Practice TEST 2. Explain your reasoning

Size: px
Start display at page:

Download "Practice TEST 2. Explain your reasoning"

Transcription

1 Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant speed between the 2 nd and 9 th floors. Which one of the following statements about the elevator best describes the forces acting on it, as it moves upward at a constant speed? (Assume any frictional forces can be neglected.) Circle your choice. a) The upward pull of the cable is stronger than the downward gravitational pull of the Earth. b) The upward pull of the cable is equal in strength to the downward gravitational pull of the Earth. c) The upward pull of the cable is weaker than the downward gravitational pull of the Earth. Explain your reasoning When an object moves at a constant speed the forces acting on it must be balanced. In this case the only two forces involved are the downward gravitational pull of the Earth and the upward pull of the cable. For the forces to be balanced these two must be equal in strength. (If one of the forces was stronger than the other, the forces would be unbalanced and the speed of the elevator would be changing.) 2. As the elevator in the previous question passes the 9 th floor it begins to slow down (still moving upward), before stopping at the 10 th floor. As the elevator is slowing down, which one of the following statements best describes the forces acting on it? (Again, assume any frictional forces can be neglected.) Circle your choice. d) The upward pull of the cable is stronger than the downward gravitational pull of the Earth. e) The upward pull of the cable is equal in strength to the downward gravitational pull of the Earth f) The upward pull of the cable is weaker than the downward gravitational pull of the Earth. Explain your reasoning In order for an object to slow down, the force acting in the opposite direction to the motion must be stronger than any force acting in the same direction as the motion. Since the elevator is slowing down as it moves upward, this means the downward force must be stronger than the

2 upward force. The only way for this to happen is if the upward pull of the cable is weaker than the downward gravitational pull of the Earth. 3. Consider two different carts that are designed to move along a surface with essentially no friction. Cart A is has more mass than cart B. A student performs two experiments with these carts. In the first experiment she mounts identical fans (with same number of batteries) on each of the two carts and puts the carts on separate tracks. She turns both fans on and lets the carts start moving at the same time. To the right is a force diagram (with motion arrow) for cart B one second after the carts begin moving: Consider cart A (the more massive one). Suppose you wanted to draw a force diagram for cart A at the same time (one second after starting), including both a force arrow and a speed arrow: g) Which of the following arrows could best represent the length of the force arrow on cart A. Circle your choice and briefly justify why you made that choice. Since the two fans are identical (with the same number of batteries), they will push with equal force strengths. Therefore the force arrow on both carts should be the same length. h) Which of the following arrows could best represent the length of the speed arrow for cart A. Circle your choice and briefly justify why you made that choice.

3 Cart A has more mass than Cart B, but it has the same strength force acting on it. Therefore Cart A will speed up at a slower rate than Cart B, and so at 1 second after starting it will be moving more slowly than Cart B. This slower speed would be represented by a shorter speed arrow. 4. An archer uses a bow to shoot an arrow straight up into the air on a still, calm day. The arrow rises to a certain height and then falls straight back down, sticking in the ground. The speed time graph for the arrow shown below is for the period starting just after it leaves the bow to just before it sticks in the ground. i) At what time does the arrow reach its highest point? Briefly justify how you know. The arrow reaches its highest point at 5 seconds. We can tell this from the graph because it is at this time that it stops slowing down as it rises, stops for an instant at its highest point, and then begins to speed up again as it falls. j) Indicate on the graph the entire region during which the gravitational potential energy of the arrow+earth system was increasing. Briefly justify how you know. The gravitational potential energy in the system was increasing while the arrow was slowing down on its way upward. Since the arrow was slowing down, the kinetic energy in the system was decreasing. Therefore, we know from our ideas of energy conservation that the potential energy must be increasing to compensate for this. k) During the entire time that the arrow was in flight (up and down) what was happening to the total energy (kinetic + gravitational potential) of the arrow+earth system. Was it increasing, decreasing, or staying constant? How do you know?

4 Since energy cannot be created or destroyed, and assuming there is no energy input or output to the arrow+earth system, then the total energy in the system stayed constant. Any changes in kinetic energy were exactly compensated for by equal and opposite changes in gravitational potential energy. In the remainder of this problem you will explain why the arrow slows down after it leaves the bow and until it reaches its highest point. You will first explain it in terms of energy ideas, and then will explain it again in terms of force ideas. In both cases, ignore the effects of air resistance. Explanation in terms of energy ideas: Why does the arrow slow down as it rises? Draw an I/O energy diagram for the arrow+earth system as the arrow is rising. Earth And Arrow Decrease in kinetic energy Increase in gravitational potential energy Write a few sentences to explain (in energy terms) why the arrow slows down as it rises. After the arrow leaves the bow, the only interaction it is involved in as it moves upward is the gravitational interaction with arrow and the Earth. As the arrow rises it gets further from the Earth and so the gravitational potential energy in the arrow+earth system increases. Because there is no energy input to, or output from, this system, the Law of Conservation of Energy tells us that this increase in gravitational potential energy must be compensated for by a decrease in the kinetic energy of the objects in the system. Thus, since the kinetic energy of the arrow decreases as it rises, this means it slows down.

