Practice TEST 2. Explain your reasoning

Size: px
Start display at page:

Download "Practice TEST 2. Explain your reasoning"

Transcription

1 Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant speed between the 2 nd and 9 th floors. Which one of the following statements about the elevator best describes the forces acting on it, as it moves upward at a constant speed? (Assume any frictional forces can be neglected.) Circle your choice. a) The upward pull of the cable is stronger than the downward gravitational pull of the Earth. b) The upward pull of the cable is equal in strength to the downward gravitational pull of the Earth. c) The upward pull of the cable is weaker than the downward gravitational pull of the Earth. Explain your reasoning When an object moves at a constant speed the forces acting on it must be balanced. In this case the only two forces involved are the downward gravitational pull of the Earth and the upward pull of the cable. For the forces to be balanced these two must be equal in strength. (If one of the forces was stronger than the other, the forces would be unbalanced and the speed of the elevator would be changing.) 2. As the elevator in the previous question passes the 9 th floor it begins to slow down (still moving upward), before stopping at the 10 th floor. As the elevator is slowing down, which one of the following statements best describes the forces acting on it? (Again, assume any frictional forces can be neglected.) Circle your choice. d) The upward pull of the cable is stronger than the downward gravitational pull of the Earth. e) The upward pull of the cable is equal in strength to the downward gravitational pull of the Earth f) The upward pull of the cable is weaker than the downward gravitational pull of the Earth. Explain your reasoning In order for an object to slow down, the force acting in the opposite direction to the motion must be stronger than any force acting in the same direction as the motion. Since the elevator is slowing down as it moves upward, this means the downward force must be stronger than the

2 upward force. The only way for this to happen is if the upward pull of the cable is weaker than the downward gravitational pull of the Earth. 3. Consider two different carts that are designed to move along a surface with essentially no friction. Cart A is has more mass than cart B. A student performs two experiments with these carts. In the first experiment she mounts identical fans (with same number of batteries) on each of the two carts and puts the carts on separate tracks. She turns both fans on and lets the carts start moving at the same time. To the right is a force diagram (with motion arrow) for cart B one second after the carts begin moving: Consider cart A (the more massive one). Suppose you wanted to draw a force diagram for cart A at the same time (one second after starting), including both a force arrow and a speed arrow: g) Which of the following arrows could best represent the length of the force arrow on cart A. Circle your choice and briefly justify why you made that choice. Since the two fans are identical (with the same number of batteries), they will push with equal force strengths. Therefore the force arrow on both carts should be the same length. h) Which of the following arrows could best represent the length of the speed arrow for cart A. Circle your choice and briefly justify why you made that choice.

3 Cart A has more mass than Cart B, but it has the same strength force acting on it. Therefore Cart A will speed up at a slower rate than Cart B, and so at 1 second after starting it will be moving more slowly than Cart B. This slower speed would be represented by a shorter speed arrow. 4. An archer uses a bow to shoot an arrow straight up into the air on a still, calm day. The arrow rises to a certain height and then falls straight back down, sticking in the ground. The speed time graph for the arrow shown below is for the period starting just after it leaves the bow to just before it sticks in the ground. i) At what time does the arrow reach its highest point? Briefly justify how you know. The arrow reaches its highest point at 5 seconds. We can tell this from the graph because it is at this time that it stops slowing down as it rises, stops for an instant at its highest point, and then begins to speed up again as it falls. j) Indicate on the graph the entire region during which the gravitational potential energy of the arrow+earth system was increasing. Briefly justify how you know. The gravitational potential energy in the system was increasing while the arrow was slowing down on its way upward. Since the arrow was slowing down, the kinetic energy in the system was decreasing. Therefore, we know from our ideas of energy conservation that the potential energy must be increasing to compensate for this. k) During the entire time that the arrow was in flight (up and down) what was happening to the total energy (kinetic + gravitational potential) of the arrow+earth system. Was it increasing, decreasing, or staying constant? How do you know?

