Operations with Polynomials

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Operations with Polynomials"

Transcription

1 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply polynomils Use specil products to multiply polynomils Use opertions with polynomils in ppliction problems Why you should lern it: Opertions with polynomils enble you to model vrious spects of the physicl world, such s the position of free-flling object, s shown in Eercises on pge 50. Bsic Definitions An lgebric epression contining only terms of the form k, where is ny rel number nd k is nonnegtive integer, is clled polynomil in one vrible or simply polynomil. Here re some emples of polynomils in one vrible. 3 8, , In the term k, is clled the coefficient, nd k the degree, of the term. Note tht the degree of the term is 1, nd the degree of constnt term is 0. Becuse polynomil is n lgebric sum, the coefficients tke on the signs between the terms. For instnce, hs coefficients 1, 4, 0, nd 3. Polynomils re usully written in order of descending powers of the vrible. This is referred to s stndrd form. For emple, the stndrd form of is Stndrd form The degree of polynomil is defined s the degree of the term with the highest power, nd the coefficient of this term is clled the leding coefficient of the polynomil. For instnce, the polynomil , is of fourth degree nd its leding coefficient is 3. nd 9 5 Definition of Polynomil in Let 0, 1, 2, 3,..., n be rel numbers nd let n be nonnegtive integer. A polynomil in is n epression of the form n n n1 n where n 0. The polynomil is of degree n, nd the number n is clled the leding coefficient. The number is clled the constnt term. 0 The following re not polynomils, for the resons stted. The epression is not polynomil becuse the eponent in The epression is not polynomil becuse the eponent in integer. is negtive is not nonnegtive

2 Section P.4 Opertions with Polynomils 39 Emple 1 Identifying Leding Coefficients nd Degrees Write the polynomil in stndrd form nd identify the degree nd leding coefficient of the polynomil. () (b) (c) Leding Polynomil Stndrd Form Degree Coefficient () (b) (c) Now try Eercise 7. A polynomil with only one term is monomil. Polynomils with two unlike terms re binomils, nd those with three unlike terms re trinomils. Here re some emples. Monomil: 5 3 Binomil: 4 3 Trinomil: The prefi mono mens one, the prefi bi mens two, nd the prefi tri mens three. Emple 2 Evluting Polynomil Find the vlue of when 4. When 4, the vlue of is Now try Eercise 27. Substitute 4 for. Evlute terms. Simplify. Adding nd Subtrcting Polynomils To dd two polynomils, simply combine like terms. This cn be done in either horizontl or verticl formt, s shown in Emples 3 nd 4. Emple 3 Adding Polynomils Horizontlly Use horizontl formt to dd nd Write originl polynomils Group like terms Now try Eercise 31.

3 40 Chpter P Prerequisites To use verticl formt to dd polynomils, lign the terms of the polynomils by their degrees, s shown in the following emple. Emple 4 Using Verticl Formt to Add Polynomils Use verticl formt to dd , , Now try Eercise 33. nd To subtrct one polynomil from nother, dd the opposite. You cn do this by chnging the sign of ech term of the polynomil tht is being subtrcted nd then dding the resulting like terms. Emple 5 Subtrcting Polynomils Horizontlly Use horizontl formt to subtrct from Now try Eercise 39. Write originl polynomils. Add the opposite. Group like terms. Study Tip The common error illustrted to the right is forgetting to chnge two of the signs in the polynomil tht is being subtrcted. When subtrcting polynomils, remember to dd the opposite of every term of the subtrcted polynomil. Be especilly creful to get the correct signs when you re subtrcting one polynomil from nother. One of the most common mistkes in lgebr is to forget to chnge signs correctly when subtrcting one epression from nother. Here is n emple. Wrong sign Wrong sign Emple 6 Using Verticl Formt to Subtrct Polynomils Use verticl formt to subtrct from Now try Eercise 45. Common error

4 Multiplying Polynomils Section P.4 Opertions with Polynomils 41 The simplest type of polynomil multipliction involves monomil multiplier. The product is obtined by direct ppliction of the. For instnce, to multiply the monomil 3 by the polynomil , multiply ech term of the polynomil by Emple 7 Finding Products with Monomil Multipliers Multiply the polynomil by the monomil. () 2 73 (b) () Properties of eponents (b) Properties of eponents Now try Eercise 71. Outer First Inner Lst FOIL Digrm To multiply two binomils, you cn use both (left nd right) forms of the. For emple, if you tret the binomil 2 7 s single quntity, you cn multiply 3 2 by 2 7 s follows Product of First terms Product of Outer terms Product of Inner terms Product of Lst terms The four products in the boes bove suggest tht you cn put the product of two binomils in the FOIL form in just one step. This is clled the FOIL Method. Note tht the words first, outer, inner, nd lst refer to the positions of the terms in the originl product (see digrm t the left). Emple 8 Multiplying Binomils () Use the to multiply 2 by Now try Eercise 77.