5 Explanation in terms of force ideas: Why does the arrow slow down as it rises? Complete the force diagram for this interaction: (Draw both force and motion arrows. Label the force arrow.) Direction of motion Gravitational force of the Earth Write a few sentences to explain (in force terms) why the arrow slows down as it rises. 5. The gravitational force of the Earth acts downward on the arrow. As the arrow rises, this force is acting in the opposite direction to its motion. When a force acts in the opposite direction to the motion of an object, its speed decreases. Therefore, the speed of the arrow decreases as it rises. Fill the blanks in the system

6 MULTIPLE CHOICE QUESTIONS 1) How many different elements are in a water molecule? A) one B) two C) three D) four E) none 2) An atomic mass unit (amu) is 1/12 the mass of A) an electron. B) a proton. C) a hydrogen atom. D) a carbon atom. E) a uranium atom. Answer: D 3) Which of the following statements is true?

7 A) An atom is the smallest particle known to exist. B) There are only about 100 different kinds of atoms that combine to form all substances. C) There are thousands of different kinds of atoms that account for a wide variety of substances. D) A large atom can be photographed with the aid of an ordinary microscope. E) None of these statements are true. 4) Which of the following is not a mixture? A) granite B) cake C) air D) beach sand E) None. All of the above choices are mixtures. Answer: E 5) Solid matter is mostly empty space. The reason solids don't fall through one another is because A) atoms are constantly vibrating, even at absolute zero. B) of nuclear forces. C) of gravitational forces. D) of electrical forces. Answer: D 6) Compared to the energy it takes to separate oxygen and hydrogen from water, the amount of energy given off when they recombine is A) slightly more. B) slightly less. C) much more. D) much less. E) the same. Answer: E 7) Compared to the atoms that make up the body of an elderly person, the atoms that make up the body of a newborn baby are A) newer. B) actually older. C) the same age. 8) The chemical properties of matter come mostly from its A) protons. B) electrons. C) neutrons.

8 9) If a gram of antimatter meets a kilogram of matter, the amount of mass to survive is A) 1 gram. B) 999 grams. C) 1 kilogram. D) 1.1 kilogram. 10) If two protons are added to an oxygen nucleus, the result is A) heavy oxygen. B) fluorine. C) neon. D) sodium. E) nitrogen. 11) Which of these atoms has the greatest amount of electrical charge in its nucleus? A) helium B) carbon C) iron D) gold E) uranium Answer: E 12) Which of these atoms has the greatest number of electrons? A) helium B) carbon C) iron D) gold E) uranium Answer: E 13) Two objects have the same size and shape, but one is much heavier than the other. When they are dropped simultaneously from a tower, they reach the ground at the same time, but the heavier one has a greater A) speed. B) acceleration. C) momentum. D) all of these 14) To catch a ball, a baseball player extends the hand forward before impact with the ball and then lets it ride backward in the direction of the ball's motion. Doing this reduces the force of impact on the player's hand principally because the A) force of impact is reduced. B) relative velocity is less.

9 C) time of impact is increased. D) time of impact is decreased. 15) When you are in the way of a fast-moving object and can't get out of its way, you will suffer a smaller force of impact if you decrease its momentum over a A) long time. B) short time. C) same way either way 16) A bullet is fired from a gun. The speed of the bullet will be about the same as the speed of the recoiling gun A) because momentum is conserved. B) because velocity is conserved. C) because both velocity and momentum are conserved. D) if the mass of the bullet equals the mass of the gun. Answer: D 17) The force on an apple hitting the ground depends upon A) the speed of the apple just before it hits. B) the time of impact with the ground. C) whether or not the apple bounces. D) all of these Answer: D 18) If a monkey floating in outer space throws his hat away, the hat and the monkey will both A) move away from each other, but at different speeds. B) move away from each other at the same speed. C) move a short distance and then slow down. D) move a short distance and then go faster. E) come to a stop after a few minutes. 19) A sandbag is motionless in outer space. A second sandbag with 3 times the mass moving at 12 m/s collides with it. They stick together and move at a speed of A) 3 m/s. B) 4 m/s. C) 6 m/s. D) 8 m/s. Answer: E 20) An object may have potential energy because of its

10 A) speed. B) acceleration. C) momentum. D) location. Answer: D 21) A bow is drawn so that it has 40 J of potential energy. When fired, the arrow will ideally have a kinetic energy that is A) less than 40 J. B) more than 40 J. C) 40 J. D) impossible to predict without additional information 22) It takes 40 J to push a large box 4 m across a floor. Assuming the push is in the same direction as the move, what is the magnitude of the force on the box? A) 4 N B) 10 N C) 40 N D) 160 N 23) Using 1000 J of work, a toy elevator is raised from the ground floor to the second floor in 20 seconds. The power needed to do this job was A) 20 W. B) 50 W. C) 100 W. D) 1000 W. E) 20,000 W. 24) An object at rest may also have A) speed. B) velocity. C) momentum. D) kinetic energy. E) potential energy. Answer: E 25) Two pool balls, each moving at 2 m/s, roll toward each other and collide. Suppose after bouncing apart, each moves at 4 m/s. This collision violates conservation of A) momentum. B) energy. C) both momentum and energy.