4 Since energy cannot be created or destroyed, and assuming there is no energy input or output to the arrow+earth system, then the total energy in the system stayed constant. Any changes in kinetic energy were exactly compensated for by equal and opposite changes in gravitational potential energy. In the remainder of this problem you will explain why the arrow slows down after it leaves the bow and until it reaches its highest point. You will first explain it in terms of energy ideas, and then will explain it again in terms of force ideas. In both cases, ignore the effects of air resistance. Explanation in terms of energy ideas: Why does the arrow slow down as it rises? Draw an I/O energy diagram for the arrow+earth system as the arrow is rising. Earth And Arrow Decrease in kinetic energy Increase in gravitational potential energy Write a few sentences to explain (in energy terms) why the arrow slows down as it rises. After the arrow leaves the bow, the only interaction it is involved in as it moves upward is the gravitational interaction with arrow and the Earth. As the arrow rises it gets further from the Earth and so the gravitational potential energy in the arrow+earth system increases. Because there is no energy input to, or output from, this system, the Law of Conservation of Energy tells us that this increase in gravitational potential energy must be compensated for by a decrease in the kinetic energy of the objects in the system. Thus, since the kinetic energy of the arrow decreases as it rises, this means it slows down.

5 Explanation in terms of force ideas: Why does the arrow slow down as it rises? Complete the force diagram for this interaction: (Draw both force and motion arrows. Label the force arrow.) Direction of motion Gravitational force of the Earth Write a few sentences to explain (in force terms) why the arrow slows down as it rises. 5. The gravitational force of the Earth acts downward on the arrow. As the arrow rises, this force is acting in the opposite direction to its motion. When a force acts in the opposite direction to the motion of an object, its speed decreases. Therefore, the speed of the arrow decreases as it rises. Fill the blanks in the system

6 MULTIPLE CHOICE QUESTIONS 1) How many different elements are in a water molecule? A) one B) two C) three D) four E) none 2) An atomic mass unit (amu) is 1/12 the mass of A) an electron. B) a proton. C) a hydrogen atom. D) a carbon atom. E) a uranium atom. Answer: D 3) Which of the following statements is true?

7 A) An atom is the smallest particle known to exist. B) There are only about 100 different kinds of atoms that combine to form all substances. C) There are thousands of different kinds of atoms that account for a wide variety of substances. D) A large atom can be photographed with the aid of an ordinary microscope. E) None of these statements are true. 4) Which of the following is not a mixture? A) granite B) cake C) air D) beach sand E) None. All of the above choices are mixtures. Answer: E 5) Solid matter is mostly empty space. The reason solids don't fall through one another is because A) atoms are constantly vibrating, even at absolute zero. B) of nuclear forces. C) of gravitational forces. D) of electrical forces. Answer: D 6) Compared to the energy it takes to separate oxygen and hydrogen from water, the amount of energy given off when they recombine is A) slightly more. B) slightly less. C) much more. D) much less. E) the same. Answer: E 7) Compared to the atoms that make up the body of an elderly person, the atoms that make up the body of a newborn baby are A) newer. B) actually older. C) the same age. 8) The chemical properties of matter come mostly from its A) protons. B) electrons. C) neutrons.

8 9) If a gram of antimatter meets a kilogram of matter, the amount of mass to survive is A) 1 gram. B) 999 grams. C) 1 kilogram. D) 1.1 kilogram. 10) If two protons are added to an oxygen nucleus, the result is A) heavy oxygen. B) fluorine. C) neon. D) sodium. E) nitrogen. 11) Which of these atoms has the greatest amount of electrical charge in its nucleus? A) helium B) carbon C) iron D) gold E) uranium Answer: E 12) Which of these atoms has the greatest number of electrons? A) helium B) carbon C) iron D) gold E) uranium Answer: E 13) Two objects have the same size and shape, but one is much heavier than the other. When they are dropped simultaneously from a tower, they reach the ground at the same time, but the heavier one has a greater A) speed. B) acceleration. C) momentum. D) all of these 14) To catch a ball, a baseball player extends the hand forward before impact with the ball and then lets it ride backward in the direction of the ball's motion. Doing this reduces the force of impact on the player's hand principally because the A) force of impact is reduced. B) relative velocity is less.

