CS 316: Gates and Logic


 Rosalind McDowell
 2 years ago
 Views:
Transcription
1 CS 36: Gtes nd Logi Kvit Bl Fll 27 Computer Siene Cornell University Announements Clss newsgroup reted Posted on wepge Use it for prtner finding First ssignment is to find prtners
2 P nd N Trnsistors PNP Trnsistor B E NPN Trnsistor B E C Connet E to C when se = C Connet E to C when se = Inverter in Funtion: NOT Clled n inverter Symol: in In Out Truth tle Useful for tking the inverse of n input CMOS: omplementrysymmetry metl oxide semiondutor 2
3 NAND Gte Funtion: NAND Symol: A B +Vdd NOR Gte Funtion: NOR Symol: Vss A B 3
4 NOT: Building Funtions AND: OR: NAND nd NOR re universl Cn implement ny funtion with NAND or just NOR gtes useful for mnufturing NOT: Building Funtions AND: OR: NAND nd NOR re universl Cn implement ny funtion with NAND or just NOR gtes useful for mnufturing 4
5 Logi Equtions AND = = & = OR = + = = NOT = =! = Identities Identities useful for mnipulting logi equtions For optimiztion & ese of implementtion + = + = + = = = = (+) = + ( + ) = ( ) = + + = + 5
6 Logi Mnipultion Cn speify funtions y desriing gtes, truth tles or logi equtions Cn mnipulte logi equtions lgerilly Cn lso use truth tle to prove equivlene Exmple: (+)(+) = LHS RHS (+)(+) = = + (+) + = ( + (+)) + = + Logi Minimiztion A ommon prolem is how to implement desired funtion most effiiently One n derive the eqution from the truth tle minterm for ll puts tht re, tke the orresponding minterm, OR the minterms to otin the result in sum of produts form How does one find the most effiient eqution? Mnipulte lgerilly until stisfied Use Krnugh mps 6
7 Krnugh mps Enoding of the truth tle where djent ells differ in only one it truth tle for AND Corresponding Krnugh mp Bigger Krnugh Mps 3input fun y d 4input fun y d 7
8 8 Minimiztion with Krnugh mps () Sum of minterms yields Minimiztion with Krnugh mps (2) Sum of minterms yields Krnugh mps identify whih inputs re (ir)relevnt to the put
9 Minimiztion with Krnugh mps (2) Sum of minterms yields Krnugh mp minimiztion Cover ll s Group djent loks of 2 n s tht yield retngulr shpe Enode the ommon fetures of the retngle = + Krnugh Minimiztion Triks () Minterms n overlp = + + Minterms n spn 2, 4, 8 or more ells = + 9
10 Krnugh Minimiztion Triks (2) d d The mp wrps round = d = d Krnugh Minimiztion Triks (3) d x x x x x d x x x x x Don t re vlues n e interpreted individully in whtever wy is onvenient ssume ll x s = = d ssume middle x s = ssume 4 th olumn x = = d
Lec 2: Gates and Logic
Lec 2: Gtes nd Logic Kvit Bl CS 34, Fll 28 Computer Science Cornell University Announcements Clss newsgroup creted Posted on wepge Use it for prtner finding First ssignment is to find prtners Due this
More informationDigital Electronics Basics: Combinational Logic
Digitl Eletronis Bsis: for Bsi Eletronis http://ktse.eie.polyu.edu.hk/eie29 by Prof. Mihel Tse Jnury 25 Digitl versus nlog So fr, our disussion bout eletronis hs been predominntly nlog, whih is onerned
More informationCS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001
CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic
More informationOUTLINE SYSTEMONCHIP DESIGN. GETTING STARTED WITH VHDL August 31, 2015 GAJSKI S YCHART (1983) TOPDOWN DESIGN (1)
August 31, 2015 GETTING STARTED WITH VHDL 2 Topdown design VHDL history Min elements of VHDL Entities nd rhitetures Signls nd proesses Dt types Configurtions Simultor sis The testenh onept OUTLINE 3 GAJSKI
More informationEquivalence Checking. Sean Weaver
Equivlene Cheking Sen Wever Equivlene Cheking Given two Boolen funtions, prove whether or not two they re funtionlly equivlent This tlk fouses speifilly on the mehnis of heking the equivlene of pirs of
More informationMATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
More informationWords Symbols Diagram. abcde. a + b + c + d + e
Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To
More information10.3 Systems of Linear Equations: Determinants
