2 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS

Size: px
Start display at page:

Download "2 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS"

Transcription

1 2 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS 1. The group rig k[g] The mai idea is that represetatios of a group G over a field k are the same as modules over the group rig k[g]. First I defied both terms Represetatios of groups. Defiitio 1.1. A represetatio of a group G over a field k is defied to be a group homomorphism where V is a vector space over k. ρ : G Aut k (V ) Here Aut k (V ) is the group of k-liear automorphisms of V. This also writte as GL k (V ). This is the group of uits of the rig Ed k (V )= Hom k (V, V ) which, as I explaied before, is a rig with additio defied poitwise ad multiplicatio give by compositio. If dim k (V )=d the Aut k (V ) = Aut k (k d )=GL d (k) which ca also be described as the group of uits of the rig Mat d (k) or as: GL d (k) ={A Mat d (k) det(a) 0} d = dim k (V ) is called the dimesio of the represetatio ρ examples. Example 1.2. The first example I gave was the trivial represetatio. This is usually defied to be the oe dimesioal represetatio V = k with trivial actio of the group G (which ca be arbitrary). Trivial actio meas that ρ(σ) = 1 = id V for all σ G. I the ext example, I poited out that the group G eeds to be writte multiplicatively o matter what. Example 1.3. Let G = Z/3. Writte multiplicatively, the elemets are 1, σ, σ 2. Let k = R ad let V = R 2 with ρ(σ) defied to be rotatio by 120 =2π/3. I.e., ( ) 1/2 3/2 ρ(σ) = 3/2 1/2 Example 1.4. Suppose that E is a field extesio of k ad G = Gal(E/k). The G acts o E by k-liear trasformatios. This gives a represetatio: ρ : G Aut k (E) Note that this map is a iclusio by defiitio of Galois group.

2 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS axioms. I a elemetary discussio of group represetatios I would write a list of axioms as a defiitio. However, they are just logwided explaatios of what it meas for ρ : G Aut k (V ) to be a group homomorphism. The oly advatage is that you do t eed to assume that ρ(σ) is a automorphism. Here are the axioms. (I switched the order of (2) ad (3) i the lecture.) (1) ρ(1) = 1 1v = v v V (2) ρ(στ) =ρ(σ)ρ(τ) σ, τ G (στ)v = σ(τv) v V (3) ρ(σ) is k-liear σ G σ(av + bw) =aσv + bσw v, w V, a, b k The first two coditios say that ρ is a actio of G o V. Actios are usually writte by juxtapositio: σv := ρ(σ)(v) The third coditio says that the actio is k-liear. So, together, the axioms say that a represetatio of G is a k-liear actio of G o a vector space V Modules over k[g]. The group rig k[g] is defied to be the set of all fiite k liear combiatios of elemets of G: a σ σ where α σ k for all σ G ad a σ = 0 for almost all σ. For example, R[Z/3] is the set of all liear combiatios x + yσ + zσ 2 where x, y, z R. I.e., R[Z/3] = R 3. I geeral k[g] is a vector space over k with G as a basis. Multiplicatio i k[g] is give by ( )( ( ) aσ σ bτ τ) = cλ λ where c λ G ca be give i three differet ways: c λ = στ=λ a σ b τ = Propositio 1.5. k[g] is a k-algebra. a σ b σ 1 λ = τ G a λτ 1b τ This is straightforward ad tedious. So, I did t prove it. But I did explai what it meas ad why it is importat. Recall that a algebra over k is a rig which cotais k i its ceter. The ceter Z(R) of a (ocommutative) rig R is defied to be the set of elemets of R which commute with all the other elemets: Z(R) is a subrig of R. Z(R) := {x R xy = yx y R}

