Coating Technology: Evaporation Vs Sputtering
|
|
|
- Audra Dean
- 9 years ago
- Views:
Transcription
1 Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy V1 The aim of this document is to provide basic technical information regarding current AR coating technologies. Any information provided is not binding, can and will be changed without further notice. If you have questions, contact the owner of the document - 1 -
2 Table of contents 1. EVAPORATION BY MEANS OF ELECTRON BEAM Distribution of the evaporant: uniformity mask Coating materials with thermal or e-beam evaporation SPUTTER COATING TECHNOLOGY Magnetron sputtering Reactive sputtering COMPARISON BETWEEN EVAPORATION AND SPUTTER COATING TECHNOLOGIES
3 INTRODUCTION Coating by evaporation or by sputtering, also referred to as PVD (Physical Vapor Deposition) technologies, are nowadays the most widely used technologies for optical coatings. Applications are in the field of ophthalmic and precisions optics coatings, but PVD technologies are also applied for aesthetic, mechanical or electronic coatings and in many other areas that require thin film coating
4 1. Evaporation by means of electron beam In thermal evaporation (or sublimation under vacuum) the bulk of the deposition material undergoes the transition from solid to vapor state by means of thermal heating or electron bombardment. The evaporated material is then carried to the substrate where the growing of the thin film occurs. The critical parameters of such a coating technology are mainly the average speed of the evaporated particles and their angular distribution. The base pressure must be kept in the high vacuum range to minimize the number of impact events between the evaporant particles and the residual gases in the chamber. High vacuum allows the particles to have a sufficiently mean free path for the thin film to grow at the substrate level. Coating by means of evaporation is usually carried out in a chamber as the one depicted in figure 1 below. The stainless steel chamber is evacuated with the help of a primary and a secondary pump (such as a turbo pump as in the example or a diffusion pump). The source of the evaporant is an e-beam gun head; the coating growth is controlled by a quartz crystal microbalance which can report both thickness and evaporation rate. An ion gun is added to increase the density of the coating material or to prepare the substrates for the deposition. Figure 1: PVD evaporation chamber illustration 1.1 Distribution of the evaporant: uniformity mask For a flat substrate, the distribution of the evaporated material is strongly dependent on the distance between the source and the substrate to be coated, as well as on the angle between the substrate and the evaporation source. The dependence is defined by the so-called cosine-law due to which the distance dependence is inversely proportional to the square of the distance and the angle dependence is proportional to the cosine of the angle. While the first can be mostly corrected by using a spherical calotte that holds the substrates, the second factor requires a uniformity mask to achieve uniform distribution of the evaporated material on all substrates
5 1.2 Coating materials with thermal or e-beam evaporation Coating by means of material evaporation was a big step in coating technology when it was introduced in the 1930 s. Today this technology allows using many different coating materials, as illustrated in the table below. 2. Sputter coating technology Sputter coating, also known as cathodic sputtering, is using the erosive action of accelerated ions at the surface of a target material. These ions have enough energy to remove (=sputter) particles at the target surface. In its simplest form, under high vacuum an electrical field is generated between an anode and a cathode plate (target) that is to be sputtered. By means of electrical voltage a working gas, generally Argon (Ar), is ionized generating a glow discharge. Since the target is kept at negative voltage, the positive Ar+ ions accelerate towards the target and sputter the atoms on its surface. In contrast to thermal evaporation, in sputtering the particles of the target are not displaced by heat, but by means of direct momentum transfer (inelastic collision) between the ions and the atoms of the material to be deposited. To accomplish sputtering a certain threshold energy is needed to remove atoms from the target surface and bring them into the vacuum. This is indicated by the sputtering efficiency S, which is the ratio of the sputtered material per Ar+ ion. Sputtering processes have much higher energy than evaporation processes which means that the sputtered material is usually in the form of ions with the ability to generate very dense coatings. 2.1 Magnetron sputtering The most common sputtering technology is magnetron sputtering in which magnets are placed in the area of the target to keep the density of the sputtering ions very high which increases sputtering efficiency. That way it is possible to have a higher and more stable sputtering rate and consequently a faster deposition. The magnetron sputtering coating process does not require the microbalance control; online thickness control can be performed by sputtering time only: once started the coating deposition rate (i.e. thickness coated per second usually given as nm/s) depends on the magnetic field, the electric accelerating field and the gas pressure. If these parameters are constant, the deposition rate is stable as well and will be reproducible under the same conditions of the above mentioned parameters