758 CHAPTER 10 Systems of Equtions nd Inequlities 10.3 Systems of Liner Equtions: Determinnts OBJECTIVES 1 Evlute 2 y 2 Determinnts 2 Use Crmer s Rule to Solve System of Two Equtions Contining Two Vriles
More information! Transistors MOSFET. " Model. ! Zeroth order transistor model. " Good enough for [what?] ! How to construct static CMOS gates
ESE370: CircuitLevel Modeling, Design, nd Optimiztion or Digitl Systems Lec 2: Septemer 2, 2016 Trnsistor Introduction nd Gtes rom Trnsistors Tody! Trnsistors MOSFET " Model! Zeroth order trnsistor model
More informationThe area of the larger square is: IF it s a right triangle, THEN + =
8.1 Pythgoren Theorem nd 2D Applitions The Pythgoren Theorem sttes tht IF tringle is right tringle, THEN the sum of the squres of the lengths of the legs equls the squre of the hypotenuse lengths. Tht
More informationBasics of Logic Design: Boolean Algebra, Logic Gates. Administrative
Bsics of Logic Design: Boolen Alger, Logic Gtes Computer Science 104 Administrtive Homework #3 Due Sundy Midterm I Mondy in clss, closed ook, closed notes Ø Will provide IA32 instruction set hndout Ø Lst
More informationIn this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.
Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix
More informationTwo hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 16 th May 2008. Time: 14:00 16:00
COMP20212 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Digitl Design Techniques Dte: Fridy 16 th My 2008 Time: 14:00 16:00 Plese nswer ny THREE Questions from the FOUR questions provided
More informationChess and Mathematics
Chess nd Mthemtis in UK Seondry Shools Dr Neill Cooper Hed of Further Mthemtis t Wilson s Shool Mnger of Shool Chess for the English Chess Federtion Mths in UK Shools KS (up to 7 yers) Numers: 5 + 7; x
More informationRatio and Proportion
Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty
More informationQuadratic Equations  1
Alger Module A60 Qudrtic Equtions  1 Copyright This puliction The Northern Alert Institute of Technology 00. All Rights Reserved. LAST REVISED Novemer, 008 Qudrtic Equtions  1 Sttement of Prerequisite
More informationAppendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:
Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you
More informationGeneralized Inverses: How to Invert a NonInvertible Matrix
Generlized Inverses: How to Invert NonInvertible Mtrix S. Swyer September 7, 2006 rev August 6, 2008. Introduction nd Definition. Let A be generl m n mtrix. Then nturl question is when we cn solve Ax
More informationAssuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;
B26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndomnumer genertor supplied s stndrd with ll computer systems Stn KellyBootle,
More informationProblem Set 2 Solutions
University of Cliforni, Berkeley Spring 2012 EE 42/100 Prof. A. Niknej Prolem Set 2 Solutions Plese note tht these re merely suggeste solutions. Mny of these prolems n e pprohe in ifferent wys. 1. In prolems
More informationContent Objectives: After completing the activity, students will gain experience of informally proving Pythagoras Theorem
Pythgors Theorem S Topic 1 Level: Key Stge 3 Dimension: Mesures, Shpe nd Spce Module: Lerning Geometry through Deductive Approch Unit: Pythgors Theorem Student ility: Averge Content Ojectives: After completing
More informationThe Pythagorean Theorem Tile Set
The Pythgoren Theorem Tile Set Guide & Ativities Creted y Drin Beigie Didx Edution 395 Min Street Rowley, MA 01969 www.didx.om DIDAX 201 #211503 1. Introdution The Pythgoren Theorem sttes tht in right
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationWarmup for Differential Calculus
Summer Assignment Wrmup for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:
More informationGates and Logic: From switches to Transistors, Logic Gates and Logic Circuits
Gates and Logic: From switches to Transistors, Logic Gates and Logic Circuits Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University See: P&H ppendix C.2 and C.3 (lso, see C.0 and
More informationHomework 3 Solutions
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.