3 4 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS The ceter is importat for the followig reaso. Suppose that M is a (left) R-module. The each elemet r R acts o M by left multiplicatio λ r λ r : M M, λ r (x) =rx This is a homomorphism of Z(R)-modules sice: λ r (ax) =rax = arx = aλ r (x) a Z(R) Thus the actio of R o M gives a rig homomorphism: ρ : R Ed Z(R) (M) Gettig back to k[g], suppose that M is a k[g]-module. The the actio of k[g] o M is k-liear sice k is i the ceter of k[g]. So, we get a rig homomorphism ρ : k[g] Ed k (M) This restricts to a group homomorphism ρ G : G Aut k (M) I poited out that, i geeral, ay rig homomorphism φ : R S will iduce a group homomorphism U(R) U(S) where U(R) is the group of uits of R. Ad I poited out earlier that Aut k (M) is the group of uits of Ed k (M). G is cotaied i the group of uits of k[g]. (A iterestig related questio is: Which fiite groups occur as groups of uits of rigs?) This discussio shows that a k[g]-module M gives, by restrictio, a represetatio of the group G o the k-vector space M. Coversely, suppose that ρ : G Aut k (V ) is a group represetatio. The we ca exted ρ to a rig homomorphism ρ : k[g] Ed k (V ) by the simple formula ( ) ρ aσ σ = a σ ρ(σ) Whe we say that a represetatio of a group G is the same as a k[g]-module we are talkig about this correspodece. The vector space V is also called a G-module. So, it would be more accurate to say that a G-module is the same as a k[g]-module. Corollary 1.6. (1) Ay group represetatio ρ : G Aut k (V ) exteds uiquely to a rig homomorphism ρ : k[g] Ed k (V ) makig V ito a k[g]-module.

4 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS 5 (2) For ay k[g]-module M, the actio of k[g] o M restricts to give a group represetatio G Aut k (M). (3) These two operatios are iverse to each other i the sese that ρ is the restrictio of ρ ad a actio of the rig k[g] is the uique extesio of its restrictio to G. There are some coceptual differeces betwee the group represetatio ad the correspodig k[g]-module. For example, the module might ot be faithful eve if the group represetatio is: Defiitio 1.7. A group represetatio ρ : G Aut k (V ) is called faithful if oly the trivial elemet of G acts as the idetity o V. I.e., if the kerel of ρ is trivial. A R-module M is called faithful if the aihilator of M is zero. (a(m) ={r R rx =0 x M}). These two defiitios do ot agree. For example, take the represetatio ρ : Z/3 GL 2 (R) which we discussed earlier. This is faithful. But the extesio to a rig homomorphism ρ : R[Z/3] Mat 2 (R) is ot a moomorphism sice 1 + σ + σ 2 is i its kerel Semisimplicity of k[g]. The mai theorem about k[g] is the followig. Theorem 1.8 (Maschke). If G is a fiite group of order G = ad k is a field with char k (or char k =0) the k[g] is semisimple. Istead of sayig char k is either 0 or a prime ot dividig, I will say that 1/ k. By the Wedderbur structure theorem we get the followig. Corollary 1.9. If 1/ G k the k[g] = Mat d1 (D i ) Mat db (D b ) where D i are fiite dimesioal divisio algebras over k. Example R[Z/3] = R C I geeral, if G is abelia, the the umbers d i must all be 1 ad D i must be fiite field extesios of k.