9 C) time of impact is increased. D) time of impact is decreased. 15) When you are in the way of a fast-moving object and can't get out of its way, you will suffer a smaller force of impact if you decrease its momentum over a A) long time. B) short time. C) same way either way 16) A bullet is fired from a gun. The speed of the bullet will be about the same as the speed of the recoiling gun A) because momentum is conserved. B) because velocity is conserved. C) because both velocity and momentum are conserved. D) if the mass of the bullet equals the mass of the gun. Answer: D 17) The force on an apple hitting the ground depends upon A) the speed of the apple just before it hits. B) the time of impact with the ground. C) whether or not the apple bounces. D) all of these Answer: D 18) If a monkey floating in outer space throws his hat away, the hat and the monkey will both A) move away from each other, but at different speeds. B) move away from each other at the same speed. C) move a short distance and then slow down. D) move a short distance and then go faster. E) come to a stop after a few minutes. 19) A sandbag is motionless in outer space. A second sandbag with 3 times the mass moving at 12 m/s collides with it. They stick together and move at a speed of A) 3 m/s. B) 4 m/s. C) 6 m/s. D) 8 m/s. Answer: E 20) An object may have potential energy because of its

10 A) speed. B) acceleration. C) momentum. D) location. Answer: D 21) A bow is drawn so that it has 40 J of potential energy. When fired, the arrow will ideally have a kinetic energy that is A) less than 40 J. B) more than 40 J. C) 40 J. D) impossible to predict without additional information 22) It takes 40 J to push a large box 4 m across a floor. Assuming the push is in the same direction as the move, what is the magnitude of the force on the box? A) 4 N B) 10 N C) 40 N D) 160 N 23) Using 1000 J of work, a toy elevator is raised from the ground floor to the second floor in 20 seconds. The power needed to do this job was A) 20 W. B) 50 W. C) 100 W. D) 1000 W. E) 20,000 W. 24) An object at rest may also have A) speed. B) velocity. C) momentum. D) kinetic energy. E) potential energy. Answer: E 25) Two pool balls, each moving at 2 m/s, roll toward each other and collide. Suppose after bouncing apart, each moves at 4 m/s. This collision violates conservation of A) momentum. B) energy. C) both momentum and energy.

11 D) none of the above choices 26) If several balls are thrown straight up with varying initial velocities, the quantity that will have the same value for each trial is the ball's A) initial momentum. B) maximum height. C) time of travel. D) acceleration. E) None of the above choices are correct. Answer: D 27) The rotational inertia of your leg is greater when your leg is A) straight. B) bent. C) same either way 28) On a balanced seesaw, a boy three times as heavy as his partner sits A) 1/3 the distance from the fulcrum. B) less than 1/3 the distance from the fulcrum. C) more than 1/3 the distance from the fulcrum. 29) Two people are balanced on a seesaw. If one person leans toward the center of the seesaw, that person's end of the seesaw will A) rise. B) fall. C) stay at the same level. D) rise and then fall. E) fall and then rise. 30) A ball rolls down a hill mainly because of A) an unbalanced torque. B) a balanced torque. C) its rotational inertia. D) its angular acceleration. E) its angular momentum. 31) Suppose you are at the center of a large freely-rotating horizontal turntable in a carnival funhouse. As you crawl toward the edge, the angular momentum of you and the turntable A) decreases. B) increases. C) remains the same, but the RPMs decrease.

12 D) decreases in direct proportion to your decrease in RPMs. 32) Stand a meterstick on its end and let go and it rotates to the floor. If you attach a heavy weight to its upper end and repeat, falling time will be A) more. B) less. C) the same. 33) A boy plays solitary seesaw by placing a long plank over a small rock and sitting at one end of the plank. When the seesaw is balanced, the boy's mass is most likely A) greater than the mass of the seesaw. B) less than the mass of the seesaw. C) equal or very nearly equal to the mass of the seesaw. D) Not enough information is given. 34) An asteroid exerts a 360-N gravitational force on a nearby spacecraft. If the spacecraft moves to a position three times as far from the center of the asteroid, the force will be A) zero. B) 40 N. C) 120 N. D) 360 N. E) 1080 N. 35) Inside a freely falling elevator, there would be no A) gravitational force on you. B) apparent weight for you. C) both of these D) none of these 36) No force due to Earth's gravity is acting on the astronauts inside the orbiting space shuttle. This statement is A) always true while in orbit. B) sometimes true while in orbit. C) always false. 37) From Earth, one satellite appears to overtake another. The faster satellite is A) higher. B) lower. C) smaller.