6 The following figure 2 shows a circular silicon target under bombardment of Ar+ ions. It is possible to see the highest density of the ions (white light) which corresponds to the permanent magnetic field. However, sputtered atoms will come from the entire magnetron surface. Figure 2: Plasma from a circular Silicon target under Argon ion bombardment 2.2 Reactive sputtering In reactive magnetron sputtering, a reactive gas (or a gas mixture) is added to the inert gas (for example Argon) and reacts with the atoms eroded from the target during the layer formation on the substrate. The correct amount of reactive gas is determined by the required optical characteristics of the coated material. The film may be sub-stoichiometric, stoichiometric, or oxidized depending on the quantity of the reactive gases inserted into the coating chamber which leads to completely different physical and optical characteristics of the coated material1. With this technology, it is for example possible to coat high refractive index and low refractive index material layers using only one target. Target Si Ar+ Substrates Silicon is one of the most interesting coating materials. By mixing Silicon with Nitrogen it is possible to obtain the high refractive index material - Ar N 2 O 2 Figure 3: Reactive sputtering chamber illustration Si 3 N 4 (n in its bulk form); by mixing it with oxygen it is possible to obtain the low refractive index material SiO 2 (n nm in its bulk form). In figure 3, a schematic of the reactive sputtering technology is depicted. Nitrogen and Oxygen are used as reactive gases; Argon is used to create the plasma and sputter the Silicon target
7 3. Comparison between Evaporation and Sputter coating technologies Sputtering is not an evaporation method. The high energy involved in the process will not create evaporated atoms as with thermal evaporation. Rather it creates a plasma of charged sputtered particles with much higher energy. Comparing the energy of the particles obtained by sputtering and by evaporation, the latter are much less energetic and therefore cannot organize themselves to have high density when growing a thin film on the substrate. As illustrated in figure 1, e-beam evaporation needs the assistance of an ion beam during deposition to obtain higher density. This technology is referred to as Ion Assisted Deposition (IAD). In the ion beam gun a plasma of an inert or reactive gas is generated; the charged particles from the gun hit the growing film and increase film density. Higher density may enhance the mechanical properties of a coated film or increase the abrasion resistance of a coating. Another limitation of evaporation is its strong dependence on the evaporation rate of the evaporant material, which makes it impossible to evaporate substances with a complicated stoichiometry or even alloy materials. In contrast, Sputtering is much less sensitive to the target s stoichiometry. However, with sputtering it is impossible to coat fluoride materials (such as MgF2) since the sputtered plasma destroys the structure of the fluoride films. Looking to the ophthalmic industry, sputtering is now a mature technology for production of AR or Mirror coated lenses. Its key benefits are speed of process, deposition rate stability that allows to avoid the quartz crystal monitor and the possibility to carry out fully-automated processes. The ability to automate is based on the following two facts: 1. Since sputtering uses a sputtering and/or a reactive gas, the sputtering process does not need the same low vacuum level as evaporation. 2. Distribution is not related to the evaporant cone as in the evaporation process. It is therefore possible to realize more compact coating chambers which can be integrated easier into an automated production line (along with a lens generator, polisher and a spin coater for hard coating). The above mentioned characteristics have led to the production of many in-line sputtering systems for various production applications in and outside of the ophthalmic industry. Today, as with evaporation, the combination of plastic substrate + hard lacquer + sputter AR coating can be tuned to achieve a high quality lens product with regards to optical, mechanical and durability properties. Satisloh Sputtering machine - 7 -
8 CONCLUSION A very short overview of the most common PVD technologies has been provided. Thermal evaporation is the more mature technology: it has been in existence since the 1930 s, skilled and trained operators are available all over the world and it allows coating almost all materials needed for standard coating applications (example: for coating ophthalmic lenses). Sputtering is a younger technology: it has been in existence since the early 1970 s and has primarily been used for high end applications (such as space optics). However, today its benefits are also used for standard ophthalmic coatings. Thermal evaporation needs high vacuum while sputtering works at higher pressure, making it an easily automated technology to be deployed in in-line coating systems. The sputtering coating rate is highly tunable and - depending on the plasma generation technology - reaches very high and stable values with DC (=Direct Current) or pulsed DC technology. Both coating technologies can be tuned in order to obtain different physical properties of the coated films. The decision on which technology to use should be based on required production yield, costs, number of substrates to be coated, substrate type and the final characteristics of the coating
Vacuum Evaporation Recap
Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.