5 42 Chpter P Prerequisites Emple 9 Multiplying Binomils (FOIL Method) Use the FOIL method to multiply the binomils. () 3 9 (b) F O I L () F O I L (b) Now try Eercise 81. To multiply two polynomils tht hve three or more terms, you cn use the sme bsic principle tht you use when multiplying monomils nd binomils. Tht is, ech term of one polynomil must be multiplied by ech term of the other polynomil. This cn be done using either horizontl or verticl formt. Emple 10 Multiplying Polynomils (Horizontl Formt) Now try Eercise 97. When multiplying two polynomils, it is best to write ech in stndrd form before using either the horizontl or verticl formt. This is illustrted in the net emple. Emple 11 Multiplying Polynomils (Verticl Formt) Write the polynomils in stndrd form nd use verticl formt to multiply With verticl formt, line up like terms in the sme verticl columns, much s you lign digits in whole-number multipliction Write in stndrd form Write in stndrd form Now try Eercise 101.

6 Section P.4 Opertions with Polynomils 43 EXPLORATION Use the FOIL Method to find the product of where is constnt. Wht do you notice bout the number of terms in your product? Wht degree re the terms in your product? Polynomils re often written with eponents. As shown in the net emple, the properties of lgebr re used to simplify these epressions. Emple 12 Multiplying Polynomils Epnd Now try Eercise 129. Write ech fctor. Associtive Property of Multipliction Multiply 4 4. Emple 13 An Are Model for Multiplying Polynomils Show tht An pproprite re model to demonstrte the multipliction of two binomils would be A lw, the re formul for rectngle. Think of rectngle whose sides re 2 nd 2 1. The re of this rectngle is Are widthlength Another wy to find the re is to dd the res of the rectngulr prts, s shown in Figure P.11. There re two squres whose sides re, five rectngles whose sides re nd 1, nd two squres whose sides re 1. The totl re of these nine rectngles is Are sum of rectngulr res Figure P Becuse ech method must produce the sme re, you cn conclude tht Now try Eercise 155. Specil Products Some binomil products hve specil forms tht occur frequently in lgebr. For instnce, the product 3 3 is clled the product of the sum nd difference of two terms. With such products, the two middle terms subtrct out, s follows Sum nd difference of two terms Product hs no middle term.

7 44 Chpter P Prerequisites Another common type of product is the squre of binomil. With this type of product, the middle term is lwys twice the product of the terms in the binomil Squre of binomil Outer nd inner terms re equl. Middle term is twice the product of the terms in the binomil. Specil Products Let u nd v be rel numbers, vribles, or lgebric epressions. Then the following formuls re true. Sum nd Difference of Sme Terms Emple u vu v u 2 v Squre of Binomil Emple u v 2 u 2 2uv v u v 2 u 2 2uv v b b The squre of binomil cn lso be demonstrted geometriclly. Consider squre, ech of whose sides re of length b. (See Figure P.12). The totl re includes one squre of re 2, two rectngles of re b ech, nd one squre of re b 2. So, the totl re is 2 2b b 2. + b Emple 14 Finding Specil Products b b + b Figure P.12 b 2 Multiply the polynomils. () (b) (c) 2 b 2 () Sum nd difference of sme terms Simplify. (b) Squre of binomil Simplify. (c) 2 b b b 2 Squre of binomil b 4b b 2 Simplify. Now try Eercise 107.