5 6 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS homomorphisms. I order to prove Maschke s theorem, we eed to talk about homomorphisms of G-modules. We ca defie these to be the same as homomorphisms of k[g]-modules. The the followig is a propositio. (Or, we ca take the followig as the defiitio of a G- module homomorphism, i which case the propositio is that G-module homomorphisms are the same as homomorphisms of k[g]-modules.) Propositio Suppose that V, W are k[g]-modules. The a k- liear mappig φ : V W is a homomorphism of k[g]-modules if ad oly if it commutes with the actio of G. I.e., if for all σ G. σ(φ(v)) = φ(σv) Proof. Ay homomorphism of k[g]-modules will commute with the actio of k[g] ad therefore with the actio of G k[g]. Coversely, if φ : V W commutes with the actio of G the, for ay a σ σ k[g], we have ( ) φ a σ σv = a σ φ(σv) = ( ) a σ σφ(v) = a σ σ φ(v) So, φ is a homomorphism of k[g]-modules. We also have the followig Propositio/Defiitio of a G-submodule. Propositio A subset W of a G-module V over k is a k[g]- submodule (ad we call it a G-submodule) if ad oly if (1) W is a vector subspace of V ad (2) W is ivariat uder the actio of G. I.e., σw W for all σ G. Proof of Maschke s Theorem. Suppose that V is a fiitely geerated G-module ad W is ay G-submodule of V. The we wat to show that W is a direct summad of V. This is oe of the characterizatios of semisimple modules. This will prove that all f.g. k[g]-modules are semisimple ad therefore k[g] is a semisimple rig. Sice W is a submodule of V, it is i particular a vector subspace of V. So, there is a liear projectio map φ : V W so that φ W = id W. If φ is a homomorphism of G-modules, the V = W ker φ ad W would split from V. So, we would be doe. If φ is ot a G- homomorphism, we ca make it ito a G-homomorphism by averagig over the group, i.e., by replacig it with ψ = 1 λσ 1 φ λ σ.

6 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS 7 First, I claim that ψ W = id W. To see this take ay w W. The σw W. So, φ(σw) =σw ad ψ(w) = 1 σ 1 φ(σw) = 1 σ 1 (σw) =w Next I claim that ψ is a homomorphism of G-modules. To show this take ay τ G ad v V. The ψ(τv) = 1 σ 1 φ(στv) = 1 αφ(βv) αβ=τ = 1 τσ 1 φ(σv) =τψ(v) So, ψ gives a splittig of V as required R[Z/3]. I gave a logwided explaatio of Example 1.10 usig the uiversal property of the group rig k[g]. I these otes, I will just summarize this property i oe equatio. If R is ay k-algebra ad U(R) is the group of uits of R, the: Hom k-alg (k[g],r) = Hom grp (G, U(R)) The isomorphism is give by restrictio ad liear extesio. The isomorphism R[Z/3] = R C is give by the mappig: φ : Z/3 R C which seds the geerator σ to (1,ω) where ω is a primitive third root of uity. Sice (1, 0), (1,ω), (1, ω) are liearly idepedet over R, the liear extesio φ of φ is a isomorphism of R-algebras group rigs over C. We will specialize to the case k = C. I that case, there are o fiite dimesioal divisio algebras over C (Part C, Theorem 3.12). So, we get oly matrix algebras: Corollary If G is ay fiite group the I particular, = G = d 2 i. C[G] = Mat d1 (C) Mat db (C) Example If G is a fiite abelia group of order the C[G] = C. Example Take G = S 3, the symmetric group o 3 letters. Sice this group is oabelia, the umbers d i caot all be equal to 1. But

7 8 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS the oly way that 6 ca be writte as a sum of squares, ot all 1, is 6 = Therefore, C[S 3 ] = C C Mat 2 (C) This ca be viewed as a subalgebra of Mat 4 (C) give by Each star ( ) represets a idepedet complex variable. I this descriptio, it is easy to visualize what are the simple factors Mat di (C) give by the Wedderbur structure theorem. But what are the correspodig factors of the group rig C[G]? 1.4. idempotets. Suppose that R = R 1 R 2 R 3 is a product of three subrigs. The the uity of R decomposes as 1 = (1, 1, 1). This ca be writte as a sum of uit vectors: 1 = (1, 0, 0) + (0, 1, 0) + (0, 0, 1) = e 1 + e 2 + e 3 This is a decompositio of uity (1) as a sum of cetral, orthogoal idempotets e i. Recall that idempotet meas that e 2 i = e i for all i. Also, 0 is ot cosidered to be a idempotet. Orthogoal meas that e i e j = 0 if i j. Cetral meas that e i Z(R). Theorem A rig R ca be writte as a product of b subrigs R 1,R 2,,R b iff 1 R ca be writte as a sum of b cetral, orthogoal idempotets ad, i that case, R i = e i R. A cetral idempotet e is called primitive if it caot be writte as a sum of two cetral orthogoal idempotets. Corollary The umber of factors R i = e i R is maximal iff each e i is primitive. So, the problem is to write uity 1 C[G] as a sum of primitive, cetral ( orthogoal) idempotets. We will derive a formula for this decompositio usig characters.

