# Newton s Laws of Motion

Size: px
Start display at page:

Transcription

1 Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off into space? Or crash into each other? The first person to answer these questions was the scientist Isaac Newton. Newton realized that there must be a force acting between Earth and the moon that kept the moon in orbit. What is a force? [A force is a push or a pull]. When one object pushes or pulls on another, you say that the first object exerts a force on the second object. In science, we represent forces by arrows. The direction of a force is represented by the direction of the arrow. The length of the arrow tells you the strength of the force the longer the arrow, the greater the force. Demonstration: Pull a chair across the floor of the room, then try to pull a chair across the room with a student sitting in it. What s the difference? [the more mass the object has, the more it resists the change/force]. What is the scientific name for that resistance to change? [inertia] Did the chair move on its own? [No] Someone had to push or pull it in other words, exert a force on it. If the two forces are balanced, would the chair move? [No] If the forces were unbalanced, in other words, if I pushed harder on the chair than the inertia of the chair, would it move? [Yes] When the object is at rest, does it have a speed? [yes but it s zero] When the object is moving, does it have a speed? [yes] What do we call that change from a speed of zero to a speed of something? [acceleration] So, let s bring it back to the initial question: what keeps the Earth and the moon in orbit, preventing them from crashing or flying off away from each other? If the sun and Earth are constantly pulling on one another because of gravity, why doesn t Earth fall into the sun? Why doesn t the moon crash into Earth? The fact that these collisions haven t happened means there must be some other factor we haven t yet taken into account. What are Newton s first two laws of motion? [First Law: Objects tend to stay at rest or move in a straight line at a constant speed unless acted upon by an outside force. Second Law: The force acting on a body is directly proportional to, and in the same direction as, its acceleration] Newton s first law of motion is, essentially, the definition of inertia the tendency of an object to resist a change in motion. The more mass an object has, the greater its inertia. An object with greater inertia is more difficult to start or stop.

2 Newton s second law tells us that the force (F) on an object is directly proportional to it s acceleration, and that is dependent on its mass. So, the second law can be summed up as F=ma. Or, acceleration depends on the objects mass and on the net force acting on the object: Force Acceleration = Mass Orbital Motion: Why do Earth and the moon remain in their orbits? Newton concluded that two factors: inertia and gravity combine to keep the Earth in orbit around the sun and the moon in orbit around the earth. What exactly, is the force of gravity? 9.8 m/s 2. Where have we seen that unit of measurement before, and what does it describe? [it s the acceleration] The Earth s gravity keeps pulling the moon toward it, preventing the moon from moving in a straight line. At the same time, the moon keeps moving forward because of inertia. If not for Earth s gravity, the moon would shoot off into space in a straight line, and if not for the moon s inertia, the moon would collide with Earth due to the pull of Earth s gravity Earth Gravitational Force of Earth Moon Actual Orbit Moon s motion without Gravity (due to inertia) Image created by the author. License: Public Domain

3 Newton s Laws of Motion (cont d) Newton proposed that whenever one object exerts a force on a second object, the second object exerts a force back on the first. The force exerted by the second object is equal in strength and opposite in force to the first force. If we think of one force as the action and the other force as the reaction, then Newton s third law states that for every action, there is an equal and opposite reaction. Can anyone think of an example of an action-reaction pair? [jumping, rowing...] In those examples, there was always a motion as a result of the forces acting against each other, right? But, can we always detect a motion when paired forces are in action? The answer is no. For example, if I drop my pen, we see gravity pull the pen towards the ground. At the same time, we know from Newton s third law, that the pen must be pulling Earth upward with an equal and opposite reaction force. But we don t feel a giant jolt of Earth moving in that direction because Earth s inertia is so great that its acceleration is too small to notice. You may be asking yourselves whether or not action-reaction forces simply cancel each other out. Before, we talked about the fact that if two equal forces act in opposite directions on an object, the forces are balanced and no motion results. So, why don t the action-reaction forces cancel out as well? The action-reaction forces don t cancel because they re acting on different objects. For instance, in the ice skater image, Figure Skater 1 exerts a right-ward force onto Figure Skater 2 and Figure Skater 2 exerts a left-ward force onto Figure Skater 1. The action-reaction forces act on different objects, namely the two different skaters. Force on Skater 2 Force on Skater 1 Original Image by Benjamin Crowell. Source: License: Public Domain. Arrows and text added by Meredith Beaton.

