalar quantity. N or 90 o. S or 270 o Vectors Vectors and Scalars Distinguish between vector and scalar quantities, and give examples of each. method. A vector is represented in print by a bold italicized symbol, for example, F. A vector has

More information

Newton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1

Newton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1 Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

More information

Conservative vs. Non-conservative forces Gravitational Potential Energy. Work done by non-conservative forces and changes in mechanical energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Work done by non-conservative forces and changes in mechanical energy Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

More information

Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

More information

Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

More information

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster. 1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

More information

LAWS OF FORCE AND MOTION

LAWS OF FORCE AND MOTION reflect Does anything happen without a cause? Many people would say yes, because that often seems to be our experience. A cup near the edge of a table suddenly crashes to the fl oor. An apple falls from

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

More information

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

PHYSICS 149: Lecture 4

PHYSICS 149: Lecture 4 PHYSICS 149: Lecture 4 Chapter 2 2.3 Inertia and Equilibrium: Newton s First Law of Motion 2.4 Vector Addition Using Components 2.5 Newton s Third Law 1 Net Force The net force is the vector sum of all

More information

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity. 5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

More information

1.7 Work Done, Potential and Kinetic Energy

1.7 Work Done, Potential and Kinetic Energy Students should be able to: 1.7.1 Define work done, potential energy, kinetic energy, efficiency and power 1.7.2 Recognise that when work is done energy is transferred from one form to another 1.7.3 Calculate

More information

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008 Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling

More information

Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION 1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

More information

Module 8 Lesson 4: Applications of Vectors

Module 8 Lesson 4: Applications of Vectors Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Wednesday, June 17, 2015 1:15 to 4:15 p.m. P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Wednesday, June 17, 2015 1:15 to 4:15 p.m., only The possession or use of any communications

More information

Friction and Newton s 3rd law

Friction and Newton s 3rd law Lecture 4 Friction and Newton s 3rd law Pre-reading: KJF 4.8 Frictional Forces Friction is a force exerted by a surface. The frictional force is always parallel to the surface Due to roughness of both

More information

2 Mechanics. Kinematics. Displacement and distance 2.1

2 Mechanics. Kinematics. Displacement and distance 2.1 2 Mechanics 2.1 Kinematics Assessment statements 2.1.1 Define displacement, velocity, speed and acceleration. 2.1.2 Explain the difference between instantaneous and average values of speed, velocity and

More information

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

More information

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)

More information

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces. Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

8-3 Dot Products and Vector Projections

8-3 Dot Products and Vector Projections 8-3 Dot Products and Vector Projections Find the dot product of u and v Then determine if u and v are orthogonal 1u =, u and v are not orthogonal 2u = 3u =, u and v are not orthogonal 6u = 11i + 7j; v

More information

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to : Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION This lecture will help you understand: Forces and Interactions Newton s Third Law of Motion Summary of Newton s Laws Vectors Forces

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

Newton s Law of Motion

Newton s Law of Motion chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

More information

PHYSICAL QUANTITIES AND UNITS

PHYSICAL QUANTITIES AND UNITS 1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them

More information

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

More information

Physics Kinematics Model

Physics Kinematics Model Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

More information

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.

b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time. I. What is Motion? a. Motion - is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

1. The unit of force, a Newton, is equal to a. The amount of mass in an object c. kg m/s b. Mass X Velocity d. kg m/s 2

1. The unit of force, a Newton, is equal to a. The amount of mass in an object c. kg m/s b. Mass X Velocity d. kg m/s 2 Forces in Motion Test- FORM B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The unit of force, a Newton, is equal to a. The amount of mass in an object

More information

4 Gravity: A Force of Attraction

4 Gravity: A Force of Attraction CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy

More information

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa. Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

More information

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v = Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx

More information

Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by

More information