8 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS Ceter of C[G]. Before I move o to characters, I wat to prove oe last thig about the group rig C[G]. Theorem The umber of factors b i the decompositio C[G] b = Mat di (C) is equal to the umber of cojugacy classes of elemets of G. i=1 For, example, the group S 3 has three cojugacy classes: the idetity {1}, the traspositios {(12), (23), (13)} ad the 3-cycles {(123), (132)}. I order to prove this we ote that b is the dimesio of the ceter of the right had side. Ay cetral elemet of Mat di (C) is a scalar multiple of the uit matrix which we are callig e i (the ith primitive cetral idempotet). Therefore: Lemma The ceter of b i=1 Mat d i (C) is the vector subspace spaed by the primitive cetral idempotets e 1,,e b. I particular it is b-dimesioal. So, it suffices to show that the dimesio of the ceter of C[G] is equal to the umber of cojugacy classes of elemets of G. (If G is abelia, this is clearly true.) Defiitio A class fuctio o G is a fuctio f : G X so that f takes the same value o cojugate elemets. I.e., for all σ, τ G. Usually, X = C. f(τστ 1 )=f(σ) For example, ay fuctio o a abelia group is a class fuctio. Lemma For ay field k, the ceter of k[g] is the set of all a σσ so that a σ is a class fuctio o G. So, Z(k[G]) = k c where c is the umber of cojugacy classes of elemets of G. Proof. If a σσ is cetral the a σ σ = τ a σ στ 1 = a σ τστ 1 The coefficiet of τστ 1 o both sides must agree. So a τστ 1 = a σ I.e., a σ is a class fuctio. The coverse is also clear. These two lemmas clearly imply Theorem 1.18 (which ca ow be stated as: b = c if k = C).

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu> (March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

More information

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2 4. Basic feasible solutios ad vertices of polyhedra Due to the fudametal theorem of Liear Programmig, to solve ay LP it suffices to cosider the vertices (fiitely may) of the polyhedro P of the feasible

More information

Permutations, the Parity Theorem, and Determinants

Permutations, the Parity Theorem, and Determinants 1 Permutatios, the Parity Theorem, ad Determiats Joh A. Guber Departmet of Electrical ad Computer Egieerig Uiversity of Wiscosi Madiso Cotets 1 What is a Permutatio 1 2 Cycles 2 2.1 Traspositios 4 3 Orbits

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

Factors of sums of powers of binomial coefficients

Factors of sums of powers of binomial coefficients ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

Notes on exponential generating functions and structures.

Notes on exponential generating functions and structures. Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Analysis Notes (only a draft, and the first one!)

Analysis Notes (only a draft, and the first one!) Aalysis Notes (oly a draft, ad the first oe!) Ali Nesi Mathematics Departmet Istabul Bilgi Uiversity Kuştepe Şişli Istabul Turkey aesi@bilgi.edu.tr Jue 22, 2004 2 Cotets 1 Prelimiaries 9 1.1 Biary Operatio...........................

