Basic Measurement Issues. Sampling Theory and AnalogtoDigital Conversion


 Ashley Griffith
 1 years ago
 Views:
Transcription
1 Theory ad AalogtoDigital Coversio Itroductio/Defiitios Aalogtodigital coversio Rate Frequecy Aalysis Basic Measuremet Issues Reliability the extet to which a measuremet procedure yields the same results o repeated trials Validity the extet to which a measuremet procedure measures what it is supposed to measure Sesitivity resposiveess of a istrumet to a chage i the icomig sigal Precisio the degree of exactess with which a measuremet is made, similar meaig as accuracy Resolutio The fieess of detail that ca be distiguished i a measuremet Defiitios Sigal a fluctuatig electric quatity, such as a voltage or curret, whose variatios represet coded iformatio Aalog sigal represets data by a cotiuously variable quatity Digital sigal represets data i a discrete, umerical form Defiitios Digitizatio the process of covertig a aalog sigal ito digital form Aalogtodigital coverter (ADC) a device that digitizes a aalog sigal a aalog sigal is said to be sampled to produce the digital sigal Quatizatio to subdivide ito small but measurable icremets: digital sigals are limited by the umber of biary digits ( bits ) that ca be used to represet them Aalogtodigital coversio process aalog sigal ADC digital sigal computer memory Aalogtodigital coversio Parameters of the ADC process: Iput rage establishes max voltage rage to be detected bipolar: ± 1V, ± 5V, ± 10V uipolar: 01V, 05V, 010V usually selectable i hardware or software Iput cofiguratio sigleeded: oe iput relative to groud differetial: differece betwee 2 iputs is sampled System gai degree to which sigal is amplified before samplig 1
2 Aalogtodigital coversio Parameters of the ADC process: Amplitude resolutio how precisely amplitude of sigal ca be quatified determied by bit value of ADC commo: 12bit (2 12 = 4096 discreet levels) 16bit (2 16 = 65,536 discreet levels) Temporal resolutio how frequetly the ADC takes samples of the aalog sigal determied by samplig rate values from 30 to 2000 are commo Together, amplitude ad temporal resolutio greatly affect the quality of the sampled sigal ADC Amplitude Resolutio +5 V 0 V 5 V A 4bit A/D set up (2 4 = 16 discreet levels) biary values ADC Amplitude Resolutio A 4bit A/D set up closeup view V V V 1011 Aalogtodigital coversio How precisely does a 12bit A/D board detect amplitude chages i a sigal? 12 bit ADC = 2 12 = 4096 discreet levels, distributed over the whole iput rage For a ± 10 V iput, you have a rage of 20 V (20 V) / (4096 ADC uits) = V per ADC uit V V 1001 Is 4.9mV per ADC uit good or bad resolutio? Force Plate: if +10 V = 2500 N (for a give FP gai settig), the 1 ADC uit = 1.22 N I other words, you will be uable to detect chages i force that are less tha 1.22 N, this is probably OK ADC Temporal Resolutio Rate: how ofte is the sigal sampled? t 1 t 2 t t 3 period: time betwee adjacet samples e.g. τ = t 2 t 1 rate: frequecy with which samples are take e.g. f = 1 / τ ADC Temporal Resolutio What is a adequate samplig rate? Govered by Shao s samplig theorem: the sigal must be sampled at a frequecy at least twice as high as the highest frequecy preset i the sigal itself This miimally acceptable samplig frequecy is kow as the Nyquist frequecy But what exactly does sigal frequecy cotet mea? 2
3 Fourier (Harmoic) Aalysis The sie fuctio The frequecy cotet of a sigal ca be determied by performig a Fourier aalysis Fourier discovered that ay sigal, o matter how complex, ca be represeted by a ifiite sum of weighted sie ad cosie waves y( t) = A + [ B si( f t) + C cos( f t )] =1 I practice, oly a fiite umber of harmoics are eed to adequately represet a sigal A related techique, the Fourier trasform, allows the frequecy compoets of a sigal to be revealed y( t) = A + B si ( f t ) A the mea (D.C.) offset from zero B the amplitude of the sigal f the frequecy of the sigal A = 0 B = 1 f = 1 Fourier series approximatio costat = Frequecy Compoet These Aother sigals ca be discussed with represetatio respect to the time domai of the or Fourier the frequecy series domai. A approximatio sie (or cosie) waveform is a sigle frequecy; ay other waveform ca be the sum of a umber of sie ad cosie waves. Fourier series approximatio y(t) = A + B 1 si(f 1 t) + C 1 cos(f 1 t) + B 2 si(f 2 t) + C 2 cos(f 2 t) + Approximatio of the data improves as the umber of harmoics used icreases However, 94% of the total sigal power was cotaied i just the 1 st harmoic umber of harmoics used Fourier Trasform Coverts sigals from the time domai to the frequecy domai The Fourier trasform separates a sigal ito siusoids of differet frequecy which sum to the origial waveform: it distiguishes the differet frequecy siusoids ad their respective amplitudes Discrete Fourier Trasform (DFT) Fast Fourier Trasform (FFT) Typically, the square of the FFT is used istead, which is called the Power Desity Spectrum 3