2. Deposition process
Properties of optical thin films produced by reactive low voltage ion plating (RLVIP) Antje Hallbauer Thin Film Technology Institute of Ion Physics & Applied Physics University of Innsbruck Investigations
State of the art in reactive magnetron sputtering
State of the art in reactive magnetron sputtering T. Nyberg, O. Kappertz, T. Kubart and S. Berg Solid State Electronics, The Ångström Laboratory, Uppsala University, Box 534, S-751 21 Uppsala, Sweden D.
Reactive Sputtering Using a Dual-Anode Magnetron System
Reactive Sputtering Using a Dual-Anode Magnetron System A. Belkind and Z. Zhao, Stevens Institute of Technology, Hoboken, NJ; and D. Carter, G. McDonough, G. Roche, and R. Scholl, Advanced Energy Industries,
Electron Beam and Sputter Deposition Choosing Process Parameters
Electron Beam and Sputter Deposition Choosing Process Parameters General Introduction The choice of process parameters for any process is determined not only by the physics and/or chemistry of the process,
Ion Beam Sputtering: Practical Applications to Electron Microscopy
Ion Beam Sputtering: Practical Applications to Electron Microscopy Applications Laboratory Report Introduction Electron microscope specimens, both scanning (SEM) and transmission (TEM), often require a
A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators
A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators Dr Peter Hockley and Professor Mike Thwaites, Plasma Quest Limited
Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle
Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.
High performance. Architectural glazings utilise thin. low-emissivity coating. Coating technology
Coating technology High performance low-emissivity coating Growing concern with energy efficiency has sparked the development of double low-emissivity coatings in architectural glass. BOC Coating has designed
High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons
High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons D.Monaghan, V. Bellido-Gonzalez, M. Audronis. B. Daniel Gencoa, Physics Rd, Liverpool, L24 9HP, UK. www.gencoa.com,
Deposition of Thin Metal Films " (on Polymer Substrates)!
Deposition of Thin Metal Films " (on Polymer Substrates)! Shefford P. Baker! Cornell University! Department of Materials Science and Engineering! Ithaca, New York, 14853! MS&E 5420 Flexible Electronics,
Dry Etching and Reactive Ion Etching (RIE)
Dry Etching and Reactive Ion Etching (RIE) MEMS 5611 Feb 19 th 2013 Shengkui Gao Contents refer slides from UC Berkeley, Georgia Tech., KU, etc. (see reference) 1 Contents Etching and its terminologies
How compact discs are made
How compact discs are made Explained by a layman for the laymen By Kevin McCormick For Science project at the Mountain View Los Altos High School Abstract As the major media for music distribution for
Chapter 6 Metal Films and Filters
Chapter 6 Metal Films and Filters 6.1 Mirrors The first films produced by vacuum deposition as we know it were aluminum films for mirrors made by John Strong in the 1930s; he coated mirrors for astronomical
Neuere Entwicklungen zur Herstellung optischer Schichten durch reaktive. Wolfgang Hentsch, Dr. Reinhard Fendler. FHR Anlagenbau GmbH
Neuere Entwicklungen zur Herstellung optischer Schichten durch reaktive Sputtertechnologien Wolfgang Hentsch, Dr. Reinhard Fendler FHR Anlagenbau GmbH Germany Contents: 1. FHR Anlagenbau GmbH in Brief
Chapter 4 COATINGS Full Reflective Coatings:
Chapter 4 COATINGS Technical developments in coatings for plastic optics have resulted in optical and durability characteristics once believed possible only with glass. These advances in coating technology
Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.