13 D) can't say 38) Acceleration is greater for a satellite when it is at the A) apogee. B) perigee. C) zenith. D) same acceleration at all of the above places. 39) Angular momentum is greater for a satellite when it is at the A) apogee. B) perigee. C) same at apogee and perigee 40) The period of a satellite, the time it takes for a complete revolution, depends on the satellite's A) mass. B) weight. C) radial distance. D) all of these 41) Minimal orbital speed about the Earth is about 8 km/s. Minimal orbital speed about the moon would be A) less than 8 km/s. B) more than 8 km/s. C) about 8 km/s. 42) The speeds of the planets about the sun depend on A) their distances from the sun. B) the masses of the planets. C) their periods of rotation. D) None of the above are correct. 43) According to Newton, doubling the distance between two interacting objects A) divides by 2 the gravitational force between them. B) multiplies by 2 the gravitational force between them. C) divides by 4 the gravitational force between them. D) multiplies by 4 the gravitational force between them. 44) The concept of force is not fundamental to

14 A) Newton's theory of gravitation. B) Einstein's theory of gravitation. C) both of these D) neither of these 45) An asteroid exerts a 360-N gravitational force on a nearby spacecraft. If the spacecraft moves to a position three times as far from the center of the asteroid, the force will be A) zero. B) 40 N. C) 120 N. D) 360 N. E) 1080 N. 46) If the radius of the Earth somehow decreased with no change in mass, your weight would A) increase. B) not change. C) decrease.

356 CHAPTER 12 Bob Daemmrich

356 CHAPTER 12 Bob Daemmrich Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

Physics Midterm Review. Multiple-Choice Questions

Physics Midterm Review. Multiple-Choice Questions Physics Midterm Review Multiple-Choice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves

More information

Physics Honors Page 1

Physics Honors Page 1 1. An ideal standard of measurement should be. variable, but not accessible variable and accessible accessible, but not variable neither variable nor accessible 2. The approximate height of a 12-ounce

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

Astro 110-01 Lecture 10 Newton s laws

Astro 110-01 Lecture 10 Newton s laws Astro 110-01 Lecture 10 Newton s laws Twin Sungrazing comets 9/02/09 Habbal Astro110-01 Lecture 10 1 http://umbra.nascom.nasa.gov/comets/movies/soho_lasco_c2.mpg What have we learned? How do we describe

More information

4 Gravity: A Force of Attraction

4 Gravity: A Force of Attraction CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

More information

Gravitation. Gravitation

Gravitation. Gravitation 1 Gravitation Newton s observations A constant center seeking force is required to keep an object moving along a circular path. You know that the moon orbits the earth and hence there should be a force

More information

Name Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is

Name Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is CHAPTER 4 MOTION AND FORCES SECTION 4 1 The Nature of Force and Motion (pages 116-121) This section explains how balanced and unbalanced forces are related to the motion of an object. It also explains

More information

Chapter 12 - Forces and Motion

Chapter 12 - Forces and Motion Chapter 12 - Forces and Motion A. What is a force? 1. It is a push or pull. 2. Force can cause resting objects to move. 3. Force can cause acceleration by changing the object s speed or direction. 4. Newtons

More information

Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location.

Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. If the mass of the moon were three times as large, what would the force

More information

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors

More information

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed? Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

More information

Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight

Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight Q: Who established the law of universal gravitation? A: Newton Q: What is a spring scale used for? A: To measure weight Q: What is the Law of Universal Gravitation? A: Everything in the universe has gravity.

More information

Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky?

Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky? October 19, 2015 Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky? Key Words Newton s Laws of motion, and Newton s law of universal gravitation:

More information

ACTIVITY 1: Gravitational Force and Acceleration

ACTIVITY 1: Gravitational Force and Acceleration CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve

More information

PHYSICS MIDTERM REVIEW

PHYSICS MIDTERM REVIEW 1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

Midterm 1. C The speed of the cart is constant. For this to happen the forces acting on it must be balanced.

