# Work, Energy and Power

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed from one type into another type. We call this rule conservation of energy. Work Work and energy are the same thing. When a force moves mething along any distance we say that work has been done and energy has been transformed (energy has been changed from one type to another type). The different kinds of energy that you will have met before are Kinetic Potential Light Sound Nuclear Heat Electrical Chemical For example, if a box is pushed across the floor, work has to be done to overcome the force of friction between the floor and the bottom of the box that is opposing the movement. How do we calculate the work done? Energy transformed = work done = applied force x distance We write this equation as

2 A crate of mass 50kg is pushed along a floor with a force of 20N for a distance of 5m. Calculate the work done. Use WD = Fxd = 20N x 5m WD = 100Nm But energy transformed = work done Energy is measured in Joules (J) Nm must be the same unit as J. This means we can say that WD = 100J Note that the mass of the crate is not required to answer the question. The mass would be required if we needed to calculate the work done by lifting the crate but not by pushing it. Example: How far must a 5N force pull a 50g toy car if 30J of energy are transferred? Use Rearrange to get d = WD F = 30 5 d = 6m

3 A man exerts a force of 2kN on a boulder but fails to move it. Calculate the work done. Use WD = 0 = 2000 x 0 d = 0 because the boulder does not move If an object does not move when the force is applied then no work is done. Work is only done if the object moves. Gravitational Potential Energy Whenever we lift up an object we are providing a force to act against gravity. By lifting the object we are storing energy in it. We can calculate the energy stored in an object when it is raised up by looking at the work done in lifting it. Imagine that a box of mass m is lifted up to a height h above the ground. The force that must be overcome to move the box is the weight due to gravity. The weight (W) is given by So W = mass x gravitational field strength W = mg (= Force to lift the box) m m h

4 Now we can use to calculate the stored energy. = (mg) x d = (mg) x h WD = mgh This tells us that the energy needed to lift mething (E) is given by E = mass x gravitational field strength x height In other words, the potential energy stored in the object by raising it up is given by E p = mgh Example: A football of mass 2.5kg is lifted up to the top of a cliff that is 180m high. How much potential energy does the football gain? Use E p = mgh = 2.5 x 10 x 180 E p = 4500J

5 Power Power is the way we mearure how quickly energy is being changed. When we look at the power of a moving object, we are really looking at how fast work is happening. We define power as Power = work done time taken and using symbols, we write this as Power is measured in Watts. ( P= F x d ) t Example: A pern of mass 70kg runs up a flight of stairs with a vertical height of 5m. If the trip takes 7s to complete, calculate the pern s power. WD = E p = mgh = 70 x 10 x 5 = 3500J Power = work done time = Power = 500W

6 A lift motor has to move a fully laden lift 4m between floors in 1.5s. The lift has a mass of 1850kg (ignore friction). a) Calculate the weight of the fully laden lift. W = mg = 1850 x 10 = 18500N b) What is the upward force in the cable when the lift is moving at a constant speed? At constant speed, forces must be balanced. Upward force = downward force (weight) Upward force = 18500N c) What is the work done by the motor? = x 4 WD = 74000J d) What is the minimum power of the motor to raise the lift at a steady speed? Steady speed means forces are balanced. Power = work done time = Power = 49333W

7 Kinetic Energy Any moving object has Kinetic Energy (E k ). The kinetic energy of an object will increase if mass increases. The kinetic energy will increase if speed increases. We can calculate kinetic energy using the equation Ek = 1 2 mv2 where m is the mass of the object and v is the speed. Notice that the speed is squared in the equation. This means that if speed is doubled, energy x 4 if speed is trebled, energy x 9 Example: How much kinetic energy has a 160g cricket ball when it is thrown at a speed of 22m/s? use Ek = 1 2 mv2 =0.5 x 0.16 x (22) 2 = 0.5 x 0.16 x 484 Ek = 38.72J

8 How fast is a trolley moving if it has 180.5J of kinetic energy? Ek = 1 2 mv2 rearrange to get 2Ek =mv 2 v 2 = 2Ek m v= 2Ek m = 2x = = v = 9.5m/s Potential and Kinetic Energy often appear in the same problems. Imagine a brick falling from a wall. The brick originally has only potential energy. As the brick falls, it loses potential energy but gains kinetic energy as it accelerates towards the ground. The total energy of the brick at any point in time is given by the sum of the potential and kinetic energies and is always equal to the initial potential energy. This is due to the conservation of energy.