CMOS Processing Technology Silicon: a semiconductor with resistance between that of conductor and an insulator. Conductivity of silicon can be changed several orders of magnitude by introducing impurity
For Touch Panel and LCD Sputtering/PECVD/ Wet Processing
production Systems For Touch Panel and LCD Sputtering/PECVD/ Wet Processing Pilot and Production Systems Process Solutions with over 20 Years of Know-how Process Technology at a Glance for Touch Panel,
PLASMA TECHNOLOGY OVERVIEW
PLASMA TECHNOLOGY OVERVIEW Plasmas are not a lab curiosity. Plasma processing has been an essential production tool for more than 30 years in the fabrication of microelectronic devices for example. Over
Lecture 9. Surface Treatment, Coating, Cleaning
1 Lecture 9. Surface Treatment, Coating, Cleaning These processes are sometimes referred to as post-processing. They play a very important role in the appearance, function and life of the product. Broadly,
Plasma Electronic is Partner of. Tailor-Made Surfaces by Plasma Technology
Precision Fair 2013 Stand 171 Plasma Electronic is Partner of Tailor-Made Surfaces by Plasma Technology Dr. J. Geng, Plasma Electronic GmbH Modern Surface Technology in 1900 Overview A short introduction
Decorative vacuum coating technologies 30.05.2014 Certottica Longarone. Thin Film Plasma Coating Technologies
Dr. Stefan Schlichtherle Dr. Georg Strauss PhysTech Coating Technology GmbH Decorative vacuum coating technologies 30.05.2014 Certottica Longarone Thin Film Plasma Coating Technologies Content The fascination
Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob
Chemical Sputtering von Kohlenstoff durch Wasserstoff W. Jacob Centre for Interdisciplinary Plasma Science Max-Planck-Institut für Plasmaphysik, 85748 Garching Content: Definitions: Chemical erosion, physical
and LUMINOUS CHEMICAL VAPOR DEPOSITION INTERFACE ENGINEERING HirotsuguYasuda University of Missouri-Columbia Columbia, Missouri, U.S.A.
LUMINOUS CHEMICAL VAPOR DEPOSITION and INTERFACE ENGINEERING HirotsuguYasuda University of Missouri-Columbia Columbia, Missouri, U.S.A. MARCEL MARCEL DEKKER. NEW YORK DEKKER Contents Preface iii Part I.
Deposition of Silicon Oxide, Silicon Nitride and Silicon Carbide Thin Films by New Plasma Enhanced Chemical Vapor Deposition Source Technology
General Plasma, Inc. 546 East 25th Street Tucson, Arizona 85713 tel. 520-882-5100 fax. 520-882-5165 and Silicon Carbide Thin Films by New Plasma Enhanced Chemical Vapor Deposition Source Technology M.
2. Nanoparticles. Introduction to Nanoscience, 2005 1
2. Nanoparticles Nanoparticles are the simplest form of structures with sizes in the nm range. In principle any collection of atoms bonded together with a structural radius of < 100 nm can be considered
Plasma Cleaner: Physics of Plasma
Plasma Cleaner: Physics of Plasma Nature of Plasma A plasma is a partially ionized gas consisting of electrons, ions and neutral atoms or molecules The plasma electrons are at a much higher temperatures
III. Wet and Dry Etching
III. Wet and Dry Etching Method Environment and Equipment Advantage Disadvantage Directionality Wet Chemical Solutions Atmosphere, Bath 1) Low cost, easy to implement 2) High etching rate 3) Good selectivity
Vacuum Pumping of Large Vessels and Modelling of Extended UHV Systems
Vacuum Pumping of Large Vessels and Modelling of Extended UHV Systems Georgy L. Saksaganski D.V. Efremov Institute, St Petersburg, Russia [email protected] An overview of the methods for reducing of
Implementation Of High-k/Metal Gates In High-Volume Manufacturing
White Paper Implementation Of High-k/Metal Gates In High-Volume Manufacturing INTRODUCTION There have been significant breakthroughs in IC technology in the past decade. The upper interconnect layers of
Deposition Overview for Microsytems
Deposition Overview for Microsytems Deposition PK Activity Terminology Participant Guide www.scme-nm.org Deposition Overview for Microsystems Primary Knowledge Participant Guide Description and Estimated
Introduction to Thin Film Technology LOT. Chair of Surface and Materials Technology