Midterm 1. C The speed of the cart is constant. For this to happen the forces acting on it must be balanced. Midterm 1 1. Shown below is a speed-time graph for a cart moving in front of the motion sensor. For convenience it has been divided into four sections (A,B,C,D). During each of the four separate periods

More information

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

More information

Mid-Year Review (2) (3) (4) (1) 1 m/s (3) 0.5 m/s (2) 2 m/s (4) 0 m/s

Mid-Year Review (2) (3) (4) (1) 1 m/s (3) 0.5 m/s (2) 2 m/s (4) 0 m/s 1. A blinking light of constant period is situated on a lab cart. Which diagram best represents a photograph of the light as the cart moves with constant velocity? (1) 6. The graph below represents the

More information

Units DEMO spring scales masses

Units DEMO spring scales masses Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring

More information

Making Sense of the Universe: Understanding Motion, Energy, and Gravity

Making Sense of the Universe: Understanding Motion, Energy, and Gravity Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1. Newton s Laws 2. Conservation Laws Energy Angular momentum 3. Gravity Review from last time Ancient Greeks: Ptolemy; the geocentric

More information

Concept Review. Physics 1

Concept Review. Physics 1 Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or

More information

Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs

Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs Section 4 Newton s Third Law Reading Preview Key Concepts What is Newton s third law of motion? How can you determine the momentum of an object? What is the law of conservation of momentum? Key Terms momentum

More information

Section Review Answers. Chapter 12

Section Review Answers. Chapter 12 Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences

More information

1. Mass, Force and Gravity

1. Mass, Force and Gravity STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

More information

2.2 NEWTON S LAWS OF MOTION

2.2 NEWTON S LAWS OF MOTION 2.2 NEWTON S LAWS OF MOTION Sir Isaac Newton (1642-1727) made a systematic study of motion and extended the ideas of Galileo (1564-1642). He summed up Galileo s observation in his three laws of motion

More information

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Newton s Wagon Newton s Laws

Newton s Wagon Newton s Laws Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?

More information

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

More information

How do we describe motion?

How do we describe motion? Lecture 3: The Laws of Motion and Universal Gravitation Astronomy 2020, Prof. Tom Megeath To be ignorant of motion is to be ignorant of nature -Aristotle Overview of Today s Lecture 1. Newton s three laws

More information

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity Making Sense of the Universe: Understanding Motion, Energy, and Gravity

More information

Chapter 2 - Question Keys

Chapter 2 - Question Keys Chapter 2 - Question Keys 1. Shown below is a speed-time graph for a cart moving in front of the motion sensor. For convenience it has been divided into four sections (A,B,C,D). During each of the four

More information

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude.

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude. Projectile motion can be described by the horizontal ontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to

More information

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

4.1 Describing Motion. How do we describe motion? Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion Our goals for learning:! How do we describe motion?! How is mass different from weight? How do we

More information

Warm up. Forces. Sir Issac Newton. Questions to think about

Warm up. Forces. Sir Issac Newton. Questions to think about Warm up Have you ever tried to pull something that just wouldn t budge? Describe a situation in which you pulled or tried to pull something. What made the job easier? Forces Sir Issac Newton Newton said

More information

Student Exploration: Gravitational Force

Student Exploration: Gravitational Force 5. Drag STUDENT PACKET # 7 Name: Date: Student Exploration: Gravitational Force Big Idea 13: Forces and Changes in Motion Benchmark: SC.6.P.13.1 Investigate and describe types of forces including contact

More information

Practice TEST. A The cart is at rest (constant speed of zero). The forces acting on it must be balanced for it to remain at rest.

Practice TEST. A The cart is at rest (constant speed of zero). The forces acting on it must be balanced for it to remain at rest. Practice TEST 1. Shown below is a speed-time graph for a cart moving in front of the motion sensor. For convenience it has been divided into five sections (A,B,C,D,E). B C D A E During each of the five

More information

Section 3 Newton s Laws of Motion

Section 3 Newton s Laws of Motion Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe. Motion, Force, and Gravity Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Center of Mass/Momentum

Center of Mass/Momentum Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

More information

Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

More information

No Brain Too Small PHYSICS. 2 kg

No Brain Too Small PHYSICS. 2 kg MECHANICS: ANGULAR MECHANICS QUESTIONS ROTATIONAL MOTION (2014;1) Universal gravitational constant = 6.67 10 11 N m 2 kg 2 (a) The radius of the Sun is 6.96 10 8 m. The equator of the Sun rotates at a

More information

Mechanics Isaac Newton 25 December March 1727, Julian calendar 4 January March 1727, Gregorian calendar Books 1687: Philosophae