11 D) none of the above choices 26) If several balls are thrown straight up with varying initial velocities, the quantity that will have the same value for each trial is the ball's A) initial momentum. B) maximum height. C) time of travel. D) acceleration. E) None of the above choices are correct. Answer: D 27) The rotational inertia of your leg is greater when your leg is A) straight. B) bent. C) same either way 28) On a balanced seesaw, a boy three times as heavy as his partner sits A) 1/3 the distance from the fulcrum. B) less than 1/3 the distance from the fulcrum. C) more than 1/3 the distance from the fulcrum. 29) Two people are balanced on a seesaw. If one person leans toward the center of the seesaw, that person's end of the seesaw will A) rise. B) fall. C) stay at the same level. D) rise and then fall. E) fall and then rise. 30) A ball rolls down a hill mainly because of A) an unbalanced torque. B) a balanced torque. C) its rotational inertia. D) its angular acceleration. E) its angular momentum. 31) Suppose you are at the center of a large freely-rotating horizontal turntable in a carnival funhouse. As you crawl toward the edge, the angular momentum of you and the turntable A) decreases. B) increases. C) remains the same, but the RPMs decrease.

12 D) decreases in direct proportion to your decrease in RPMs. 32) Stand a meterstick on its end and let go and it rotates to the floor. If you attach a heavy weight to its upper end and repeat, falling time will be A) more. B) less. C) the same. 33) A boy plays solitary seesaw by placing a long plank over a small rock and sitting at one end of the plank. When the seesaw is balanced, the boy's mass is most likely A) greater than the mass of the seesaw. B) less than the mass of the seesaw. C) equal or very nearly equal to the mass of the seesaw. D) Not enough information is given. 34) An asteroid exerts a 360-N gravitational force on a nearby spacecraft. If the spacecraft moves to a position three times as far from the center of the asteroid, the force will be A) zero. B) 40 N. C) 120 N. D) 360 N. E) 1080 N. 35) Inside a freely falling elevator, there would be no A) gravitational force on you. B) apparent weight for you. C) both of these D) none of these 36) No force due to Earth's gravity is acting on the astronauts inside the orbiting space shuttle. This statement is A) always true while in orbit. B) sometimes true while in orbit. C) always false. 37) From Earth, one satellite appears to overtake another. The faster satellite is A) higher. B) lower. C) smaller.

13 D) can't say 38) Acceleration is greater for a satellite when it is at the A) apogee. B) perigee. C) zenith. D) same acceleration at all of the above places. 39) Angular momentum is greater for a satellite when it is at the A) apogee. B) perigee. C) same at apogee and perigee 40) The period of a satellite, the time it takes for a complete revolution, depends on the satellite's A) mass. B) weight. C) radial distance. D) all of these 41) Minimal orbital speed about the Earth is about 8 km/s. Minimal orbital speed about the moon would be A) less than 8 km/s. B) more than 8 km/s. C) about 8 km/s. 42) The speeds of the planets about the sun depend on A) their distances from the sun. B) the masses of the planets. C) their periods of rotation. D) None of the above are correct. 43) According to Newton, doubling the distance between two interacting objects A) divides by 2 the gravitational force between them. B) multiplies by 2 the gravitational force between them. C) divides by 4 the gravitational force between them. D) multiplies by 4 the gravitational force between them. 44) The concept of force is not fundamental to

14 A) Newton's theory of gravitation. B) Einstein's theory of gravitation. C) both of these D) neither of these 45) An asteroid exerts a 360-N gravitational force on a nearby spacecraft. If the spacecraft moves to a position three times as far from the center of the asteroid, the force will be A) zero. B) 40 N. C) 120 N. D) 360 N. E) 1080 N. 46) If the radius of the Earth somehow decreased with no change in mass, your weight would A) increase. B) not change. C) decrease.

MIDTERM II. Problem 1. Problem 2

MIDTERM II. Problem 1. Problem 2 MIDTERM II Problem 1 Problem 2 Problem 3 3 Problem 4 Problem 5 Problem 6 Multiple Choice Questiona 1) A rock suspended by a string weighs 5 N out of water and 3 N when submerged. What is the buoyant force

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) An atomic mass unit (amu) is 1/12 the mass of 1) A) a hydrogen atom. a carbon atom. an

More information

Final Review (F2007) Chapter 2: Describing Motion: Kinematics in One Dimension

Final Review (F2007) Chapter 2: Describing Motion: Kinematics in One Dimension Physics I Mechanics Final Review (F2007) Name: ANSWER KEY Chapter 2: Describing Motion: Kinematics in One Dimension 1. Suppose that a car traveling to the East (+x direction) begins to slow down as it

More information

Physics Midterm Review. Multiple-Choice Questions

Physics Midterm Review. Multiple-Choice Questions Physics Midterm Review Multiple-Choice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves

More information

Physics Honors Page 1

Physics Honors Page 1 1. An ideal standard of measurement should be. variable, but not accessible variable and accessible accessible, but not variable neither variable nor accessible 2. The approximate height of a 12-ounce

More information

356 CHAPTER 12 Bob Daemmrich

356 CHAPTER 12 Bob Daemmrich Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

More information

d. Any of the above. (surface exerting friction can move)

d. Any of the above. (surface exerting friction can move) I use a rope 2.00 m long to swing a 10.0-kg weight around my head. The tension in the rope is 20.0 N. In half a revolution how much work is done by the rope on the weight? d. 0 (tension perpendicular to

More information

Practice Test (Chapter 10)

Practice Test (Chapter 10) Practice Test (Chapter 10) 1) According to Kepler's laws, the paths of planets about the sun are A) parabolas. B) circles. C) straight lines. D) ellipses. Answer: D 2) Which of the following is not a vector

More information

9) If the velocity versus time graph of an object is a horizontal line, the object is A) moving with zero acceleration.

9) If the velocity versus time graph of an object is a horizontal line, the object is A) moving with zero acceleration. 1) Which of the following quantities has units of a velocity? (There could be more than one correct choice.) A) 40 km southwest B) -120 m/s C) 9.8 m/s2 downward D) 186,000 mi E) 9.8 m/s downward 2) Suppose

More information

Gravity and Friction Worksheet A

Gravity and Friction Worksheet A Gravity and Friction Worksheet A Completion Directions: On each line, write the term that correctly completes each sentence. 1. Gravity and magnetism are examples of forces. 2. is the measure of gravitational

More information

Quiz 10 Motion. Name: Group:

Quiz 10 Motion. Name: Group: Quiz 10 Motion Name: Group: 1. Two balls are released at the same time on the two tracks shown below. Which ball wins? a. The ball on the low road b. The ball on the high road c. They tie 2. What will

More information

Physics Final Practice Exam - Part 2

Physics Final Practice Exam - Part 2 Physics Final Practice Exam - Part 2 Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. An object has a constant mass. A constant force on the object produces

More information

Instructions: The following list of formulas might be useful: Speed = distance/time. Average speed = total distance covered/time interval

Instructions: The following list of formulas might be useful: Speed = distance/time. Average speed = total distance covered/time interval Instructions: 1. You must write either Version A or version B on your skentron.. You must write your section number on the skentron.(sect Dzyubenko; Sect 3 Kang; Sects 4, 5 Cohn) 3. "Bubble-in" your name

More information

AP Physics B Unit 2 Test Dynamics/Work/Energy/Momentum Name

AP Physics B Unit 2 Test Dynamics/Work/Energy/Momentum Name AP Physics B Unit 2 Test Dynamics/Work/Energy/Momentum Name 1. The term "mass" refers to the same physical concept as: A) weight B) inertia C) force D) acceleration E) volume 2. When a certain force is

More information

Applied Physics Practice Questions

Applied Physics Practice Questions Applied Physics Practice Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The momentum of an object is defined as the object's a. mass times its

More information

Review Questions #1. Physics Fall 2007

Review Questions #1. Physics Fall 2007 Review Questions #1 Physics 102.002 Fall 2007 Which of these is an accurate statement of Newton's first law? When there is no net force, an object a. at rest remains at rest. b. in motion remains in motion.

More information

Exam Review Tuesday, September 17, :00 PM

Exam Review Tuesday, September 17, :00 PM ExamReview Page 1 Exam Review Tuesday, September 17, 2013 10:00 PM Chapter 2, Problem 65 A juggler throws a ball straight up with an initial speed of 10 m/s. With what speed would she need to throw a second

More information

Great Escape Review. All students are required to complete this review packet based upon our upcoming trip to Great Escape for Physics Day.

Great Escape Review. All students are required to complete this review packet based upon our upcoming trip to Great Escape for Physics Day. Great Escape Review All students are required to complete this review packet based upon our upcoming trip to Great Escape for Physics Day. All work must be done on a separate sheet of paper. You must write

More information

Introduction to Physical Science. Matter Chemistry Force and Motion Energy Waves, Sound and Light Electricity and Magnatism

Introduction to Physical Science. Matter Chemistry Force and Motion Energy Waves, Sound and Light Electricity and Magnatism Introduction to Physical Science Introduction to Physical Science Matter Chemistry Force and Motion Energy Waves, Sound and Light Electricity and Magnatism What is Science? Science is a method for studying

More information

Physics Benchmark 2 Study Guide - (with answers)

Physics Benchmark 2 Study Guide - (with answers) Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. _d 1. A rope pulls horizontally on a 4-kg block. The floor exerts a 7N frictional force on the

More information

1. Which unit is equivalent to a newton per kilogram? A) m. s 2 B) W. s C) J s D) kg m

1. Which unit is equivalent to a newton per kilogram? A) m. s 2 B) W. s C) J s D) kg m 1. Which unit is equivalent to a newton per kilogram? A) m s 2 B) W 6. Base your answer to the following question on The diagram below shows a student throwing a baseball horizontally at 25 meters per