Introduction to Thin Film Introduction to Thin Film Verfahrenstechnik der Oberflächenmodifikationen Prof. Dr. Xin Jiang Lecture Institut für Werkstofftechnik der Uni-Siegen Sommersemester 2007 Introduction
Study of tungsten oxidation in O 2 /H 2 /N 2 downstream plasma
Study of tungsten oxidation in O 2 /H 2 /N 2 downstream plasma Songlin Xu a and Li Diao Mattson Technology, Inc., Fremont, California 94538 Received 17 September 2007; accepted 21 February 2008; published
OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS
OPTIMIZING OF THERMAL EVAPORATION PROCESS COMPARED TO MAGNETRON SPUTTERING FOR FABRICATION OF TITANIA QUANTUM DOTS Vojtěch SVATOŠ 1, Jana DRBOHLAVOVÁ 1, Marian MÁRIK 1, Jan PEKÁREK 1, Jana CHOMOCKÁ 1,
Lecture 11. Etching Techniques Reading: Chapter 11. ECE 6450 - Dr. Alan Doolittle
Lecture 11 Etching Techniques Reading: Chapter 11 Etching Techniques Characterized by: 1.) Etch rate (A/minute) 2.) Selectivity: S=etch rate material 1 / etch rate material 2 is said to have a selectivity
Planar Magnetron Sputtering Sources
Planar Magnetron puttering ources INTRODUCTION TABLE OF CONTENT PAGE Introduction........................ 2 MAK 1.3...........................3 MAK 2............................4 MAK 3............................5
pst line Fully automated In-line 3D Sputtering Coating System The right choice
pst line In-line 3D Sputtering Coating System Fully automated The right choice a new standard in sputtering technology pst line In-line 3D Sputtering Coating System loading & off-loading substrate cleaning
Sputtering. Ion-Solid Interactions
ssistant Professor Department of Microelectronic Engineering Rochester Institute of Technology 82 Lomb Memorial Drive Rochester, NY 14623-5604 Tel (716) 475-2923 Fax (716) 475-5041 [email protected] Page 1
Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser
Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser V.Nassisi #, G.Caretto #, A. Lorusso #, D.Manno %, L.Famà %, G.Buccolieri %, A.Buccolieri %, U.Mastromatteo* # Laboratory of Applied
THIN FILM MATERIALS TECHNOLOGY
THIN FILM MATERIALS TECHNOLOGY Sputtering of Compound Materials by Kiyotaka Wasa Yokohama City University Yokohama, Japan Makoto Kitabatake Matsushita Electric Industrial Co., Ltd. Kyoto, Japan Hideaki
Graduate Student Presentations
Graduate Student Presentations Dang, Huong Chip packaging March 27 Call, Nathan Thin film transistors/ liquid crystal displays April 4 Feldman, Ari Optical computing April 11 Guerassio, Ian Self-assembly
Balzers Sputter Coater SCD 050
Balzers Sputter Coater SCD 050 The SCD 050 is a bench top, sputter deposition system designed for thin films on substrates up to 6 inches. Morphology and thickness is user controlled using power, pressure,
SALES SPECIFICATION. SC7640 Auto/Manual High Resolution Sputter Coater
SALES SPECIFICATION SC7640 Auto/Manual High Resolution Sputter Coater Document Number SS-SC7640 Issue 1 (01/02) Disclaimer The components and packages described in this document are mutually compatible
BAL-TEC SCD 005. Scientist in charge: Lhoussaine Belkoura 07/14/06. softcomp soft matter composites 1
07/14/06 softcomp soft matter composites 1 BAL-TEC SCD 005 Institution: University of Cologne Scientist in charge: Lhoussaine Belkoura SCD 005 Cool Sputter Coater 26.02.99 Internet: www.bal-tec.com & 1
Lapping and Polishing Basics
Lapping and Polishing Basics Applications Laboratory Report 54 Lapping and Polishing 1.0: Introduction Lapping and polishing is a process by which material is precisely removed from a workpiece (or specimen)
Surface activation of plastics by plasma for adhesion promotion
Surface activation of plastics by plasma for adhesion promotion Uwe Stöhr, Ph. D. 1 Introduction In many fields a good adhesion between two materials is necessary. The adhesion should exist at the whole
Sputter deposition processes
Sputter deposition processes D. Depla 1, S. Mahieu 1, J.E. Greene 2 1 Ghent University, Department of Solid State Sciences, Krijgslaan 281 (S1), 9000 Ghent, Belgium 2 Materials Science and Physics Departments
Lasers Design and Laser Systems