4 Fourier Trasform origial sigal 20 oise added Fourier Trasform Raw EMG sigal Power Spectral Desity time (s) FFT time (s) FFT samples frequecy () frequecy () frequecy () Frequecy Cotet Frequecy cotet of some commo sigals ecoutered i biomechaics: Activity Stadig posture Walkig Ruig Heelstrike trasiet EMG (surface) EMG (idwellig) Max Freq of Iterest ADC Temporal Resolutio Now, back to samplig rate: What happes if you sample at a rate lower tha the Nyquist frequecy? A error, kow as aliasig, will occur, corruptig your data (aliased sigals show up at a freq of f samp f sig, so 40 sigal sampled at 50HZ will show up as a 10 sigal) Whe aliasig occurs, frequecies greater tha ½ the samplig rate fold back ito the lower frequecy compoets, distortig the sigal High frequecy iformatio is ot simply lost, it actually reappears as false low frequecy cotet Oe commo form of aliasig, which most people have observed, is the 'wago wheels' effect i films. Sice the rate of the film is usually much lower tha the frequecy at which the spokes of a wheel pass ay oe poit, aliasig takes place ad the wheels appear to tur either much more slowly tha they really are, or eve seem to go backwards sometimes." (D.W. Grieve et. al., Techiques for the Aalysis of Huma Movemet. Priceto Book Compay, 1975, p. 41.) 4
5 Frequecy aalog 4 sie wave <2hz This is a 4 sigal, so the Nyquist freq is hz 12.5 Aliasig occurs at samplig rate of Frequecy Rate Take home message(s): at the Nyquist frequecy esures that frequecy cotet of sigal is preserved I practice, samplig at 45 times the highest frequecy preset i the sigal esures that sigal amplitude characteristics are preserved as well Aother example of aliasig: 1 sigal appears to be 0.33 Whe possible, a atialiasig filter should be used to elimiate oise that exists above ½ the samplig rate Rate Typical samplig rates used to collect various sigals i biomechaics: Sigal Motio Force EMG (surface) EMG (idwellig) Typical SR How do we determie the legth of samplig period? I repetitive motio the time eeds to be more tha the time for 1 cycle so if gait is 120 steps (60 strides) per miute the the rate is 1 ad you eed to sample loger tha 1s to obtai the full data set. You may icrease time to collect multiple repetitios. 5
6 I o repetitive activities such as liftig the you eed to go from start to fiish. I cases where frequecy of movemet is ot obvious pilot data eeded to eable appropriate decisio. Witer reported that i quiet stadig sigificat data foud at.002 which would require a 8 miute trial. Measuremet Errors No measuremet process is perfect, there will be some degree of error i the data Measuremet errors fall ito two categories Radom Errors Systematic Errors Both ca be miimized, but either ca be completely elimiated I particular, radom errors may be reduced through data processig techiques, systematic errors geerally ca ot Radom Error  Example 3 people measure the distace betwee two lies that are 1.5 cm apart Systematic Error  Example 1 perso measures the distace betwee two lies that are 1.5 cm apart, but places the ruler dow icorrectly cm 1.4 cm 1.6 cm They do t all get the same value, but this radom fluctuatio ca be largely elimiated by averagig the three values ( ) / 3 = 1.5 cm 1.2 cm 1.2 cm 1.2 cm This idividual was very cosistet i his measuremets, but he has itroduced a systematic error ito the data No amout of processig ca remove this error Measuremet Errors i Biomechaics Systematic Errors: cover frequecy spectrum Poor placemet of aatomical markers Movemet of markers/ski relative to boes Calibratio oliearities Digitizatio errors (some) Radom Errors: typically high frequecy Digitizatio errors (some) Marker jigglig/vibratio Electrical iterferece Miimizig Measuremet Errors Use of cosistet, proper techiques for data collectio Use of 3D techiques for motio capture Proper traiig of persoel Use of high quality equipmet 6
7 Up Next Topic Kiematics Readigs Robertso et al. (2004) Chapter 1, pp Witer (1990) Chapter 2, pp
CHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More informationChapter 25. Waveforms
Chapter 5 Nosiusoidal Waveforms Waveforms Used i electroics except for siusoidal Ay periodic waveform may be expressed as Sum of a series of siusoidal waveforms at differet frequecies ad amplitudes 1 Waveforms
More informationDescriptive statistics deals with the description or simple analysis of population or sample data.
Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small
More informationFourier Analysis. f () t = + cos[5 t] + cos[10 t] + sin[5 t] + sin[10 t] x10 Pa
Fourier Aalysis I our Mathematics classes, we have bee taught that complicated uctios ca ote be represeted as a log series o terms whose sum closely approximates the actual uctio. aylor series is oe very
More informationAPPLICATION NOTE 30 DFT or FFT? A Comparison of Fourier Transform Techniques
APPLICATION NOTE 30 DFT or FFT? A Compariso of Fourier Trasform Techiques This applicatio ote ivestigates differeces i performace betwee the DFT (Discrete Fourier Trasform) ad the FFT(Fast Fourier Trasform)
More informationEEL 5245 POWER ELECTRONICS I Lecture #10: Chapter 3 NonSinusoidal Systems and Harmonics Overview
EEL 5245 POWER ELECTRONICS I Lecture #1: Chapter 3 NoSiusoidal Systems ad Harmoics Overview Discussio Topics Real World Power System Data What is its harmoic cotet? Ad why? Decompositio of osiusoidal
More informationB1. Fourier Analysis of Discrete Time Signals
B. Fourier Aalysis of Discrete Time Sigals Objectives Itroduce discrete time periodic sigals Defie the Discrete Fourier Series (DFS) expasio of periodic sigals Defie the Discrete Fourier Trasform (DFT)
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationDomain 1  Describe Cisco VoIP Implementations
Maual ONT (6428) 18004186789 Domai 1  Describe Cisco VoIP Implemetatios Advatages of VoIP Over Traditioal Switches Voice over IP etworks have may advatages over traditioal circuit switched voice etworks.
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationPower Factor in Electrical Power Systems with NonLinear Loads
Power Factor i Electrical Power Systems with NoLiear Loads By: Gozalo Sadoval, ARTECHE / INELAP S.A. de C.V. Abstract. Traditioal methods of Power Factor Correctio typically focus o displacemet power
More informationTagore Engineering College Department of Electrical and Electronics Engineering EC 2314 Digital Signal Processing University Question Paper PartA
Tagore Egieerig College Departmet of Electrical ad Electroics Egieerig EC 34 Digital Sigal Processig Uiversity Questio Paper PartA UitI. Defie samplig theorem?. What is kow as Aliasig? 3. What is LTI
More informationCS100: Introduction to Computer Science
Review: History of Computers CS100: Itroductio to Computer Sciece Maiframes Miicomputers Lecture 2: Data Storage  Bits, their storage ad mai memory Persoal Computers & Workstatios Review: The Role of
More informationFourier Series and Transforms (Online)
7i x i Felder c9_olie.tex V  Jauary 4, 5 : P.M. Page CHAPTER 9 Fourier Series ad Trasforms (Olie) 9.7 Discrete Fourier Trasforms AFourierseries models a fuctio as a discrete set of umbers (coefficiets
More informationGCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea  add up all
More informationHypothesis Tests Applied to Means
The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with
More informationConfidence Intervals for One Mean with Tolerance Probability
Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with
More information5KHz low pass filter. unity at sample 1. Aligned with coeff. 3
Copyright 997, Lavry Egieerig Uderstadig FIR (Fiite Impulse Respose) Filters  A Ituitive Approach by Da Lavry, Lavry Egieerig People less familiar with digital sigal processig, ofte view the theory as
More information13 Fast Fourier Transform (FFT)
13 Fast Fourier Trasform FFT) The fast Fourier trasform FFT) is a algorithm for the efficiet implemetatio of the discrete Fourier trasform. We begi our discussio oce more with the cotiuous Fourier trasform.