8 Applictions Section P.4 Opertions with Polynomils 45 There re mny pplictions tht require the evlution of polynomils. One commonly used second-degree polynomil is clled position polynomil. This polynomil hs the form 16t 2 v 0 t s 0 Position polynomil where t is the time, mesured in seconds. The vlue of this polynomil gives the height (in feet) of free-flling object bove the ground, ssuming no ir resistnce. The coefficient of t, v 0, is clled the initil velocity of the object, nd the constnt term, s 0, is clled the initil height of the object. If the initil velocity is positive, the object ws projected upwrd (t t 0), if the initil velocity is negtive, the object ws projected downwrd, nd if the initil velocity is zero, the object ws dropped. t = 0 t = ft t = 2 t = 3 Figure P.13 Emple 15 Finding the Height of Free-Flling Object An object is thrown downwrd from the top of 200-foot building. The initil velocity is 10 feet per second. Use the position polynomil 16t 2 10t 200 to find the height of the object when t 1, t 2, nd t 3 (see Figure P.13). When t 1, the height of the object is Height feet. When t 2, the height of the object is Height feet. When t 3, the height of the object is Height feet. Now try Eercise 167. In Emple 15, the initil velocity is 10 feet per second. The vlue is negtive becuse the object ws thrown downwrd. If it hd been thrown upwrd, the initil velocity would hve been positive. If it hd been dropped, the initil velocity would hve been zero. Use your clcultor to determine the height of the object in Emple 15 when t Wht cn you conclude?

9 46 Chpter P Prerequisites Emple 16 Using Polynomil Models The numbers of vehicles (in thousnds) fueled by compressed nturl gs G nd by electricity E in the United Sttes from 1995 to 2003 cn be modeled by G 0.079t t 3.2, 5 t 13 Vehicles fueled by nturl gs E 1.090t t 51.6, 5 t 13 Vehicles fueled by electricity where t represents the yer, with t 5 corresponding to Find model tht represents the totl numbers T of vehicles fueled by compressed nturl gs nd by electricity from 1995 to Then estimte the totl number T of vehicles fueled by compressed nturl gs nd by electricity in (Source: Science Applictions Interntionl Corportion nd Energy Informtion Administrtion) The sum of the two polynomil models is s follows. G E 0.079t t t t 51.6 So, the polynomil tht models the totl numbers of vehicles fueled by compressed nturl gs nd by electricity is T G E 1.169t t t t 54.8 Using this model, nd substituting t 12, you cn estimte the totl number of vehicles fueled by compressed nturl gs nd by electricity in 2002 to be T thousnd vehicles. Now try Eercise Figure P.14 A 1. Emple 17 Geometry: Finding the Are of Shded Region Find n epression for the re of the shded portion in Figure P.14. First find the re of the lrge rectngle A 1 nd the re of the smll rectngle A 2. A nd A Then to find the re A of the shded portion, subtrct A 2 from A A 1 A Write formul. Substitute Use FOIL Method nd 9 specil product formul Now try Eercise 149.

10 Section P.4 Opertions with Polynomils 47 P.4 Eercises VOCABULARY CHECK: Fill in the blnks. 1. The epression n n n1 n n 0 is clled. 2. The of polynomil is the degree of the term with the highest power, nd the coefficient of this term is the of the polynomil. 3. A polynomil with one term is clled, while polynomil with two unlike terms is clled, nd polynomil with three unlike terms is clled. 4. The letters in FOIL stnd for the following. F O I L 5. The product u vu v u 2 v 2 is clled the nd of terms. 6. The product u v 2 u 2 2uv v 2 is clled the of. 7. The epression 16t 2 v 0 t s 0 is clled the, nd v 0 is the initil nd s 0 is the initil. In Eercises 1 12, write the polynomil in stndrd form, nd find its degree nd leding coefficient y z 16z t 16t t 4t 5 t z 2 8z 4z In Eercises 13 18, determine whether the polynomil is monomil, binomil, or trinomil y t u 7 9u z 2 In Eercises 19 26, give n emple of polynomil in one vrible stisfying the conditions. (There re mny correct nswers.) 19. A monomil of degree A trinomil of degree A trinomil of degree 4 nd leding coefficient A binomil of degree 2 nd leding coefficient A monomil of degree 1 nd leding coefficient A binomil of degree 5 nd leding coefficient A monomil of degree A monomil of degree 2 nd leding coefficient 9 In Eercises 27 30, evlute the polynomil for ech specified vlue of the vrible () 2 (b) () 2 (b) () 1 (b) 30. 3t 4 4t 3 () t 1 (b) t 2 3 In Eercises 31 34, perform the ddition using horizontl formt y 6 4y 2 6y 3 9 2y 11y 2 In Eercises 35 38, perform the ddition using verticl formt b 3 b 2 2b 7 b v 2 v 3 4v 1 2v 2 3v In Eercises 39 42, perform the subtrction using horizontl formt y 4 2 3y y 2 3y 4 y 4 y 2 In Eercises 43 46, perform the subtrction using verticl formt z 2 z z 3 2z 2 z t 4 5t 2 t 4 0.3t