Lasers Design and Laser Systems Tel: 04-8563674 Nir Dahan Tel: 04-8292151 [email protected] Thank You 1 Example isn't another way to teach, it is the only way to teach. -- Albert Einstein Course
Coating Thickness and Composition Analysis by Micro-EDXRF
Application Note: XRF Coating Thickness and Composition Analysis by Micro-EDXRF www.edax.com Coating Thickness and Composition Analysis by Micro-EDXRF Introduction: The use of coatings in the modern manufacturing
Module 7 Wet and Dry Etching. Class Notes
Module 7 Wet and Dry Etching Class Notes 1. Introduction Etching techniques are commonly used in the fabrication processes of semiconductor devices to remove selected layers for the purposes of pattern
Technical Synopsis of Plasma Surface Treatments
Technical Synopsis of Plasma Surface Treatments Wesley Taylor Advisor: Dr. Bruce Welt University of Florida, Gainesville, FL December, 2009 Abstract Surface treatment technology delves into some of the
Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)
Low energy ion scattering study of 4 on Cu(1) Chapter 8. Low energy ion scattering study of 4 on Cu(1) 8.1. Introduction For a better understanding of the reconstructed 4 surfaces one would like to know
Optical Properties of Sputtered Tantalum Nitride Films Determined by Spectroscopic Ellipsometry
Optical Properties of Sputtered Tantalum Nitride Films Determined by Spectroscopic Ellipsometry Thomas Waechtler a, Bernd Gruska b, Sven Zimmermann a, Stefan E. Schulz a, Thomas Gessner a a Chemnitz University
DEPOSITION METHODS AND THERMORESISTIVE PROPERTIES OF VANADIUM OXIDE AND AMORPHOUS SILICON THIN FILMS. Thesis. Submitted to
DEPOSITION METHODS AND THERMORESISTIVE PROPERTIES OF VANADIUM OXIDE AND AMORPHOUS SILICON THIN FILMS Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of
Chapter 11 PVD and Metallization
Chapter 11 PVD and Metallization 2006/5/23 1 Metallization Processes that deposit metal thin film on wafer surface. 2006/5/23 2 1 Metallization Definition Applications PVD vs. CVD Methods Vacuum Metals
Tableting Punch Performance Can Be Improved With Precision Coatings
Tableting Punch Performance Can Be Improved With Precision Coatings by Arnold H. Deutchman, Ph. D. Director of Research and Development (614) 873-4529 X 114 [email protected] Mr. Dale C. Natoli
Solar Photovoltaic (PV) Cells
Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation
MICROPOSIT LOL 1000 AND 2000 LIFTOFF LAYERS For Microlithography Applications
Technical Data Sheet MICROPOSIT LOL 1000 AND 2000 LIFTOFF LAYERS For Microlithography Applications Regional Product Availability Description Advantages North America Europe, Middle East and Africa Latin
Introduction to VLSI Fabrication Technologies. Emanuele Baravelli
Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation
* This work is an official contribution of the National Institute of Standards and Technology and
Variability in the Geometric Accuracy of Additively Manufactured Test Parts A.L. Cooke and J.A. Soons National Institute of Standards and Technology * Gaithersburg, MD, USA Abstract This paper describes
Laser beam sintering of coatings and structures
Laser beam sintering of coatings and structures Anne- Maria Reinecke, Peter Regenfuß, Maren Nieher, Sascha Klötzer, Robby Ebert, Horst Exner Laserinstitut Mittelsachsen e.v. an der Hochschule Mittweida,
OLED display. Ying Cao
OLED display Ying Cao Outline OLED basics OLED display A novel method of fabrication of flexible OLED display Potentials of OLED Suitable for thin, lightweight, printable displays Broad color range Good
Results Overview Wafer Edge Film Removal using Laser
Results Overview Wafer Edge Film Removal using Laser LEC- 300: Laser Edge Cleaning Process Apex Beam Top Beam Exhaust Flow Top Beam Scanning Top & Top Bevel Apex Beam Scanning Top Bevel, Apex, & Bo+om
How To Make A Plasma Control System
XXII. Erfahrungsaustausch Mühlleiten 2015 Plasmaanalyse und Prozessoptimierung mittels spektroskopischem Plasmamonitoring in industriellen Anwendungen Swen Marke,, Lichtenau Thomas Schütte, Plasus GmbH,
E/M Experiment: Electrons in a Magnetic Field.