More information{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers
. Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationSearching Algorithm Efficiencies
Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More information*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.
Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.
More informationConvention Paper 6764
Audio Egieerig Society Covetio Paper 6764 Preseted at the 10th Covetio 006 May 0 3 Paris, Frace This covetio paper has bee reproduced from the author's advace mauscript, without editig, correctios, or
More informationResearch Article Sign Data Derivative Recovery
Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov
More informationELG4139: DC to AC Converters
ELG4139: DC to AC Coverters Coverts DC to AC power by switchig the DC iput voltage (or curret) i a predetermied sequece so as to geerate AC voltage (or curret) output. I DC I ac + + V DC V ac Square Wave
More informationStatistical Methods. Chapter 1: Overview and Descriptive Statistics
Geeral Itroductio Statistical Methods Chapter 1: Overview ad Descriptive Statistics Statistics studies data, populatio, ad samples. Descriptive Statistics vs Iferetial Statistics. Descriptive Statistics
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationwhen n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.
Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have
More informationFourier Series and the Wave Equation Part 2
Fourier Series ad the Wave Equatio Part There are two big ideas i our work this week. The first is the use of liearity to break complicated problems ito simple pieces. The secod is the use of the symmetries
More informationTrading the randomness  Designing an optimal trading strategy under a drifted random walk price model
Tradig the radomess  Desigig a optimal tradig strategy uder a drifted radom walk price model Yuao Wu Math 20 Project Paper Professor Zachary Hamaker Abstract: I this paper the author iteds to explore
More informationStudy on the application of the software phaselocked loop in tracking and filtering of pulse signal
Advaced Sciece ad Techology Letters, pp.3135 http://dx.doi.org/10.14257/astl.2014.78.06 Study o the applicatio of the software phaselocked loop i trackig ad filterig of pulse sigal Sog Wei Xia 1 (College
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationTIEE Teaching Issues and Experiments in Ecology  Volume 1, January 2004
TIEE Teachig Issues ad Experimets i Ecology  Volume 1, Jauary 2004 EXPERIMENTS Evirometal Correlates of Leaf Stomata Desity Bruce W. Grat ad Itzick Vatick Biology, Wideer Uiversity, Chester PA, 19013
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationSection 73 Estimating a Population. Requirements
Sectio 73 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio
More information5 Boolean Decision Trees (February 11)
5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationEscola Federal de Engenharia de Itajubá
Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica PósGraduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José
More informationChapter 16. Fourier Series Analysis
Chapter 6 Fourier Series alysis 6 Itroductio May electrical waveforms are period but ot siusoidal For aalysis purposes, such waveform ca be represeted i series form based o the origial work of Jea Baptise
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationf(x + T ) = f(x), for all x. The period of the function f(t) is the interval between two successive repetitions.
Fourier Series. Itroductio Whe the Frech mathematicia Joseph Fourier (76883) was tryig to study the flow of heat i a metal plate, he had the idea of expressig the heat source as a ifiite series of sie
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More informationKey Ideas Section 81: Overview hypothesis testing Hypothesis Hypothesis Test Section 82: Basics of Hypothesis Testing Null Hypothesis
Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, Pvalue Type I Error, Type II Error, Sigificace Level, Power Sectio 81: Overview Cofidece Itervals (Chapter 7) are
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationCS100: Introduction to Computer Science
Iclass Exercise: CS100: Itroductio to Computer Sciece What is a flipflop? What are the properties of flipflops? Draw a simple flipflop circuit? Lecture 3: Data Storage  Mass storage & represetig
More informationTaking DCOP to the Real World: Efficient Complete Solutions for Distributed MultiEvent Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed MultiEvet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationStat 104 Lecture 2. Variables and their distributions. DJIA: monthly % change, 2000 to Finding the center of a distribution. Median.