More information

Name Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is

Name Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is CHAPTER 4 MOTION AND FORCES SECTION 4 1 The Nature of Force and Motion (pages 116-121) This section explains how balanced and unbalanced forces are related to the motion of an object. It also explains

More information

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors

More information

5. A baseball player hits a ball that soars high into the air. After the ball has left the bat, and while it is traveling upward (at point P in Fig. 3

5. A baseball player hits a ball that soars high into the air. After the ball has left the bat, and while it is traveling upward (at point P in Fig. 3 4. A bullet fired from a rifle begins to fall (a) as soon as it leaves the barrel. (b) after air friction reduces its speed. (c) not at all if air resistance is ignored. 5. A baseball player hits a ball

More information

HONORS PHYSICS Dynamics

HONORS PHYSICS Dynamics LESSON OBJECTIVES Students will be able to... SKILLS HONORS PHYSICS Dynamics define force describe Newton s First Law of Motion using inertia identify the criteria of balanced and unbalanced forces distinguish

More information

Chapter 12 - Forces and Motion

Chapter 12 - Forces and Motion Chapter 12 - Forces and Motion A. What is a force? 1. It is a push or pull. 2. Force can cause resting objects to move. 3. Force can cause acceleration by changing the object s speed or direction. 4. Newtons

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

More information

5/12/15. Chapter 12: Forces Key Terms. What is Inertia? 12.1 Newton s First and Second Laws. What are Newton s Laws of Motion?

5/12/15. Chapter 12: Forces Key Terms. What is Inertia? 12.1 Newton s First and Second Laws. What are Newton s Laws of Motion? 12.1 Newton s First and Second Laws Chapter 12: Forces Physical Science - Doerfler Key Ideas What makes an object s motions change? What is inertia? What affects how much an object speeds up or slows down?

More information

1. Which object has the greatest inertia? 5. Compared to the inertia of a 0.10-kilogram steel ball, the inertia of a 0.20-kilogram Styrofoam ball is

1. Which object has the greatest inertia? 5. Compared to the inertia of a 0.10-kilogram steel ball, the inertia of a 0.20-kilogram Styrofoam ball is 1. Which object has the greatest inertia? 1) a 5.0-kg object moving at a speed of 5.0 m/s 2) a 10.-kg object moving at a speed of 3.0 m/s 3) a 15-kg object moving at a speed of 1.0 m/s 4) a 20.-kg object

More information

Physics 100 prac exam2

Physics 100 prac exam2 Physics 100 prac exam2 Student: 1. Earth's gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is B. small but not zero. C. billions and billions

More information

Astro 110-01 Lecture 10 Newton s laws

Astro 110-01 Lecture 10 Newton s laws Astro 110-01 Lecture 10 Newton s laws Twin Sungrazing comets 9/02/09 Habbal Astro110-01 Lecture 10 1 http://umbra.nascom.nasa.gov/comets/movies/soho_lasco_c2.mpg What have we learned? How do we describe

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

SEMESTER 1 PHYSICAL SCIENCE FINAL STUDY GUIDE

SEMESTER 1 PHYSICAL SCIENCE FINAL STUDY GUIDE SEMESTER 1 PHYSICAL SCIENCE FINAL STUDY GUIDE Science Process Skills Know these vocabulary words and be able to use them to answer higher level questions about experiments and data collection: What do

More information

Practice Final. A) 0.50 m/s B) 0.2 m/s C) 1.0 m/s D) 1.3 m/s Answer: C

Practice Final. A) 0.50 m/s B) 0.2 m/s C) 1.0 m/s D) 1.3 m/s Answer: C Practice Final 1) Figure represents the position of a particle as it travels along the x-axis. What is the average speed of the particle between t = 2 s and t = 4 s? A) 0.50 m/s B) 0.2 m/s C) 1.0 m/s D)

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.20 shows four different cases involving a

More information

Name Class Date. Forces and Motion Newton s Laws of Motion

Name Class Date. Forces and Motion Newton s Laws of Motion CHAPTER 2 2 SECTION Forces and Motion Newton s Laws of Motion BEFORE YOU READ After you read this section, you should, be able to answer these questions: What is net force? What happens to objects that

More information

Physics Samples: Q2 Exam Per Date Name

Physics Samples: Q2 Exam Per Date Name Physics Samples: Q2 Exam Per Date Name 1. According to your reference table, Approximate Coefficents of Friction, what is the minimum horizontal force needed to start a 300. kilogram steel block on a steel

More information

Practice Ch 4 Newton Laws

Practice Ch 4 Newton Laws Practice Ch 4 Newton Laws 1) Which has the greater mass? A) a king-size pillow B) an automobile battery C) neither both have the same 2) Compared to a 1-kg block of solid iron, a 2-kg block of solid iron

More information

Motion and Forces S E C T I O N What is force?