E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.
Elements, Atoms & Ions
Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Elements, Atoms & Ions Chapter 4 1 2 Elements Aims: To learn about the relative abundances of the elements,
Modular Glovebox Systems Gas Purifier Units Antechambers Accessories
Modular Glovebox Systems Gas Purifier Units Antechambers Accessories INERTGAS TECHNOLOGY Modular glovebox with screwed in flanged side panels Easy to extend or modify while keeping a flat work place Define
VCR Ion Beam Sputter Coater
VCR Ion Beam Sputter Coater Sputtering Process and Rates 2 Vacuum System 3 Loading the Sputter Chamber 4 Sputter Coating 5 Removing Samples from Chamber 6 Appendix A: VCR High Vacuum Gauge Conditioning
WHITEPAPER ENHANCED REACTIVELY SPUTTERED AL 2 O 3 DEPOSITION BY ADDITION OF ACTIVATED REACTIVE OXYGEN
WHITEPAPER By D. Carter and G. McDonough of Advanced Energy Industries, Inc. ENHANCED REACTIVELY The impact of preactivation of oxygen in the reactive sputter deposition of Al 2 O 3 is investigated. Oxygen,
Special materials. for Precision Optics & Laser Coatings. Oxides for Evaporation
Special materials for Precision Optics & Laser Coatings Oxides for Evaporation Titanium oxides Highest refractive index of oxides in visible range AR and multilayer coatings on glass and polymers Best
Sputtered AlN Thin Films on Si and Electrodes for MEMS Resonators: Relationship Between Surface Quality Microstructure and Film Properties
Sputtered AlN Thin Films on and Electrodes for MEMS Resonators: Relationship Between Surface Quality Microstructure and Film Properties S. Mishin, D. R. Marx and B. Sylvia, Advanced Modular Sputtering,
TOF FUNDAMENTALS TUTORIAL
TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] [email protected] [e-mail] This
Sputtering Targets and Sputtered Films: Technology and Markets
A BCC Research Semiconductor Manufacturing Report and Sputtered Films: SMC037E Use this report to: Understand the most important advances in sputtering technology and target fabrication Identify the current
Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework
Molecules of the Atmosphere The present atmosphere consists mainly of molecular nitrogen (N2) and molecular oxygen (O2) but it has dramatically changed in composition from the beginning of the solar system.
View of ΣIGMA TM (Ref. 1)
Overview of the FESEM system 1. Electron optical column 2. Specimen chamber 3. EDS detector [Electron Dispersive Spectroscopy] 4. Monitors 5. BSD (Back scatter detector) 6. Personal Computer 7. ON/STANDBY/OFF
Microhardness study of Ti(C, N) films deposited on S-316 by the Hallow Cathode Discharge Gun
of Achievements in Materials and Manufacturing Engineering VOLUME 14 ISSUE 1-2 January-February 2006 Microhardness study of Ti(C, N) films deposited on S-316 by the Hallow Cathode Discharge Gun A.J. Novinrooz*,
Micro-Power Generation
Micro-Power Generation Elizabeth K. Reilly February 21, 2007 TAC-meeting 1 Energy Scavenging for Wireless Sensors Enabling Wireless Sensor Networks: Ambient energy source Piezoelectric transducer technology
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.
The New PVD HI3-Technology: Latest Developments and Potential for Coining Dies.