Stat 04 Lecture Statistics 04 Lecture (IPS. &.) Outlie for today Variables ad their distributios Fidig the ceter Measurig the spread Effects of a liear trasformatio Variables ad their distributios Variable:
More informationGeometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4
3330_0903qxd /5/05 :3 AM Page 663 Sectio 93 93 Geometric Sequeces ad Series 663 Geometric Sequeces ad Series What you should lear Recogize, write, ad fid the th terms of geometric sequeces Fid th partial
More informationSection 9.2 Series and Convergence
Sectio 9. Series ad Covergece Goals of Chapter 9 Approximate Pi Prove ifiite series are aother importat applicatio of limits, derivatives, approximatio, slope, ad cocavity of fuctios. Fid challegig atiderivatives
More informationOverview on SBox Design Principles
Overview o SBox Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA 721302 What is a SBox? SBoxes are Boolea
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationRecursion and Recurrences
Chapter 5 Recursio ad Recurreces 5.1 Growth Rates of Solutios to Recurreces Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer. Cosider, for example,
More informationNormal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More information1 The Gaussian channel
ECE 77 Lecture 0 The Gaussia chael Objective: I this lecture we will lear about commuicatio over a chael of practical iterest, i which the trasmitted sigal is subjected to additive white Gaussia oise.
More informationChapter 9: Correlation and Regression: Solutions
Chapter 9: Correlatio ad Regressio: Solutios 9.1 Correlatio I this sectio, we aim to aswer the questio: Is there a relatioship betwee A ad B? Is there a relatioship betwee the umber of emploee traiig hours
More information3. Continuous Random Variables
Statistics ad probability: 31 3. Cotiuous Radom Variables A cotiuous radom variable is a radom variable which ca take values measured o a cotiuous scale e.g. weights, stregths, times or legths. For ay
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationRiemann Sums y = f (x)
Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, oegative fuctio o the closed iterval [a, b] Fid
More informationMath 105: Review for Final Exam, Part II  SOLUTIONS
Math 5: Review for Fial Exam, Part II  SOLUTIONS. Cosider the fuctio fx) =x 3 l x o the iterval [/e, e ]. a) Fid the x ad ycoordiates of ay ad all local extrema ad classify each as a local maximum or
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationhp calculators HP 30S Base Conversions Numbers in Different Bases Practice Working with Numbers in Different Bases
Numbers i Differet Bases Practice Workig with Numbers i Differet Bases Numbers i differet bases Our umber system (called HiduArabic) is a decimal system (it s also sometimes referred to as deary system)
More informationME 101 Measurement Demonstration (MD 1) DEFINITIONS Precision  A measure of agreement between repeated measurements (repeatability).
INTRODUCTION This laboratory ivestigatio ivolves makig both legth ad mass measuremets of a populatio, ad the assessig statistical parameters to describe that populatio. For example, oe may wat to determie
More informationTHE ARITHMETIC OF INTEGERS.  multiplication, exponentiation, division, addition, and subtraction
THE ARITHMETIC OF INTEGERS  multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationFast Fourier Transform and MATLAB Implementation
Fast Fourier Trasform ad MATLAB Implemetatio by aju Huag for Dr. Duca L. MacFarlae Sigals I the fields of commuicatios, sigal processig, ad i electrical egieerig moregeerally, a sigalisay time varyig or
More informationHCL Dynamic Spiking Protocol
ELI LILLY AND COMPANY TIPPECANOE LABORATORIES LAFAYETTE, IN Revisio 2.0 TABLE OF CONTENTS REVISION HISTORY... 2. REVISION.0... 2.2 REVISION 2.0... 2 2 OVERVIEW... 3 3 DEFINITIONS... 5 4 EQUIPMENT... 7
More informationCantilever Beam Experiment
Mechaical Egieerig Departmet Uiversity of Massachusetts Lowell Catilever Beam Experimet Backgroud A disk drive maufacturer is redesigig several disk drive armature mechaisms. This is the result of evaluatio
More informationChair for Network Architectures and Services Institute of Informatics TU München Prof. Carle. Network Security. Chapter 2 Basics
Chair for Network Architectures ad Services Istitute of Iformatics TU Müche Prof. Carle Network Security Chapter 2 Basics 2.4 Radom Number Geeratio for Cryptographic Protocols Motivatio It is crucial to
More informationFOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10
FOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.