Motion and Forces S E C T I O N What is force? Motion and Forces S E C T I O N What is force? Passing a basketball to a team member or kicking a soccer ball into the goal are examples of applying force to an object. A force is a push or pull that one

More information

SCIE 1001 Multiple Choice Items with Answers 2015 Kishore Lal

SCIE 1001 Multiple Choice Items with Answers 2015 Kishore Lal 1. A rocket moves through empty space in a straight line with constant speed. It is far from the gravitational effect of any star or planet. Under these conditions, the force that must be applied to the

More information

Name Date Class. Directions: On the line before each statement, write T if the statement is true or F if the statement is false.

Name Date Class. Directions: On the line before each statement, write T if the statement is true or F if the statement is false. Lesson Quiz A LESSON 2 Newton s First Law True or False Directions: On the line before each statement, write T if the statement is true or F if the statement is false. 1. To find net force, you must specify

More information

4 Gravity: A Force of Attraction

4 Gravity: A Force of Attraction CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?

More information

Science 101 Fall Quarter, 2001 Exam 1, version A. Buena suerte

Science 101 Fall Quarter, 2001 Exam 1, version A. Buena suerte Science 101 Fall Quarter, 2001 Exam 1, version A Choose the one alternative that best completes the statement or answers the question. Name Buena suerte 1) The attraction of a person's body toward the

More information

FORCES AND NEWTON S LAWS OF MOTION

FORCES AND NEWTON S LAWS OF MOTION chapter FORCES AND NEWTON S LAWS OF MOTION Section 4.1 The Concepts of Force and Mass Section 4.2 Newton s First Law of Motion Section 4.3 Newton s Second Law of Motion 1. With one exception, each of the

More information

Name Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is

Name Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is CHAPTER 4 MOTION AND FORCES SECTION 4 1 The Nature of Force and Motion (pages 116-121) This section explains how balanced and unbalanced forces are related to the motion of an object. It also explains

More information

PHYSICS MIDTERM REVIEW

PHYSICS MIDTERM REVIEW 1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

More information

Forces Newton s Three Laws of Motion Newton s First Law of Motion The Law of Inertia

Forces Newton s Three Laws of Motion Newton s First Law of Motion The Law of Inertia Physics R Date: 1. A 2009 Ford Mustang convertible is travelling at constant velocity on Interstate 95 south from Philadelphia to Wilmington Delaware. It passes the 120 mile marker at exactly 1:00pm and

More information

ACTIVITY 1: Gravitational Force and Acceleration

ACTIVITY 1: Gravitational Force and Acceleration CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

4. Using her measured quantities, what must she graph to linearize the graph so that the slope of the line is the acceleration due to gravity?

4. Using her measured quantities, what must she graph to linearize the graph so that the slope of the line is the acceleration due to gravity? Linear Kinematics 1. A student wants to determine the height of an unreachable object. The materials available include a protractor and tape for measuring small distances. Describe a procedure that can

More information

A. 5 m/s B. 1 m/s C. 0 m/s D. 10 m/s E. 2 m/s

A. 5 m/s B. 1 m/s C. 0 m/s D. 10 m/s E. 2 m/s SQ1: Carl Lewis set a world record for the 100.0-m run with a time of 9.86 s. If, after reaching the finish line, Mr. Lewis walked directly back to his starting point in 90.14 s, what is the magnitude

More information

Physics 6A MWF Section Winter 2012 Final

Physics 6A MWF Section Winter 2012 Final Physics 6A MWF Section Winter 2012 Final Enter the answer to the multiple choice questions on the pink scantron sheet. Use a pencil, not a pen. There is no penalty for the wrong answer Write your name

More information

Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location.

Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. Q3.2.a The gravitational force exerted by a planet on one of its moons is 3e23 newtons when the moon is at a particular location. If the mass of the moon were three times as large, what would the force

More information

Kinetic Energy and Work

Kinetic Energy and Work PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?

2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed? Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140

More information

Chapter 8-9. Rotation. Rotational Motion and The Law of Gravity

Chapter 8-9. Rotation. Rotational Motion and The Law of Gravity Chapter 8-9 Rotational Motion and The Law of Gravity There are two kinds of speeds During time t, the reference line moves through angle θ. Angular velocity w is the rate of rotation. (e.g 33 rpm) The

More information

Momentum and Conservation Practice Test 1

Momentum and Conservation Practice Test 1 Momentum and onservation Practice Test 1 Name: ate: 1. When objects exert forces on each other, the total of the system 5. Which of the following objects has the greatest?. decreases. increases. remains

More information

Energy. 2) If you push an object a given distance, while applying twice the force, you do. C) twice as much work. D) four times as much work.

Energy. 2) If you push an object a given distance, while applying twice the force, you do. C) twice as much work. D) four times as much work. Energy 1) If you push for a half hour or a whole hour against a stationary wall, A) no work is done in either case. B) half as much work is done during the half hour. C) twice as much work is done during

More information

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Reading Quiz Clickers

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Reading Quiz Clickers Reading Quiz Clickers The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity 4.1 Describing Motion: Examples from Daily Life How do we describe motion?

More information

practice ch 12 Test questions

practice ch 12 Test questions practice ch 12 Test questions Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The SI unit of force is the a. joule. c. meter. b. kilogram.