More informationII. SOLUTIONS TO HOMEWORK PROBLEMS Unit 1 Problem Solutions
II. SOLUTIONS TO HOMEWORK PROLEMS Unit Prolem Solutions 757.25. (). () 23.7 6 757.25 6 47 r5 6 6 2 r5= 6 (4). r2 757.25 = 25.4 6 =. 2 2 5 4 6 23.7 6 7 r 6 r7 (2).72 6 ().52 6 (8).32. () 6 356.89 6 22 r4
More informationand thus, they are similar. If k = 3 then the Jordan form of both matrices is
Homework ssignment 11 Section 7. pp. 24925 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If
More informationDETERMINANTS. ] of order n, we can associate a number (real or complex) called determinant of the matrix A, written as det A, where a ij. = ad bc.
Chpter 4 DETERMINANTS 4 Overview To every squre mtrix A = [ ij ] of order n, we cn ssocite number (rel or complex) clled determinnt of the mtrix A, written s det A, where ij is the (i, j)th element of
More informationThree squares with sides 3, 4, and 5 units are used to form the right triangle shown. In a right triangle, the sides have special names.
1 The Pythgoren Theorem MAIN IDEA Find length using the Pythgoren Theorem. New Voulry leg hypotenuse Pythgoren Theorem Mth Online glenoe.om Extr Exmples Personl Tutor SelfChek Quiz Three squres with
More informationTwo special Righttriangles 1. The
Mth Right Tringle Trigonometry Hndout B (length of )  c  (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Righttringles. The
More informationContinuous Random Variables: Derived Distributions
Continuous Rndom Vriles: Derived Distriutions Berlin Chen Deprtment o Computer Science & Inormtion Engineering Ntionl Tiwn Norml Universit Reerence:  D. P. Bertseks, J. N. Tsitsiklis, Introduction to
More informationLecture 15  Curve Fitting Techniques
Lecture 15  Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting  motivtion For root finding, we used given function to identify where it crossed zero where does fx
More informationChapter 1 Introduction to CMOS Circuit Design
Chpter 1 Introduction to CMOS Circuit Design JinFu Li Advnced Relile Systems (ARES) L. Deprtment of Electricl Engineering Ntionl Centrl University Jhongli, Tiwn Outline Introduction MOS Trnsistor Switches
More information10.5 Graphing Quadratic Functions
0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions
More informationa 2 + b 2 = c 2. There are many proofs of this theorem. An elegant one only requires that we know that the area of a square of side L is L 2
Pythgors Pythgors A right tringle, suh s shown in the figure elow, hs one 90 ngle. The long side of length is the hypotenuse. The short leg (or thetus) hs length, nd the long leg hs length. The theorem
More informationLecture 3 Basic Probability and Statistics
Lecture 3 Bsic Probbility nd Sttistics The im of this lecture is to provide n extremely speedy introduction to the probbility nd sttistics which will be needed for the rest of this lecture course. The
More informationPrinter Disk. Modem. Computer. Mouse. Tape. Display. I/O Devices. Keyboard
CS224 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 204 LAYERED COMPUTER DESIGN. Introdution CS224 fouses on omputer design. It uses the topdown, lyered, pproh to design nd lso to improve omputers. A omputer
More informationIntroduction to Logic Gates. ESDI Lesson 2. Logic Gates. Logic Gates: The Inverter. Logic Gates. Gate Symbols. The Inverter
Introduction to Logic Gtes SI Lesson 2 Logic Gtes Logic gtes rwing Logic ircuit nlzing Logic ircuit oolen lger Universl Gtes: NN nd NOR Implementtion using NN or NOR Gtes Positive nd Negtive Logic Implementtion
More informationDigital Design IE1204/5
Digitl Design IE4/5 Eerises Compiled y Willim Sndqvist willim@kth.se ICT/ES Eletroni Systems Numer systems nd odes. Enter the orresponding inry numers for the following deiml numers se. 9 7 d 53. Convert
More information8.2 Trigonometric Ratios
8.2 Trigonometri Rtios Ojetives: G.SRT.6: Understnd tht y similrity, side rtios in right tringles re properties of the ngles in the tringle, leding to definitions of trigonometri rtios for ute ngles. For
More informationHomework 3 Solution Chapter 3.