More informationCooleyTukey. Tukey FFT Algorithms. FFT Algorithms. Cooley
Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Cosider a legth sequece x[ with a poit DFT X[ where Represet the idices ad as +, +, Cooley CooleyTuey Tuey FFT Algorithms FFT Algorithms Usig these
More informationDomain 1: Designing a SQL Server Instance and a Database Solution
Maual SQL Server 2008 Desig, Optimize ad Maitai (70450) 18004186789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a
More informationI. Harmonic Components of Periodic Signals Consider that signal
ECE Sigals ad Systems Sprig, UMD Experimet 5: Fourier Series Cosider the cotiuous time sigal give by y(t) = A + A cos (π f ) + A cos (π f ) + A cos (6π f ) +.. where A is the DC compoet of the sigal, A
More informationNonlife insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring
Nolife isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy
More informationA Theoretical and Experimental Analysis of the Acoustic Guitar. Eric Battenberg ME 173 51809
A Theoretical ad Experimetal Aalysis of the Acoustic Guitar Eric Batteberg ME 173 51809 1 Itroductio ad Methods The acoustic guitar is a striged musical istrumet frequetly used i popular music. Because
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics
More informationCOMPARISON OF THE EFFICIENCY OF SCONTROL CHART AND EWMAS 2 CONTROL CHART FOR THE CHANGES IN A PROCESS
COMPARISON OF THE EFFICIENCY OF SCONTROL CHART AND EWMAS CONTROL CHART FOR THE CHANGES IN A PROCESS Supraee Lisawadi Departmet of Mathematics ad Statistics, Faculty of Sciece ad Techoology, Thammasat
More informationOverview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
More information8.1 Arithmetic Sequences
MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first
More informationThroughput of Ideally Routed Wireless Ad Hoc Networks
Throughput of Ideally Routed Wireless Ad Hoc Networks Gábor Németh, Zoltá Richárd Turáyi, 2 ad Adrás Valkó 2 Commuicatio Networks Laboratory 2 Traffic Lab, Ericsso Research, Hugary I. INTRODUCTION At the
More informationDilution Example. Chapter 24 Warrants and Convertibles. Warrants. The Difference Between Warrants and Call Options. Warrants
Chapter 24 Warrats ad Covertibles Warrats The Differece betee Warrats ad Call Optios Warrat Pricig ad the BlackScholes Model Covertible Bods The Value of Covertible Bods Reasos for Issuig Warrats ad Covertibles
More informationA Guide to the Pricing Conventions of SFE Interest Rate Products
A Guide to the Pricig Covetios of SFE Iterest Rate Products SFE 30 Day Iterbak Cash Rate Futures Physical 90 Day Bak Bills SFE 90 Day Bak Bill Futures SFE 90 Day Bak Bill Futures Tick Value Calculatios
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationHeat (or Diffusion) equation in 1D*
Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire
More informationN04/5/MATHL/HP2/ENG/TZ0/XX MATHEMATICS HIGHER LEVEL PAPER 2. Thursday 4 November 2004 (morning) 3 hours INSTRUCTIONS TO CANDIDATES
c IB MATHEMATICS HIGHER LEVEL PAPER DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI N/5/MATHL/HP/ENG/TZ/XX 887 Thursday November (morig) hours INSTRUCTIONS TO CANDIDATES! Do ot
More informationISOLATION TRANSFORMER. FOR 3 rd HARMONIC FILTERING TSA INSTRUCTIONS MANUAL M A
ISOLATION TRANSFORMER FOR 3 rd HARMONIC FILTERING TSA INSTRUCTIONS MANUAL M9830A INTRODUCTION There is a lot of electrical supply istallatios where most of the loads are sigle phase, supplyig a rectifier
More informationStandard Errors and Confidence Intervals
Stadard Errors ad Cofidece Itervals Itroductio I the documet Data Descriptio, Populatios ad the Normal Distributio a sample had bee obtaied from the populatio of heights of 5yearold boys. If we assume
More informationReview for College Algebra Final Exam
Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 14. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i
More information