4 So, what does Newton s Third Law have to do with Astronomy and space exploration? Well, actually, a lot. Remember when we talked about our first solid proof of Earth being a sphere coming from our images taken on the Apollo 17 mission? Those images, the satellites we send into space, the telescopes that we send into space, the unmanned space missions to outer planets, and our manned exploration of the Moon all relied heavily on our knowledge of action-reaction forces. Modern rockets were first developed in the early 1900 s. They owe much of their development to a few scientists. In the early 1990s, the Russian physicist Tsiolkovky described how rockets work and proposed designs for their construction. Robert Goddard, an American Physicist, also designed rockets, and in 1915 Goddard began to build rockets and test his designs. Rocket engines are reaction engines. The basic principle driving a rocket engine is Newton s 3 rd Law, which is what? ("for every action there is an equal and opposite reaction.") A rocket engine pushes its mass in one direction and moves via the reaction that occurs in the other direction. [Demonstration: When you blow up a balloon and let it go so that it flies all over the room before running out of air, you have created a rocket engine. In this case, what is being thrown is the air molecules inside the balloon. When you throw them out the nozzle of a balloon, the rest of the balloon reacts in the opposite direction.] Rockets are controlled by two of Newton s laws: F = ma and for every action, there is an equal and opposite reaction The Second Law The mass of an object is what again? So, when considering a space shuttle or rocket, we need to consider the mass of the rocket. If you have ever seen the Space Shuttle launch, you know that there are three parts: * The Orbiter * The big external tank * The two solid rocket boosters (SRBs) The whole vehicle shuttle, external tank, solid rocket booster casings and all the fuel has a total weight of 4.4 million pounds at launch that s equivalent to about 45 humpback whales! 4.4 million pounds to get 165,000 pounds in orbit is a pretty big difference! The fuel weighs almost 20 times more than the Orbiter. Just how fast does the rocket need to go? In order to lift off the ground, a rocket must have more upward thrust than downward force of gravity. Once a rocket is off the ground, it must reach a certain velocity to go into orbit. This velocity is known as orbital velocity. If the rocket has an even greater velocity, it flies off into outer space. Escape velocity is the velocity a rocket must reach to fly beyond a planet s gravitational pull. The escape velocity a rocket needs to leave Earth is about 40,200 kilometers per hour.

5 We need enough force to get something that s 4.4 million pounds to travel at 40,200 kilometers per hour! How can we do that considering the laws? As fuel burns during a rocket s ascent into space, what happens to the mass? [It is reduced] And, with increased distance from Earth, what happens to the pull of gravity? [It s not as great] So, the mass decreases, and the pull of gravity decreases. But how do we increase the acceleration? The Third Law The force that lifts the launcher comes from burning the fuel and converting it to energy. The gases produced by the conversion of gas to fuel escape through the nozzle at the base of the rocket. The gases exert an upward force that is equal and opposite to the force of the escaping exhaust. So, by the reactive force of the gases combusting and escaping from the rocket, we increase the acceleration and decrease the mass of the rocket and the pull of gravity as we continue to move up that we are able to continue to accelerate into space even with the burning/use of fuel as we go.

### How Rockets Work Newton s Laws of Motion

How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

### Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### 4 Gravity: A Force of Attraction

CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

### Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

### NEWTON S LAWS OF MOTION

Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

### Friction and Gravity. Friction. Section 2. The Causes of Friction

Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

### Newton s Laws Force and Motion

CLIL Project Physics in English Anno scolastico 2013-2014 Newton s Laws Force and Motion Lecture 2 Classe 3 a A Linguistico Istituto Superiore Marini-Gioia - AMALFI Content of the unit: Newton s Laws DYNAMIC

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

### LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes DESCRIPTION Apply the concepts of pressure and Newton s laws of motion to build simple rockets. OBJECTIVE This lesson

### Physical Science Chapter 2. Forces

Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

### PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

### Practice TEST 2. Explain your reasoning

Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

### Elements of Physics Motion, Force, and Gravity Teacher s Guide

Teacher s Guide Grade Level: 9 12 Curriculum Focus: Physical Science Lesson Duration: Three class periods Program Description Examine Isaac Newton's laws of motion, the four fundamental forces of the universe,

### Section 1 Gravity: A Force of Attraction

Section 1 Gravity: A Force of Attraction Key Concept Gravity is a force of attraction between objects that is due to their masses. What You Will Learn Gravity affects all matter, including the parts of

### Newton s Laws. Newton s Imaginary Cannon. Michael Fowler Physics 142E Lec 6 Jan 22, 2009

Newton s Laws Michael Fowler Physics 142E Lec 6 Jan 22, 2009 Newton s Imaginary Cannon Newton was familiar with Galileo s analysis of projectile motion, and decided to take it one step further. He imagined