9 A ball rolls off a table and hits the floor at 5m/s. What is the height of the table. Initial energy = Ep Final energy = Ek But conservation of energy tells us Ep = Ek. So mgh = 1 2 mv2 2gh = v 2 h = v2 2g = h = 1.25m

### WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS

WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that

### Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

### Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

### Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### Name Period WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS. 1. Stored energy or energy due to position is known as energy.

Name Period Date WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as energy. 2. The formula for calculating potential energy is. 3. The three factors

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### UNIT 2 GCSE PHYSICS 2.2.1 Forces and Energy 2011 FXA WORK DONE (J) = ENERGY TRANSFERRED (J) WORK

29 When a force causes an object to move through a distance, work is done. Work done, force and distance are related by the equation : W = F x d WORK When a force is applied to an object and cause it to

### Gravitational Potential Energy

Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

### 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

### WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

### Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

### Work. Work = Force x parallel distance (parallel component of displacement) F v

Work Work = orce x parallel distance (parallel component of displacement) W k = d parallel d parallel Units: N m= J = " joules" = ( kg m2/ s2) = average force computed over the distance r r When is not

### Energy - Key Vocabulary

Energy - Key Vocabulary Term Potential Energy Kinetic Energy Joules Gravity Definition The energy an object possesses due to its position. PE = mgh The energy an object possesses when it is in motion.

### General Physical Science

General Physical Science Chapter 4 Work and Energy Work The work done by a constant force F acting upon an object is the product of the magnitude of the force (or component of the force) and the parallel

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

### 3 Work, Power and Energy

3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

### Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

### Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

### Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel

### Work, Energy and Power Practice Test 1

Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

### Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

### Potential / Kinetic Energy Remedial Exercise

Potential / Kinetic Energy Remedial Exercise This Conceptual Physics exercise will help you in understanding the Law of Conservation of Energy, and its application to mechanical collisions. Exercise Roles:

### PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

### Physics 201 Homework 8

Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

### Chapter 6. Work and Energy

Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy

### Work and Conservation of Energy

Work and Conservation of Energy Topics Covered: 1. The definition of work in physics. 2. The concept of potential energy 3. The concept of kinetic energy 4. Conservation of Energy General Remarks: Two

### Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

### 10.1 Quantitative. Answer: A Var: 50+

Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

### PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

### Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

### Energy transformations

Energy transformations Objectives Describe examples of energy transformations. Demonstrate and apply the law of conservation of energy to a system involving a vertical spring and mass. Design and implement

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### Work and Energy. Work = Force Distance. Work increases the energy of an object. Energy can be converted back to work.

Work and Energy Ch. 6 Work = Force Distance Work increases the energy of an object. Energy can be converted back to work. Therefore, energy and work have the same unit: Newton meter = Nm Energy per gram,

### Chapter 6. Work and Energy

Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

### PHY231 Section 1, Form B March 22, 2012

1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

Energy What is Energy? Energy is the ability to do work. Any object that has energy has the ability to create force. Energy is one of the fundamental building blocks of our universe. Energy appears in

### Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

### Lesson 3 - Understanding Energy (with a Pendulum)

Lesson 3 - Understanding Energy (with a Pendulum) Introduction This lesson is meant to introduce energy and conservation of energy and is a continuation of the fundamentals of roller coaster engineering.

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

### LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY

LeaPS Workshop March 12, 2010 Morehead Conference Center Morehead, KY Word Bank: Acceleration, mass, inertia, weight, gravity, work, heat, kinetic energy, potential energy, closed systems, open systems,

### Conservation of Energy Physics Lab VI

Conservation of Energy Physics Lab VI Objective This lab experiment explores the principle of energy conservation. You will analyze the final speed of an air track glider pulled along an air track by a

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### AP Physics C Fall Final Web Review

Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### Lesson 39: Kinetic Energy & Potential Energy

Lesson 39: Kinetic Energy & Potential Energy Total Mechanical Energy We sometimes call the total energy of an object (potential and kinetic) the total mechanical energy of an object. Mechanical energy