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

Metric, Normed, and Topological Spaces

Metric, Normed, and Topological Spaces Chapter 13 Metric, Normed, ad Topological Spaces A metric space is a set X that has a otio of the distace d(x, y) betwee every pair of poits x, y X. A fudametal example is R with the absolute-value metric

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

On the L p -conjecture for locally compact groups

On the L p -conjecture for locally compact groups Arch. Math. 89 (2007), 237 242 c 2007 Birkhäuser Verlag Basel/Switzerlad 0003/889X/030237-6, ublished olie 2007-08-0 DOI 0.007/s0003-007-993-x Archiv der Mathematik O the L -cojecture for locally comact

More information

Irreducible polynomials with consecutive zero coefficients

Irreducible polynomials with consecutive zero coefficients Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem

More information

Ekkehart Schlicht: Economic Surplus and Derived Demand

Ekkehart Schlicht: Economic Surplus and Derived Demand Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/

More information

, a Wishart distribution with n -1 degrees of freedom and scale matrix.

, a Wishart distribution with n -1 degrees of freedom and scale matrix. UMEÅ UNIVERSITET Matematisk-statistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

5.3. Generalized Permutations and Combinations

5.3. Generalized Permutations and Combinations 53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Fast Fourier Transform

Fast Fourier Transform 18.310 lecture otes November 18, 2013 Fast Fourier Trasform Lecturer: Michel Goemas I these otes we defie the Discrete Fourier Trasform, ad give a method for computig it fast: the Fast Fourier Trasform.

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

Overview on S-Box Design Principles

Overview on S-Box Design Principles Overview o S-Box Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA -721302 What is a S-Box? S-Boxes are Boolea

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis Ruig Time ( 3.) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

THE ABRACADABRA PROBLEM

THE ABRACADABRA PROBLEM THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please

More information

3 Basic Definitions of Probability Theory

3 Basic Definitions of Probability Theory 3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio

More information

Convex Bodies of Minimal Volume, Surface Area and Mean Width with Respect to Thin Shells

Convex Bodies of Minimal Volume, Surface Area and Mean Width with Respect to Thin Shells Caad. J. Math. Vol. 60 (1), 2008 pp. 3 32 Covex Bodies of Miimal Volume, Surface Area ad Mea Width with Respect to Thi Shells Károly Böröczky, Károly J. Böröczky, Carste Schütt, ad Gergely Witsche Abstract.

More information

Multiplexers and Demultiplexers

Multiplexers and Demultiplexers I this lesso, you will lear about: Multiplexers ad Demultiplexers 1. Multiplexers 2. Combiatioal circuit implemetatio with multiplexers 3. Demultiplexers 4. Some examples Multiplexer A Multiplexer (see

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

GROUP ALGEBRAS. ANDREI YAFAEV

GROUP ALGEBRAS. ANDREI YAFAEV GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S.

Lemma 5.2. Let S be a set. (1) Let f and g be two permutations of S. Then the composition of f and g is a permutation of S. Definition 51 Let S be a set bijection f : S S 5 Permutation groups A permutation of S is simply a Lemma 52 Let S be a set (1) Let f and g be two permutations of S Then the composition of f and g is a

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

1 The Gaussian channel

1 The Gaussian channel ECE 77 Lecture 0 The Gaussia chael Objective: I this lecture we will lear about commuicatio over a chael of practical iterest, i which the trasmitted sigal is subjected to additive white Gaussia oise.

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

Now here is the important step

Now here is the important step LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

Systems Design Project: Indoor Location of Wireless Devices

Systems Design Project: Indoor Location of Wireless Devices Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: bcm1@cec.wustl.edu Supervised

More information

Biology 171L Environment and Ecology Lab Lab 2: Descriptive Statistics, Presenting Data and Graphing Relationships

Biology 171L Environment and Ecology Lab Lab 2: Descriptive Statistics, Presenting Data and Graphing Relationships Biology 171L Eviromet ad Ecology Lab Lab : Descriptive Statistics, Presetig Data ad Graphig Relatioships Itroductio Log lists of data are ofte ot very useful for idetifyig geeral treds i the data or the

More information