Mechanics Isaac Newton 25 December March 1727, Julian calendar 4 January March 1727, Gregorian calendar Books 1687: Philosophae Mechanics Isaac Newton 25 December 1642-20 March 1727, Julian calendar 4 January 1643-31 March 1727, Gregorian calendar Books 1687: Philosophae Naturalis Principia Mathematica, or Mathematical Principles

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves sp e e d = d ista

More information

Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

More information

Exam Three Momentum Concept Questions

Exam Three Momentum Concept Questions Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:

More information

Here is a list of concepts that you will need to include in your observations and explanations:

Here is a list of concepts that you will need to include in your observations and explanations: NEWTON S LAWS Sir Isaac Newton (1642-1727) is probably one of the most remarkable men in the history of science. He graduated from Cambridge University in England at the age of 23. Records indicate that

More information

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc. Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

PS-5.1 Explain the relationship among distance, time, direction, and the velocity of an object.

PS-5.1 Explain the relationship among distance, time, direction, and the velocity of an object. PS-5.1 Explain the relationship among distance, time, direction, and the velocity of an object. It is essential for students to Understand Distance and Displacement: Distance is a measure of how far an

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

Measurements of Speed. Speed. v = d t. PowerPoint Lectures to accompany Physical Science, 6e

Measurements of Speed. Speed. v = d t. PowerPoint Lectures to accompany Physical Science, 6e PowerPoint Lectures to accompany Physical Science, 6e Chapter 2 Motion Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Motion is.. A change

More information

Friction and Gravity. Friction. Section 2. The Causes of Friction

Friction and Gravity. Friction. Section 2. The Causes of Friction Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

More information

PSI AP Physics B Kinematics Multiple-Choice Questions

PSI AP Physics B Kinematics Multiple-Choice Questions PSI AP Physics B Kinematics Multiple-Choice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Describe the relationship between gravitational force and distance as shown in the diagram.

Describe the relationship between gravitational force and distance as shown in the diagram. Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

More information

Exemplar Problems Physics

Exemplar Problems Physics Chapter Eight GRAVITATION MCQ I 8.1 The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on the surface of the earth, the acceleration

More information

Today. Laws of Motion. Conservation Laws. Gravity

Today. Laws of Motion. Conservation Laws. Gravity Today Laws of Motion Conservation Laws Gravity Laws of Motion Motion notions: slow fast Speed: Rate at which object moves fast change in direction slow example: speed of 10 m/s Velocity: Speed and direction

More information

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

More information

M OTION. Chapter2 OUTLINE GOALS

M OTION. Chapter2 OUTLINE GOALS Chapter2 M OTION OUTLINE Describing Motion 2.1 Speed 2.2 Vectors 2.3 Acceleration 2.4 Distance, Time, and Acceleration Acceleration of Gravity 2.5 Free Fall 2.6 Air Resistence Force and Motion 2.7 First

More information

Chapter 4 Newton s Laws: Explaining Motion

Chapter 4 Newton s Laws: Explaining Motion Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!

More information

Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

More information

Described by Isaac Newton

Described by Isaac Newton Described by Isaac Newton States observed relationships between motion and forces 3 statements cover aspects of motion for single objects and for objects interacting with another object An object at rest

More information

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight 1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

More information

Rocket Principles. Rockets: A Teacher's Guide with Activities in Science, Mathematics, and Technology EG-108 February Outside Air Pressure

Rocket Principles. Rockets: A Teacher's Guide with Activities in Science, Mathematics, and Technology EG-108 February Outside Air Pressure Rocket Principles Outside ir Pressure Inside ir Pressure ir Moves Balloon Moves rocket in its simplest form is a chamber enclosing a gas under pressure. small opening at one end of the chamber allows the

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

More information

Experimenting With Forces

Experimenting With Forces Have you heard the story about Isaac Newton and the apple? Newton was a scientist who lived about 300 years ago. He made many important discoveries about how and why things move. The apple story goes like

More information

1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.