Homework 3 Solution Chpter 3 2 Let Q e the group of rtionl numers under ddition nd let Q e the group of nonzero rtionl numers under multiplition In Q, list the elements in 1 2 In Q, list the elements in
More informationPythagoras theorem is one of the most popular theorems. Paper Folding And The Theorem of Pythagoras. Visual Connect in Teaching.
in the lssroom Visul Connet in Tehing Pper Folding And The Theorem of Pythgors Cn unfolding pper ot revel proof of Pythgors theorem? Does mking squre within squre e nything more thn n exerise in geometry
More informationChapter. Contents: A Constructing decimal numbers
Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting
More informationTHE PYTHAGOREAN THEOREM
THE PYTHAGOREAN THEOREM The Pythgoren Theorem is one of the most wellknown nd widely used theorems in mthemtis. We will first look t n informl investigtion of the Pythgoren Theorem, nd then pply this
More information11. PYTHAGORAS THEOREM
11. PYTHAGORAS THEOREM 111 Along the Nile 2 112 Proofs of Pythgors theorem 3 113 Finding sides nd ngles 5 114 Semiirles 7 115 Surds 8 116 Chlking hndll ourt 9 117 Pythgors prolems 10 118 Designing
More informationISTM206: Lecture 3 Class Notes
IST06: Leture 3 Clss otes ikhil Bo nd John Frik 9905 Simple ethod. Outline Liner Progrmming so fr Stndrd Form Equlity Constrints Solutions, Etreme Points, nd Bses The Representtion Theorem Proof of the
More informationSquare Roots Teacher Notes
Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this
More informationChapter 9: Quadratic Equations
Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.
More informationRIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is
More informationLearning Outcomes. Computer Systems  Architecture Lecture 4  Boolean Logic. What is Logic? Boolean Logic 10/28/2010
/28/2 Lerning Outcomes At the end of this lecture you should: Computer Systems  Architecture Lecture 4  Boolen Logic Eddie Edwrds eedwrds@doc.ic.c.uk http://www.doc.ic.c.uk/~eedwrds/compsys (Hevily sed
More information1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.
. Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry
More informationLecture 5. Inner Product
Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right
More informationVariable Dry Run (for Python)
Vrile Dr Run (for Pthon) Age group: Ailities ssumed: Time: Size of group: Focus Vriles Assignment Sequencing Progrmming 7 dult Ver simple progrmming, sic understnding of ssignment nd vriles 2050 minutes
More information4.5 The Converse of the
Pge 1 of. The onverse of the Pythgoren Theorem Gol Use the onverse of Pythgoren Theorem. Use side lengths to lssify tringles. Key Words onverse p. 13 grdener n use the onverse of the Pythgoren Theorem
More information4.11 Inner Product Spaces
314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces
More information1. Area under a curve region bounded by the given function, vertical lines and the x axis.
Ares y Integrtion. Are uner urve region oune y the given funtion, vertil lines n the is.. Are uner urve region oune y the given funtion, horizontl lines n the y is.. Are etween urves efine y two given
More informationWorksheet 24: Optimization
Worksheet 4: Optimiztion Russell Buehler b.r@berkeley.edu 1. Let P 100I I +I+4. For wht vlues of I is P mximum? P 100I I + I + 4 Tking the derivtive, www.xkcd.com P (I + I + 4)(100) 100I(I + 1) (I + I
More informationAlgorithms Chapter 4 Recurrences
Algorithms Chpter 4 Recurrences Outline The substitution method The recursion tree method The mster method Instructor: Ching Chi Lin 林清池助理教授 chingchilin@gmilcom Deprtment of Computer Science nd Engineering
More information11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π.