More information

2. SKIP THIS YEAR What event will produce the greatest increase in the gravitational force between the two masses?

2. SKIP THIS YEAR What event will produce the greatest increase in the gravitational force between the two masses? Forces Review: look over all labs and worksheets. Your answers should be in another color pen. This is not all inclusive of items on the test but a very close representation. 1. The table shows the results

More information

Mid-Year Review (2) (3) (4) (1) 1 m/s (3) 0.5 m/s (2) 2 m/s (4) 0 m/s

Mid-Year Review (2) (3) (4) (1) 1 m/s (3) 0.5 m/s (2) 2 m/s (4) 0 m/s 1. A blinking light of constant period is situated on a lab cart. Which diagram best represents a photograph of the light as the cart moves with constant velocity? (1) 6. The graph below represents the

More information

1 st Semester Review 1980s problems

1 st Semester Review 1980s problems 1 st Semester Review 1980s problems 1980B1. A ball of weight 5 newtons is suspended by two strings as shown above. a. In the space below, draw and clearly label all the forces that act on the ball. b.

More information

Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight

Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight Q: Who established the law of universal gravitation? A: Newton Q: What is a spring scale used for? A: To measure weight Q: What is the Law of Universal Gravitation? A: Everything in the universe has gravity.

More information

Midterm 1. C The speed of the cart is constant. For this to happen the forces acting on it must be balanced.

Midterm 1. C The speed of the cart is constant. For this to happen the forces acting on it must be balanced. Midterm 1 1. Shown below is a speed-time graph for a cart moving in front of the motion sensor. For convenience it has been divided into four sections (A,B,C,D). During each of the four separate periods

More information

Unit 2 Motion, Force, Gravity, Projectile Motion and Friction

Unit 2 Motion, Force, Gravity, Projectile Motion and Friction Unit 2 Motion, Force, Gravity, Projectile Motion and Friction NYS Standards: 5.1a The motion of an object is always judged with respect to some other object or point. The idea of absolute motion or rest

More information

PHYSICS 30S FINAL EXAM REVIEW

PHYSICS 30S FINAL EXAM REVIEW PHYSICS 30S FINAL EXAM REVIEW Use this review to prepare for your final exam. There are 60 multiple choice questions (60 points) and 10 problems (50 points). Use the answers on the last page to determine

More information

Making Sense of the Universe: Understanding Motion, Energy, and Gravity

Making Sense of the Universe: Understanding Motion, Energy, and Gravity Making Sense of the Universe: Understanding Motion, Energy, and Gravity 1. Newton s Laws 2. Conservation Laws Energy Angular momentum 3. Gravity Review from last time Ancient Greeks: Ptolemy; the geocentric

More information

Grade 6 Physical Posttest

Grade 6 Physical Posttest Grade 6 Physical Posttest Select the best answer to each question. 1. Which of these is an example of the conversion of kinetic energy into gravitational potential energy? A. a bicyclist coasting down

More information

Exam II. Spring 2003 Serway, Chapters 6-10

Exam II. Spring 2003 Serway, Chapters 6-10 Assigned Seat umber Agin/Morgan Exam II Spring 2003 Serway, Chapters 6-10 PH2100 0A/0B Part I: Qualitative Write the letter of the correct answer on the answer sheet. O PARTIAL CREDIT: SUBMIT OE ASWER

More information

CPS lesson Kinematics ANSWER KEY

CPS lesson Kinematics ANSWER KEY CPS lesson Kinematics ANSWER KEY 1. A person initially at P stays there for a moment, then moves to Q and stays there for a moment. She then runs quickly to R, stays there for a moment, and finally slowly

More information

Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky?

Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky? October 19, 2015 Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky? Key Words Newton s Laws of motion, and Newton s law of universal gravitation:

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 7 Impulse and Momentum Interactive Lecture Questions 7.1.1. An astronaut drops a golf ball that is initially at rest from a cliff on

More information

Science 3101 Test I. 2) A kilogram is a measure of an object's A) weight. B) center of mass. C) gravity. D) force. E) mass.

Science 3101 Test I. 2) A kilogram is a measure of an object's A) weight. B) center of mass. C) gravity. D) force. E) mass. Science 3101 Test I MULTIPLE CHOICE (3 points each). 1) Whereas Aristotle relied on logic in explaining nature, Galileo relied on A) patterns. B) logic also. C) mathematics. D) experiment. 2) A kilogram

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs

Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs Section 4 Newton s Third Law Reading Preview Key Concepts What is Newton s third law of motion? How can you determine the momentum of an object? What is the law of conservation of momentum? Key Terms momentum

More information

Physics 2048 Final Exam Dr. Jeff Saul Fall 2001

Physics 2048 Final Exam Dr. Jeff Saul Fall 2001 Physics 2048 Final Exam Dr. Jeff Saul Fall 2001 Name: Table: Date: READ THESE INSTRUCTIONS BEFORE YOU BEGIN Before you start the test, WRITE YOUR NAME ON EVERY PAGE OF THE EXAM. Calculators are permitted,