### Unit 2 Force and Motion

Force and Motion Unit 2 Force and Motion Learning Goal (TEKS): Identify and describe the changes in position, direction, and speed of an object when acted upon by unbalanced forces. This means: We are

### Contents. Stage 7. Stage 8. Stage 9. Contents. Key: Enquiry / Extension / Review BOLD PAGE NO. = in this booklet

Contents Contents Stage 7 1 1.1 Introduction to forces 8 1.2 Balanced forces 10 1.3 Friction 12 1.4 Gravity 14 1.5 Enquiry: Questions, evidence and explanations 16 1.6 Air resistance 18 1.7 Enquiry: Planning

### Newton s Laws of Motion Project

Newton s Laws of Motion Project Sir Isaac Newton lived during the 1s. Like all scientists, he made observations about the world around him. Some of his observations were about motion. His observations

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY Word Bank: Acceleration, mass, inertia, weight, gravity, work, heat, kinetic energy, potential energy, closed systems, open systems,

### Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

### Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

### Newton s Law of Universal Gravitation

Newton s Law of Universal Gravitation The greatest moments in science are when two phenomena that were considered completely separate suddenly are seen as just two different versions of the same thing.

### 1. Large ships are often helped into port by using two tug boats one either side of the ship. April 5, 1989 (Anchorage Daily News / Erik Hill)

1. Velocity and displacement vectors and scalars Vector and scalar quantities: force, speed, velocity, distance, displacement, acceleration, mass, time and energy. Calculation of the resultant of two vector

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### Name: Date: Period: Gravity Study Guide

Vocabulary: Define the following terms. Law of Universal Gravitation Gravity Study Guide Weight Weightlessness Gravitational Field Black hole Escape velocity Math: Be able to use the equation for the law

### Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

### ACTIVITY 6: Falling Objects

UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.

### Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008

Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling

### The University of Texas at Austin. Gravity and Orbits

UTeach Outreach The University of Texas at Austin Gravity and Orbits Time of Lesson: 60-75 minutes Content Standards Addressed in Lesson: TEKS6.11B understand that gravity is the force that governs the

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

### 2 Newton s First Law of Motion Inertia

2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)

### Name Class Date. true

Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

### Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

### Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### Newton s Laws Quiz Review

Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### Newton s Law of Universal Gravitation describes the attractive gravitational force that exists between any two bodies with the following equation:

Newton s Laws & Gravitation Newton s Law of Universal Gravitation describes the attractive gravitational force that exists between any two bodies with the following equation: F G = GMm 2 r G is the gravitational

### Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

### Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

### circular motion & gravitation physics 111N

circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

### Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

### SPEED, VELOCITY, AND ACCELERATION

reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

### Objective: Equilibrium Applications of Newton s Laws of Motion I

Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (1-11) Read (4.1-4.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,

### 5.1 The First Law: The Law of Inertia

The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing

### force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.

4 Forces 4-1 Forces and Acceleration Vocabulary Force: A push or a pull. When an unbalanced force is exerted on an object, the object accelerates in the direction of the force. The acceleration is proportional

### Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton

Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction

### GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter

IT S UNIVERSAL GRAVITY CONCEPTS Gravity is the universal force of attraction between all matter Weight is a measure of the gravitational force pulling objects toward Earth Objects seem weightless when

### 1. Mass, Force and Gravity

STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

### G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

### Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location.

Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. If the mass of the moon were three times as large, what would the force

### A. 81 2 = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great.

Q12.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

### Lesson 29: Newton's Law of Universal Gravitation

Lesson 29: Newton's Law of Universal Gravitation Let's say we start with the classic apple on the head version of Newton's work. Newton started with the idea that since the Earth is pulling on the apple,

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### Lecture 4: Newton s Laws

Lecture 4: Newton s Laws! Laws of motion! Reference frames! Law of Gravity! Momentum and its conservation Sidney Harris This week: continue reading Chapter 3 of text 2/6/15 1 Newton s Laws & Galilean Relativity!

### Newton s Law of Gravity

Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

### Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth.