11 48 Chpter P Prerequisites In Eercises 47 68, perform the indicted opertion(s) s 12s s 2 6s y 4 18y 18 11y 4 8y s 6s 30s y 2 2y y 2 y 3y 2 6y y 2 3y 9 34y 4 5y 2 2y t t 2 5 6t v 2 8v 1 3v z 2 z 11 3z 2 4z 5 22z 2 5z 10 73t 4 2t 2 t 5t 4 9t 2 4t 38t 2 5t t 3 2t 2 t 8 3t 3 t 2 4t 2 42t 2 3t 1 t y y y k k 14.61k k In Eercises 69 96, perform the multipliction nd simplify n3n y5 y 72. 5z2z y 2 3y 2 7y y 2y y4 y 81. 2t 1t z 52z b 5 13b y3 2y y3 2y y 2 y b b y 1 312y 9 5t 3 42t t3tt t 1t 1 32t y 3 2y 1y 7 In Eercises , perform the multipliction using horizontl formt t 3t 2 5t u 52u 2 3u In Eercises , perform the multipliction using verticl formt s 2 5s 63s 4 In Eercises , perform the multipliction y 7y c 6c n m8n m t 92t z 15z t t b4 0.1b b y y 7 4z t 2 5t 12t 2 5 2z 2 3z 73z y y t 2 2t 72t 2 8t y y z y u v 3 2

12 Section P.4 Opertions with Polynomils 49 In Eercises , perform the indicted opertions nd simplify k 8k 8 k 2 k t 3 2 t Geometry In Eercises , write n epression for the perimeter or circumference of the figure y Geometric Modeling In Eercises , () perform the multipliction lgebriclly nd (b) use geometric re model to verify your solution to prt () yy t 3t z 5z 1 Geometric Modeling In Eercises 157 nd 158, use the re model to write two different epressions for the totl re. Then equte the two epressions nd nme the lgebric property tht is illustrted b + b 2y y y Geometry In Eercises , write n epression for the re of the shded portion of the figure y t 7t t 2 6t 159. Geometry The length of rectngle is times its width w. Write epressions for () the perimeter nd (b) the re of the rectngle Geometry The bse of tringle is 3 nd its height is 5. Write n epression for the re A of the tringle Compound Interest After 2 yers, n investment of $1000 compounded nnully t n interest rte of r will yield n mount r 2. Find this product Compound Interest After 2 yers, n investment of $1000 compounded nnully t n interest rte of 3.5% will yield n mount Find this product

13 50 Chpter P Prerequisites Free-Flling Object In Eercises , use the position polynomil to determine whether the free-flling object ws dropped, thrown upwrd, or thrown downwrd. Then determine the height of the object t time t t t 2 50t t 2 24t t 2 32t Free-Flling Object An object is thrown upwrd from the top of 200-foot building (see figure). The initil velocity is 40 feet per second. Use the position polynomil 16t 2 40t 200 to find the height of the object when t 1, t 2, nd t ft 250 ft Per cpit consumption (in gllons) (b) During the given time period, the per cpit consumption of beverge milks ws decresing nd the per cpit consumption of bottled wter ws incresing (see figure). Ws the combined per cpit consumption of both beverge milks nd bottled wter incresing or decresing over the given time period? y Figure for 169 Beverge milks Bottled wter Yer (5 1995) t Synthesis Figure for 167 Figure for Free-Flling Object An object is thrown downwrd from the top of 250-foot building (see figure). The initil velocity is 25 feet per second. Use the position polynomil 16t 2 25t 250 to find the height of the object when t 1, t 2, nd t Beverge Consumption The per cpit consumption of ll beverge milks M nd bottled wter W in the United Sttes from 1995 to 2003 cn be pproimted by the following two polynomil models. M t t Beverge milks W t t 9.40 Bottled wter In these models, the per cpit consumption is given in gllons nd t5 t 13 represents the yer, with t 5 corresponding to (Source: USDA/Economic Reserch Service) () Find polynomil model tht represents the per cpit consumption of both beverge milks nd bottled wter during the given time period. Use this model to find the per cpit consumption of beverge milks nd bottled wter in 1999 nd Writing Eplin why y 2 is not equl to 2 y Think About It Is every trinomil seconddegree polynomil? Eplin Think About It Cn two third-degree polynomils be dded to produce second-degree polynomil? If so, give n emple Perform the multiplictions. () 1 1 (b) (c) From the pttern formed by these products, cn you predict the result of ? 174. Writing Eplin why is not polynomil.