. Fourier series Summry of the bsic ides The following is quick summry of the introductory tretment of Fourier series in MATH. We consider function f with period π, tht is, stisfying f(x + π) = f(x) for
More informationChapter 6 Solving equations
Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign
More information8. Hyperbolic triangles
8. Hyperoli tringles Note: This yer, I m not doing this mteril, prt from Pythgors theorem, in the letures (nd, s suh, the reminder isn t exminle). I ve left the mteril s Leture 8 so tht (i) nyody interested
More informationEquations between labeled directed graphs
Equtions etween leled directed grphs Existence of solutions GrretFontelles A., Misnikov A., Ventur E. My 2013 Motivtionl prolem H 1 nd H 2 two sugroups of the free group generted y X A, F (X, A). H 1
More information. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2
7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6
More informationPerfect competition model (PCM)
18/9/21 Consumers: Benefits, WT, nd Demnd roducers: Costs nd Supply Aggregting individul curves erfect competition model (CM) Key ehviourl ssumption Economic gents, whether they e consumers or producers,
More informationFunctions A B C D E F G H I J K L. Contents:
Funtions Contents: A reltion is n set of points whih onnet two vriles. A funtion, sometimes lled mpping, is reltion in whih no two different ordered pirs hve the sme oordinte or first omponent. Algeri
More informationVectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments  they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
More informationCircuit Analysis. Lesson #2. BME 372 Electronics I J.Schesser
Ciruit Anlysis Lesson # BME 37 Eletronis J.Shesser 67 oltge Division The voltge ross impednes in series divides in proportion to the impednes. b n b b b b ( ; KL Ohm's Lw BME 37 Eletronis J.Shesser i i
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationBoolean Logic. Building a Modern Computer From First Principles.
Boolen Logic Building Modern Computer From First Principles www.nnd2tetris.org Elements of Computing Systems, Nisn & Schocken, MIT Press, www.nnd2tetris.org, Chpter 1: Boolen Logic slide 1 Boolen lger
More informationSequences and Series
Centre for Eduction in Mthemtics nd Computing Euclid eworkshop # 5 Sequences nd Series c 014 UNIVERSITY OF WATERLOO While the vst mjority of Euclid questions in this topic re use formule for rithmetic
More informationSwitching Circuits & Logic Design
Swithing iruits & Logi Design JieHong Roland Jiang 江介宏 Department of Eletrial Engineering National Taiwan University Fall 23 9 Multiplexers, Deoders, and Programmable Logi Devies www.miraleofthebloodandheart.om
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationm, where m = m 1 + m m n.
Lecture 7 : Moments nd Centers of Mss If we hve msses m, m 2,..., m n t points x, x 2,..., x n long the xxis, the moment of the system round the origin is M 0 = m x + m 2 x 2 + + m n x n. The center of
More informationBayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the
More informationCMOS Logic Building Blocks
Chpter 5 CMOS Logic Building Blocks In this chpter we discuss structures, lyout nd trnsient properties of sic CMOS logic uilding locks. These locks come into two groups referred to s gte logic nd switch
More informationThank you for participating in Teach It First!
Thnk you for prtiipting in Teh It First! This Teh It First Kit ontins Common Core Coh, Mthemtis teher lesson followed y the orresponding student lesson. We re onfident tht using this lesson will help you
More informationThe following information must be known for the correct selection of current measurement transformer (measurement or protection):
P 5 Protetion trnsformers P.5.01 GB Protetion trnsformers The following informtion must e known for the orret seletion of urrent mesurement trnsformer (mesurement or protetion): The pplition for whih it
More informationCSE 1400 Applied Discrete Mathematics Sets
CSE 1400 Applie Disrete Mthemtis Sets Deprtment of Computer Sienes College of Engineering Flori Teh Fll 2011 Set Bsis 1 Common Sets 3 Opertions On Sets 3 Preeene of Set Opertions 4 Crtesin Prouts 4 Suset
More informationThe remaining two sides of the right triangle are called the legs of the right triangle.
10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More informationAngles 2.1. Exercise 2.1... Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example
2.1 Angles Reognise lternte n orresponing ngles Key wors prllel lternte orresponing vertilly opposite Rememer, prllel lines re stright lines whih never meet or ross. The rrows show tht the lines re prllel
More informationMA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!
MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more
More informationCHAPTER II SWITCH NETWORKS AND SWITCH DESIGN
HPTER II HPTER II HPTER II ND R.M. Dansereau; v.. nalog vs Digital Transistor: Electrical witch ardee, hockley, rattain (ell Labs, 948), Nobel Prize Winners bipolar transistor (single TR) fieldeffect
More informationThe AVL Tree Rotations Tutorial
The AVL Tree Rottions Tutoril By John Hrgrove Version 1.0.1, Updted Mr222007 Astrt I wrote this doument in n effort to over wht I onsider to e drk re of the AVL Tree onept. When presented with the tsk
More information4.0 5Minute Review: Rational Functions
mth 130 dy 4: working with limits 1 40 5Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two
More informationGeometry 71 Geometric Mean and the Pythagorean Theorem
Geometry 71 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the
More informationSolutions to Section 1
Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this
More informationDIGITAL CIRCUITS EXAMPLES (questions and solutions) Dr. N. AYDIN
DIGITAL CIRCUITS EXAMPLES (questions nd solutions) Dr. N. AYDIN nydin@yildiz.edu.tr Emple. Assume tht the inverter in the network elow hs propgtion dely of 5 ns nd the AND gte hs propgtion dely of ns.
More informationMath 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
More informationSOLVING EQUATIONS BY FACTORING
316 (560) Chpter 5 Exponents nd Polynomils 5.9 SOLVING EQUATIONS BY FACTORING In this setion The Zero Ftor Property Applitions helpful hint Note tht the zero ftor property is our seond exmple of getting
More informationA Note on Complement of Trapezoidal Fuzzy Numbers Using the αcut Method
Interntionl Journl of Applictions of Fuzzy Sets nd Artificil Intelligence ISSN  Vol.  A Note on Complement of Trpezoidl Fuzzy Numers Using the αcut Method D. Stephen Dingr K. Jivgn PG nd Reserch Deprtment
More informationOn the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding
Dt_nlysisclm On the Mening of Regression for tegoricl nd ontinuous Vribles: I nd II; Effect oding nd Dummy oding R Grdner Deprtment of Psychology This describes the simple cse where there is one ctegoricl
More informationLocation of Minterms in Kmaps. Karnaugh map. Examples of 3Variable Kmap. Simplification using Kmap. Karnaugh maps with up to 4 variables
Karnaugh map (Kmap) allows viewing the funtion in a piture form ontaining the same information as a truth table ut terms are arranged suh that two neighbors differ in only one variable It is easy to identify
More informationSection 55 Solving Right Triangles*
55 Solving Right Tringles 379 79. Geometry. The re of retngulr nsided polygon irumsried out irle of rdius is given y A n tn 80 n (A) Find A for n 8, n 00, n,000, nd n 0,000. Compute eh to five deiml
More informationNapoleon and Pythagoras with Geometry Expressions
Npoleon nd Pythgors with eometry xpressions NPOLON N PYTORS WIT OMTRY XPRSSIONS... 1 INTROUTION... xmple 1: Npoleon s Theorem... 3 xmple : n unexpeted tringle from Pythgorslike digrm... 5 xmple 3: Penequilterl
More informationLectures 8 and 9 1 Rectangular waveguides
1 Lectures 8 nd 9 1 Rectngulr wveguides y b x z Consider rectngulr wveguide with 0 < x b. There re two types of wves in hollow wveguide with only one conductor; Trnsverse electric wves
More informationLINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
More informationGlitches and Hazards in Digital Circuits
Glithes n Hzrs in Digitl Ciruits Glithes n Hzrs in Digitl Ciruits After moment you hnge your min John Knight Eletronis Deprtment, Crleton University Printe; Mrh 24, 4 Moifie; Mrh 24, 4 Glithes n Hzrs in
More informationAngles and Triangles
nges nd Tringes n nge is formed when two rys hve ommon strting point or vertex. The mesure of n nge is given in degrees, with ompete revoution representing 360 degrees. Some fmiir nges inude nother fmiir
More information