Gravity and forces unit Teacher notes/ activities Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Galileo, a famous Italian scientist

### What Do You Think? For You To Do GOALS

Activity 2 Newton s Law of Universal Gravitation GOALS In this activity you will: Explore the relationship between distance of a light source and intensity of light. Graph and analyze the relationship

### Chapter 7 Momentum and Impulse

Chapter 7 Momentum and Impulse Collisions! How can we describe the change in velocities of colliding football players, or balls colliding with bats?! How does a strong force applied for a very short time

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

### Lift vs. Gravity Questions:

LIFT vs GRAVITY Sir Isaac Newton, an English scientist, observed the force of gravity when he was sitting under a tree and an apple fell on his head! It is a strong force that pulls everything down toward

### Bottle Rockets. Vanderbilt Student Volunteers for Science. Fall 2008

Bottle Rockets Vanderbilt Student Volunteers for Science Fall 2008 I. Introduction: History of Rockets Explain to the students that rockets are more than two thousand years old. Give the students a BRIEF

### Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

### Forces of Motion: Rockets

Forces of Motion: Rockets (Adapted from the NASA Aerospace Education Services Program s lesson Industrial Strength Paper Rockets by Gregory Voght/ NASA JSC) Preparation Grade Level: 5-9 Group Size: 24-30

### ELEMENTS OF PHYSICS MOTION, FORCE, AND GRAVITY

1 Pre-Test Directions: This will help you discover what you know about the subject of motion before you begin this lesson. Answer the following true or false. 1. Aristotle believed that all objects fell

### Version A Page 1. 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart.

Physics Unit Exam, Kinematics 1. The diagram shows two bowling balls, A and B, each having a mass of 7.00 kilograms, placed 2.00 meters apart. What is the magnitude of the gravitational force exerted by

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### Newton s Law of Gravitation

Newton s Law of Gravitation Duration: 1-2 class periods Essential Questions: How do the acceleration and force due to gravity depend on the radius and mass of a planet? How does the mass of a falling body

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Vocabulary law of unviversal Kepler s laws of planetary perturbations casual laws gravitation motion casuality field graviational field inertial mass gravitational mass

### Chapter 5: Circular Motion, the Planets, and Gravity

Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but

### Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

### 1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

### Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon?

Katie Chang 3A For this balloon rocket experiment, we learned how to plan a controlled experiment that also deepened our understanding of the concepts of acceleration and force on an object. My partner

### Educator Guide to S LAR SYSTEM. 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org

Educator Guide to S LAR SYSTEM 1875 El Prado, San Diego CA 92101 (619) 238-1233 www.rhfleet.org Pre-Visit Activity: Orbital Paths Materials: Plastic Plate Marble Scissors To Do: 1. Put the plate on a flat

### Chapter 6. Work and Energy

Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy

### Beginning of the Universe Classwork 6 th Grade PSI Science

Beginning of the Universe Classwork Name: 6 th Grade PSI Science 1 4 2 5 6 3 7 Down: 1. Edwin discovered that galaxies are spreading apart. 2. This theory explains how the Universe was flattened. 3. All

### Astronomy 1140 Quiz 1 Review

Astronomy 1140 Quiz 1 Review Prof. Pradhan September 15, 2015 What is Science? 1. Explain the difference between astronomy and astrology. (a) Astrology: nonscience using zodiac sign to predict the future/personality

### Why don t planets crash into each other?

1 Just as we know that the sun will rise every morning, we expect the planets and the moon to stay in their orbits. And rightly so. For 400 years, people have understood that the movements of Earth, the

### Pushes and Pulls. TCAPS Created June 2010 by J. McCain

Pushes and Pulls K i n d e r g a r t e n S c i e n c e TCAPS Created June 2010 by J. McCain Table of Contents Science GLCEs incorporated in this Unit............... 2-3 Materials List.......................................

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

### III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

### Supplemental Questions

Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

### BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

### Rockets: Taking Off! Racing Balloon

Rockets: Taking Off! For every action there is an equal and opposite reaction. Rockets and Balloons What happens when you blow up a balloon then let it go? Does the balloon move through the air? Did you

### Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

### Forces. Free body diagrams Atwood device Static and kinetic friction Coefficients of friction Air resistance Terminal velocity

Forces Newton s Laws of Motion Weight Free fall Force and motion problems in 1-D Normal force Tension Free body diagrams Atwood device Static and kinetic friction Coefficients of friction Air resistance

### What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating

What are Tides? Tides are very long-period waves that move through the oceans as a result of the gravitational attraction of the Moon and the Sun for the water in the oceans of the Earth. Tides start in

### Forces between masses

Forces between masses Gravity is arguably the first force that people really learn about. People don't really think of it as learning about gravity because it is such a big part of our everyday lives.

### Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

### The Space Shuttle: Teacher s Guide

The Space Shuttle: Teacher s Guide Grade Level: 6-8 Curriculum Focus: Astronomy/Space Lesson Duration: Two class periods Program Description This video, divided into four segments, explores scientists'

### Force and Newton s Laws

Force and Newton s Laws sections 1 Newton s First Law 2 Newton s Second Law 3 Newton s Third Law Lab Balloon Races Lab Modeling Motion in Two Directions Virtual Labs What is Newton s second law of motion?