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

Section A-4 Rational Expressions: Basic Operations

Section A-4 Rational Expressions: Basic Operations A- Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr open-topped bo is to be constructed out of 9- by 6-inch sheets of thin crdbord by cutting -inch squres out of ech corner nd bending the

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

Chapter 6 Solving equations

Chapter 6 Solving equations Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

The Quadratic Formula and the Discriminant

The Quadratic Formula and the Discriminant 9-9 The Qudrtic Formul nd the Discriminnt Objectives Solve qudrtic equtions by using the Qudrtic Formul. Determine the number of solutions of qudrtic eqution by using the discriminnt. Vocbulry discriminnt

More information

Quadratic Equations - 1

Quadratic Equations - 1 Alger Module A60 Qudrtic Equtions - 1 Copyright This puliction The Northern Alert Institute of Technology 00. All Rights Reserved. LAST REVISED Novemer, 008 Qudrtic Equtions - 1 Sttement of Prerequisite

More information

THE RATIONAL NUMBERS CHAPTER

THE RATIONAL NUMBERS CHAPTER CHAPTER THE RATIONAL NUMBERS When divided by b is not n integer, the quotient is frction.the Bbylonins, who used number system bsed on 60, epressed the quotients: 0 8 s 0 60 insted of 8 s 7 60,600 0 insted

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

Chapter 9: Quadratic Equations

Chapter 9: Quadratic Equations Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Sect 8.3 Triangles and Hexagons

Sect 8.3 Triangles and Hexagons 13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed two-dimensionl geometric figure consisting of t lest three line segments for its

More information

4.0 5-Minute Review: Rational Functions

4.0 5-Minute Review: Rational Functions mth 130 dy 4: working with limits 1 40 5-Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two

More information

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

More information

Basic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, }

Basic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, } ƒ Bsic Mth Review Numers NATURAL NUMBERS {1,, 3, 4, 5, } WHOLE NUMBERS {0, 1,, 3, 4, } INTEGERS {, 3,, 1, 0, 1,, } The Numer Line 5 4 3 1 0 1 3 4 5 Negtive integers Positive integers RATIONAL NUMBERS All

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

1 Numerical Solution to Quadratic Equations

1 Numerical Solution to Quadratic Equations cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll

More information

Exponents base exponent power exponentiation

Exponents base exponent power exponentiation Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily

More information

5.6 POSITIVE INTEGRAL EXPONENTS

5.6 POSITIVE INTEGRAL EXPONENTS 54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section

More information

10.6 Applications of Quadratic Equations

10.6 Applications of Quadratic Equations 10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,

More information

Square Roots Teacher Notes

Square Roots Teacher Notes Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

More information

Polynomials. Common Mistakes

Polynomials. Common Mistakes Polnomils Polnomils Definition A polnomil is single term or sum or difference of terms in which ll vribles hve whole-number eponents nd no vrible ppers in the denomintor. Ech term cn be either constnt,

More information

Solutions to Section 1

Solutions to Section 1 Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Answer, Key Homework 8 David McIntyre 1

Answer, Key Homework 8 David McIntyre 1 Answer, Key Homework 8 Dvid McIntyre 1 This print-out should hve 17 questions, check tht it is complete. Multiple-choice questions my continue on the net column or pge: find ll choices before mking your

More information

Basic Analysis of Autarky and Free Trade Models

Basic Analysis of Autarky and Free Trade Models Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Sequences and Series

Sequences and Series Centre for Eduction in Mthemtics nd Computing Euclid eworkshop # 5 Sequences nd Series c 014 UNIVERSITY OF WATERLOO While the vst mjority of Euclid questions in this topic re use formule for rithmetic

More information

Net Change and Displacement

Net Change and Displacement mth 11, pplictions motion: velocity nd net chnge 1 Net Chnge nd Displcement We hve seen tht the definite integrl f (x) dx mesures the net re under the curve y f (x) on the intervl [, b] Any prt of the

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

So there are two points of intersection, one being x = 0, y = 0 2 = 0 and the other being x = 2, y = 2 2 = 4. y = x 2 (2,4)