More information

Pre-AP Physics Semester 1 Review

Pre-AP Physics Semester 1 Review Use the graph to the right to answer the following 4 questions. 1. What type of motion is occurring here? constant velocity 2. What is the location of the object at t = 2s? x = 10m 3. What is the velocity

More information

Skating 2. Skating 1. Skating 4. Skating 3. Skating 5. Skating 6

Skating 2. Skating 1. Skating 4. Skating 3. Skating 5. Skating 6 Skating 1 Skating 2 A rotary lawn mower spins its sharp blade rapidly over the lawn and cuts the tops off the grasses. Would the blade still cut the grasses if they weren t attached to the ground? A rotary

More information

Gravitation. Gravitation

Gravitation. Gravitation 1 Gravitation Newton s observations A constant center seeking force is required to keep an object moving along a circular path. You know that the moon orbits the earth and hence there should be a force

More information

Newton s Laws of Motion

Newton s Laws of Motion 10 Newton s Laws of Motion There are many different kinds of motion. We experience some kind of motion every minute of every day. As complicated as motion is, there are only three laws that describe all

More information

Second Exam for Physics 102, Section 1, Fall /19/2005

Second Exam for Physics 102, Section 1, Fall /19/2005 Second Exam for Physics 102, Section 1, Fall 2005 10/19/2005 Notes: 1) Always assume g=10 m/s 2 for the gravitational acceleration on the Earth s surface. 2) Formulas: a. the distance that is traveled

More information

it moving. Jerry stops after 10 min, while Joel is able to push for 5.0 min longer. Compare the work they do on the car.

it moving. Jerry stops after 10 min, while Joel is able to push for 5.0 min longer. Compare the work they do on the car. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Person X pushes twice as hard against a stationary brick wall as person Y. Which one

More information

1. Mass, Force and Gravity

1. Mass, Force and Gravity STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

More information

AP Physics 1 Fall Semester Review

AP Physics 1 Fall Semester Review AP Physics 1 Fall Semester Review One Dimensional Kinematics 1. Be able to interpret motion diagrams. a. Assuming there are equal time intervals between each picture shown above, which car in the diagram

More information

Concept Review. Physics 1

Concept Review. Physics 1 Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or

More information

TODAY: Start Chapter 8 on Rotation

TODAY: Start Chapter 8 on Rotation TODAY: Start Chapter 8 on Rotation Chapter 8: Rotational Motion Linear speed: distance traveled per unit of time. In rotational motion we have linear speed: depends where we (or an object) is located in

More information

Phys Sample Problems

Phys Sample Problems 1 Phys114-2013 Sample Problems 1 A bullet is fired through a board, 140 cm thick, with its line of motion perpendicular to the face of the board If it enters with a speed of 450 m/s and emerges with a

More information

PHYSICS Dynamics. gravity weight air resistance inertia friction normal force

PHYSICS Dynamics. gravity weight air resistance inertia friction normal force LESSON OBJECTIVES Students will be able to... PHYSICS Dynamics define force describe Newton s First Law of Motion using inertia identify the criteria of balanced and unbalanced forces distinguish among

More information

Reporting Category 2: Force, Motion, and Energy

Reporting Category 2: Force, Motion, and Energy Name: Science Teacher: Reporting Category 2: Force, Motion, and Energy A force is a push or a pull in a specific direction. The combination of all forces acting on an object is called. net force What are

More information

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

More information

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude.

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude. Projectile motion can be described by the horizontal ontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to

More information

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture

The Cosmic Perspective Seventh Edition. Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Chapter 4 Lecture Chapter 4 Lecture The Cosmic Perspective Seventh Edition Making Sense of the Universe: Understanding Motion, Energy, and Gravity Making Sense of the Universe: Understanding Motion, Energy, and Gravity

More information

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

More information

Center of Mass/Momentum

Center of Mass/Momentum Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

More information

The Bronx High School of Science Physics - Exam

The Bronx High School of Science Physics - Exam The Bronx High School of Science Physics - Exam Base your answers to questions 1 through 3 on the following information. In the diagram below, a 10.- kilogram sphere, A, is projected horizontally with

More information

~ SCIENCE SAMPLER ~ Unit 2 of 5

~ SCIENCE SAMPLER ~ Unit 2 of 5 College Guild PO Box 6448, Brunswick ME 04011 ~ SCIENCE SAMPLER ~ Unit 2 of 5 1 Physics *********************************************************************************************************************************************

More information

Physics 1000 Final Examination. December A) 87 m B) 46 m C) 94 m D) 50 m

Physics 1000 Final Examination. December A) 87 m B) 46 m C) 94 m D) 50 m Answer all questions. The multiple choice questions are worth 4 marks and problems 10 marks each. 1. You walk 55 m to the north, then turn 60 to your right and walk another 45 m. How far are you from where

More information

How do we describe motion?

How do we describe motion? Lecture 3: The Laws of Motion and Universal Gravitation Astronomy 2020, Prof. Tom Megeath To be ignorant of motion is to be ignorant of nature -Aristotle Overview of Today s Lecture 1. Newton s three laws

More information