1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled. Base your answers to questions 1 through 5 on the diagram below which represents a 3.0-kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the

More information

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE CHAPTER 12 Force 1 12-1 What is a force? 2 Forces and Force Diagrams Enrichment Activity for Lesson 12-1 3 12-2 What is gravity? 4 Gravitational

More information

Physics 11 Fall 2012 Practice Problems 4 - Solutions

Physics 11 Fall 2012 Practice Problems 4 - Solutions Physics 11 Fall 01 Practice Problems 4 - s 1. Under what conditions can all the initial kinetic energy of an isolated system consisting of two colliding objects be lost in a collision? Explain how this

More information

4.5 Orbits, Tides, and the Acceleration of Gravity

4.5 Orbits, Tides, and the Acceleration of Gravity 4.5 Orbits, Tides, and the Acceleration of Gravity Our goals for learning: How do gravity and energy together allow us to understand orbits? How does gravity cause tides? Why do all objects fall at the

More information

Name Period Chapter 10 Study Guide

Name Period Chapter 10 Study Guide Name _ Period Chapter 10 Study Guide Modified True/False Indicate whether the statement is true or false. 1. Unbalanced forces do not change an object s motion. 2. Friction depends on the types of surfaces

More information

Unit 3 Practice Test: Dynamics

Unit 3 Practice Test: Dynamics Unit 3 Practice Test: Dynamics Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the common formula for work? a. W = F x c. W = Fd

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

Newton s Third Law, Momentum, Center of Mass

Newton s Third Law, Momentum, Center of Mass Team: Newton s Third Law, Momentum, Center of Mass Newton s Third Law is a deep statement on the symmetry of interaction between any two bodies in the universe. How is the pull of the earth on the moon

More information

1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

More information

Rocketry for Kids. Science Level 4. Newton s Laws

Rocketry for Kids. Science Level 4. Newton s Laws Rocketry for Kids Science Level 4 Newton s Laws Victorian Space Science Education Centre 400 Pascoe Vale Road Strathmore, Vic 3041 www.vssec.vic.edu.au Some material for this program has been derived from

More information

Phys214 exam#2 (30 problems in total. 5 points each, total 150 points. )

Phys214 exam#2 (30 problems in total. 5 points each, total 150 points. ) Phys214 exam#2 (30 problems in total. 5 points each, total 150 points. ) 1. An oil tanker heading due west, straight into a strong wind, reaches a speed of 5 m/s and then shuts down its engines to drift.

More information

Newton s Third Law, Momentum, Center of Mass

Newton s Third Law, Momentum, Center of Mass Team: Newton s Third Law, Momentum, Center of Mass Newton s Third Law is a deep statement on the symmetry of interaction between any two bodies in the universe. How is the pull of the earth on the moon

More information

Is velocity constant? A = πr 2

Is velocity constant? A = πr 2 Physics R Date: Circular Motion & Gravity Uniform Circular Motion What does uniform mean? Equations: (on reference table) Uniform circular motion means circular motion with C = 2πr = Is velocity constant?

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics 11 Assignment KEY Dynamics Chapters 4 & 5 Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

More information

Physics 10 Midterm 1

Physics 10 Midterm 1 Physics 10 Midterm 1 1. What property of waves, did the project Mogul rely on? A. interference B. beats C. bending on slow side D. dispersion E. None of the above Mogul project use the sound channel, look

More information

Summary Notes. to avoid confusion it is better to write this formula in words. time

Summary Notes. to avoid confusion it is better to write this formula in words. time National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

More information

Astro 101 F15 Test 2. Name: Multiple Choice Identify the choice that best completes the statement or answers the question.

Astro 101 F15 Test 2. Name: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Astro 101 Test 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The Moon undergoes synchronous rotation, and as a consequence the: a. Moon does

More information

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2 Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

More information

Educational Innovations

Educational Innovations Educational Innovations NA-100/95S Newton s Apple grav i ty (gravitē) noun 1. The force that attracts a body toward the center of the earth, or toward any other physical body having mass. For most purposes

More information

ANSWER KEY. Reviewing Physics: The Physical Setting THIRD EDITION. Amsco School Publications, Inc. 315 Hudson Street / New York, N.Y.

ANSWER KEY. Reviewing Physics: The Physical Setting THIRD EDITION. Amsco School Publications, Inc. 315 Hudson Street / New York, N.Y. NSWER KEY Reviewing Physics: The Physical Setting THIRD EDITION msco School Publications, Inc. 315 Hudson Street / New York, N.Y. 10013 N 7310 CD Manufactured in the United States of merica 1345678910

More information

b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.

b. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time. I. What is Motion? a. Motion - is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information