So there are two points of intersection, one being x = 0, y = 0 2 = 0 and the other being x = 2, y = 2 2 = 4. y = x 2 (2,4) Ares The motivtion for our definition of integrl ws the problem of finding the re between some curve nd the is for running between two specified vlues. We pproimted the region b union of thin rectngles

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1 PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Quadratic Equations. Math 99 N1 Chapter 8

Quadratic Equations. Math 99 N1 Chapter 8 Qudrtic Equtions Mth 99 N1 Chpter 8 1 Introduction A qudrtic eqution is n eqution where the unknown ppers rised to the second power t most. In other words, it looks for the vlues of x such tht second degree

More information

not to be republished NCERT POLYNOMIALS CHAPTER 2 (A) Main Concepts and Results (B) Multiple Choice Questions

not to be republished NCERT POLYNOMIALS CHAPTER 2 (A) Main Concepts and Results (B) Multiple Choice Questions POLYNOMIALS (A) Min Concepts nd Results Geometricl mening of zeroes of polynomil: The zeroes of polynomil p(x) re precisely the x-coordintes of the points where the grph of y = p(x) intersects the x-xis.

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function.

Math Review 1. , where α (alpha) is a constant between 0 and 1, is one specific functional form for the general production function. Mth Review Vribles, Constnts nd Functions A vrible is mthemticl bbrevition for concept For emple in economics, the vrible Y usully represents the level of output of firm or the GDP of n economy, while

More information

Exponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.

Exponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep. Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:

More information

Let us recall some facts you have learnt in previous grades under the topic Area.

Let us recall some facts you have learnt in previous grades under the topic Area. 6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us

More information

Arc Length. P i 1 P i (1) L = lim. i=1

Arc Length. P i 1 P i (1) L = lim. i=1 Arc Length Suppose tht curve C is defined by the eqution y = f(x), where f is continuous nd x b. We obtin polygonl pproximtion to C by dividing the intervl [, b] into n subintervls with endpoints x, x,...,x

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

ALGEBRAIC FRACTIONS,AND EQUATIONS AND INEQUALITIES INVOLVING FRACTIONS

ALGEBRAIC FRACTIONS,AND EQUATIONS AND INEQUALITIES INVOLVING FRACTIONS CHAPTER ALGEBRAIC FRACTIONS,AND EQUATIONS AND INEQUALITIES INVOLVING FRACTIONS Although people tody re mking greter use of deciml frctions s they work with clcultors, computers, nd the metric system, common

More information

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent! MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

14.2. The Mean Value and the Root-Mean-Square Value. Introduction. Prerequisites. Learning Outcomes

14.2. The Mean Value and the Root-Mean-Square Value. Introduction. Prerequisites. Learning Outcomes he Men Vlue nd the Root-Men-Squre Vlue 4. Introduction Currents nd voltges often vry with time nd engineers my wish to know the men vlue of such current or voltge over some prticulr time intervl. he men

More information

On the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding

On the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding Dt_nlysisclm On the Mening of Regression for tegoricl nd ontinuous Vribles: I nd II; Effect oding nd Dummy oding R Grdner Deprtment of Psychology This describes the simple cse where there is one ctegoricl

More information

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

More information

Uniform convergence and its consequences

Uniform convergence and its consequences Uniform convergence nd its consequences The following issue is centrl in mthemtics: On some domin D, we hve sequence of functions {f n }. This mens tht we relly hve n uncountble set of ordinry sequences,

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

Chapter G - Problems

Chapter G - Problems Chpter G - Problems Blinn College - Physics 2426 - Terry Honn Problem G.1 A plne flies horizonlly t speed of 280 mês in position where the erth's mgnetic field hs mgnitude 6.0µ10-5 T nd is directed t n

More information

The remaining two sides of the right triangle are called the legs of the right triangle.