### CHAPTER 15 FORCE, MASS AND ACCELERATION

CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car

### Conservative vs. Non-conservative forces Gravitational Potential Energy. Work done by non-conservative forces and changes in mechanical energy

Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

### 1. Mass, Force and Gravity

STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

### Unit 3 Work and Energy Suggested Time: 25 Hours

Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense

### www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

### AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

### physics 111N work & energy

physics 111N work & energy conservation of energy entirely gravitational potential energy kinetic energy turning into gravitational potential energy gravitational potential energy turning into kinetic

### Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

### BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

### Section 15.1 Energy and Its Forms (pages 446 452)

Section 15.1 and Its Forms (pages 446 452) This section describes how energy and work are related. It defines kinetic energy and potential energy, and gives examples for calculating these forms of energy.

### F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

### LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

### What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage

Unit Grades K-3 Awareness Teacher Overview What is energy? Energy makes change; it does things for us. It moves cars along the road and boats over the water. It bakes a cake in the oven and keeps ice frozen

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

ch 15 practice test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Work is a transfer of a. energy. c. mass. b. force. d. motion. 2. What

### What Is Energy? Energy and Work: Working Together. 124 Chapter 5 Energy and Energy Resources

1 What You Will Learn Explain the relationship between energy and work. Compare kinetic and potential energy. Describe the different forms of energy. Vocabulary energy kinetic energy potential energy mechanical

### Practice Test SHM with Answers

Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

### Name Class Date. You do twice as much work. b. You lift two identical books one meter above the ground.

Exercises 9.1 Work (pages 145 146) 1. Circle the letter next to the correct mathematical equation for work. work = force distance work = distance force c. work = force distance d. work = force distance

### What is Energy? What is the relationship between energy and work?

What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but

### Bounce! Name. Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure.

Bounce 1 Name Bounce! Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure. Background information: Energy causes things to happen. During the day, the sun gives

### Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

### Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

### (and Conservation of Energy)

(and Conservation of Energy) Energy What does the word energy mean to you? (Talk amongst yourselves) Just like always, the physicsdefinition is a little bit different, but we re going to hold off on it

### Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

### Work, Energy and Power

Name: KEY Work, Energy and Power Objectives: 1. To understand work and its relation to energy. 2. To understand how energy can be transformed from one form into another. 3. To compute the power from the

### LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

### Problem Set V Solutions

Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

### Freely Falling Objects

Freely Falling Objects Physics 1425 Lecture 3 Michael Fowler, UVa. Today s Topics In the previous lecture, we analyzed onedimensional motion, defining displacement, velocity, and acceleration and finding

### In science, energy is the ability to do work. Work is done when a force causes an

What is energy? In science, energy is the ability to do work. Work is done when a force causes an object to move in the direction of the force. Energy is expressed in units of joules (J). A joule is calculated

### Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

### Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

### Supplemental Questions

Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

### Key Concepts What is mechanical energy? How do you calculate the amount of mechanical energy an object has?

Physics Outcome 2 Energy and Energy Transformations At the end of this section students will understand and calculate the two types of energy studied in Science 10, kinetic and potential energy This outcome

### Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

### Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to

### ACTIVITY 6: Falling Objects

UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.

### AP Physics C. Oscillations/SHM Review Packet

AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

### Physical Quantities and Units

Physical Quantities and Units 1 Revision Objectives This chapter will explain the SI system of units used for measuring physical quantities and will distinguish between vector and scalar quantities. You

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### Practice TEST 2. Explain your reasoning

Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

### Chapter 9. particle is increased.

Chapter 9 9. Figure 9-36 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass

### Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

### Unit 8A: Systems in Action (Pg. 2 85) Chapter 2: Getting to Work (pg. 28 55)

Unit 8A: Systems in Action (Pg. 2 85) Chapter 2: Getting to Work (pg. 28 55) Name: Date: 2.1: Physical Systems: Simple Machines (Pg. 30 35): Read Pages 30-35. Answer the following questions on pg. 35:

### Giancoli 6th Edition Problem Solutions Chapter #6

Giancoli 6th Edition Problem Solutions Chapter #6 ü Problem #3 QUESTION: A 1300 Nt crate rests on the floor. How much work is required to move it at constant speed (a) 4.0 m along the floor against a friction