The New PVD HI3-Technology: Latest Developments and Potential for Coining Dies. Technical Forum - World Money Fair 2015, Berlin 29 th January 2015, Oerlikon The New Segment Surface Solutions Segment Manmade
T.M.M. TEKNIKER MICROMACHINING
T.M.M. TEKNIKER MICROMACHINING Micro and Nanotechnology Dapartment FUNDACION TEKNIKER Avda. Otaola. 20 Tel. +34 943 206744 Fax. +34 943 202757 20600 Eibar http://www.tekniker.es TMM FACILITIES -Clean Room
Chapter 22: Electric motors and electromagnetic induction
Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on
. Tutorial #3 Building Complex Targets
. Tutorial #3 Building Complex Targets. Mixed Gas/Solid Targets Gas Ionization Chamber Previous Tutorials have covered how to setup TRIM, determine which ion and energy to specify for a semiconductor n-well
Physics 441/2: Transmission Electron Microscope
Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This
Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff
Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff December 2012 Specifying Advanced Plasma Deposited Hard Coated Optical Bandpass and Dichroic Filters. Introduction
Special materials for Precision Optics & Laser Coatings. Fluorides and Special Materials for IR coatings
Special materials for Precision Optics & Laser Coatings Fluorides and Special Materials for IR coatings Umicore Thin Film Products Umicore Thin Film Products, a globally active business unit within the
Closed field magnetron sputtering: new generation sputtering process for optical coatings
Closed field magnetron sputtering: new generation sputtering process for optical coatings D. R. Gibson, I Brinkley, E M Waddell and J. M. Walls Applied Multilayers Ltd., Coalville, Leicestershire, UK ABSTRACT
Plasma diagnostics focused on new magnetron sputtering devices for thin film deposition
Université Paris-Sud XI Laboratoire de Physique des Gaz et des Plasmas Orsay, France & Masaryk University in Brno Department of Physical Electronics Brno, Czech Republic Plasma diagnostics focused on new
WORD DEFINITION WORD (NATIONAL LANGUAGE)
WELDING GLOSSARY The Glossary has been created as part of the Migration for Development in the Western Balkans (MIDWEB) project, which received financial assistance from the European Commission IPA 2009
PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
Plasma Source. Atom Source, Ion Source and Atom/Ion Hybrid Source
Plasma Source Atom Source, Ion Source and Atom/Ion Hybrid Source The tectra Plasma Source* is a multi-purpose source which can easily be user configured to produce either atoms or ions and finds uses in
Cathodic Arc Deposition of superconducting thin films of MgB 2 for RF cavities*
Alameda Applied Sciences Corporation Cathodic Arc Deposition of superconducting thin films of MgB 2 for RF cavities* Mahadevan Krishnan, Andrew Gerhan, Kristi Wilson and Brian Bures Alameda Applied Sciences
Observation of Long Transients in the Electrical Characterization of Thin Film BST Capacitors
Integrated Ferroelectrics, 53: 503 511, 2003 Copyright C Taylor & Francis Inc. ISSN: 1058-4587 print/ 1607-8489 online DOI: 10.1080/10584580390258651 Observation of Long Transients in the Electrical Characterization
Super Cool Sputter Coater
Leica EM SCD050 Super Cool Sputter Coater Precious and Non-Precious Metal Sputtering and Carbon Evaporation Sputter Coating The sputter coating of samples inhibits charging, reduces thermal damage and
Optical Manufacturing Solutions.
Optical Manufacturing Solutions. Satisloh - the company Combining two respected optical manufacturing companies Satis Vacuum and LOH Optical Machinery Satisloh provides you with over 120 years of invaluable
Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment.
Helium-Neon Laser Experiment objectives: assemble and align a 3-mW HeNe laser from readily available optical components, record photographically the transverse mode structure of the laser output beam,
CVD SILICON CARBIDE. CVD SILICON CARBIDE s attributes include:
CVD SILICON CARBIDE CVD SILICON CARBIDE is the ideal performance material for design engineers. It outperforms conventional forms of silicon carbide, as well as other ceramics, quartz, and metals in chemical
Silicon-On-Glass MEMS. Design. Handbook
Silicon-On-Glass MEMS Design Handbook A Process Module for a Multi-User Service Program A Michigan Nanofabrication Facility process at the University of Michigan March 2007 TABLE OF CONTENTS Chapter 1...
Chapter 7-1. Definition of ALD
Chapter 7-1 Atomic Layer Deposition (ALD) Definition of ALD Brief history of ALD ALD process and equipments ALD applications 1 Definition of ALD ALD is a method of applying thin films to various substrates