The remaining two sides of the right triangle are called the legs of the right triangle. 10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right

More information

Sample Problems. Practice Problems

Sample Problems. Practice Problems Lecture Notes Comple Frctions pge Smple Problems Simplify ech of the following epressions.. +. +. + 8. b b... 7. + + 9. y + y 0. y Prctice Problems Simplify ech of the following epressions...... 8 + +

More information

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:

Cypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period: Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A

More information

1. 0 m/s m/s m/s m/s

1. 0 m/s m/s m/s m/s Version PREVIEW Kine Grphs PRACTICE burke (1111) 1 This print-out should he 30 questions. Multiple-choice questions m continue on the next column or pge find ll choices before nswering. Distnce Time Grph

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

Tests for One Poisson Mean

Tests for One Poisson Mean Chpter 412 Tests for One Poisson Men Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson distribution

More information

Algorithms Chapter 4 Recurrences

Algorithms Chapter 4 Recurrences Algorithms Chpter 4 Recurrences Outline The substitution method The recursion tree method The mster method Instructor: Ching Chi Lin 林清池助理教授 chingchilin@gmilcom Deprtment of Computer Science nd Engineering

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

Theory of Forces. Forces and Motion

Theory of Forces. Forces and Motion his eek extbook -- Red Chpter 4, 5 Competent roblem Solver - Chpter 4 re-lb Computer Quiz ht s on the next Quiz? Check out smple quiz on web by hurs. ht you missed on first quiz Kinemtics - Everything

More information

In this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.

In this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists. Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix

More information

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Geometry 7-1 Geometric Mean and the Pythagorean Theorem Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

More information

Linear Equations in Two Variables

Linear Equations in Two Variables Liner Equtions in Two Vribles In this chpter, we ll use the geometry of lines to help us solve equtions. Liner equtions in two vribles If, b, ndr re rel numbers (nd if nd b re not both equl to 0) then

More information

Solution: Let x be the larger number and y the smaller number.

Solution: Let x be the larger number and y the smaller number. Problem The sum of two numbers is 00 The lrger number minus the smller number is Find the numbers [Problem submitted by Vin Lee, LACC Professor of Mthemtics Source: Vin Lee] Solution: Let be the lrger

More information

Answer, Key Homework 4 David McIntyre Mar 25,

Answer, Key Homework 4 David McIntyre Mar 25, Answer, Key Homework 4 Dvid McIntyre 45123 Mr 25, 2004 1 his print-out should hve 18 questions. Multiple-choice questions my continue on the next column or pe find ll choices before mkin your selection.

More information

Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;

Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C; B-26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndom-numer genertor supplied s stndrd with ll computer systems Stn Kelly-Bootle,

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

Rotating DC Motors Part II

Rotating DC Motors Part II Rotting Motors rt II II.1 Motor Equivlent Circuit The next step in our consiertion of motors is to evelop n equivlent circuit which cn be use to better unerstn motor opertion. The rmtures in rel motors

More information

Review Problems for the Final of Math 121, Fall 2014

Review Problems for the Final of Math 121, Fall 2014 Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since

More information

Using Definite Integrals

Using Definite Integrals Chpter 6 Using Definite Integrls 6. Using Definite Integrls to Find Are nd Length Motivting Questions In this section, we strive to understnd the ides generted by the following importnt questions: How

More information

Homework #6: Answers. a. If both goods are produced, what must be their prices?

Homework #6: Answers. a. If both goods are produced, what must be their prices? Text questions, hpter 7, problems 1-2. Homework #6: Answers 1. Suppose there is only one technique tht cn be used in clothing production. To produce one unit of clothing requires four lbor-hours nd one

More information

Double Integrals over General Regions

Double Integrals over General Regions Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing

More information

COMPLEX FRACTIONS. section. Simplifying Complex Fractions

COMPLEX FRACTIONS. section. Simplifying Complex Fractions 58 (6-6) Chpter 6 Rtionl Epressions undles tht they cn ttch while working together for 0 hours. 00 600 6 FIGURE FOR EXERCISE 9 95. Selling. George sells one gzine suscription every 0 inutes, wheres Theres

More information

Section 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables

Section 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables The Clculus of Functions of Severl Vribles Section 2.3 Motion Along Curve Velocity ccelertion Consider prticle moving in spce so tht its position t time t is given by x(t. We think of x(t s moving long

More information

0.2 ABSOLUTE VALUE AND DISTANCE ON THE REAL NUMBER LINE

0.2 ABSOLUTE VALUE AND DISTANCE ON THE REAL NUMBER LINE 360040_0002.q 1/3/05 11:17 AM Pge 0-8 0-8 HAPTER 0 A Preclculus Review 0.2 ABSOLUTE VALUE AND DISTANE ON THE REAL NUMBER LINE Fin the solute vlues of rel numers n unerstn the properties of solute vlue.

More information

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University

More information

The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center

The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929  Math Learning Center Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,

More information

The Chain Rule. rf dx. t t lim " (x) dt " (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx

The Chain Rule. rf dx. t t lim  (x) dt  (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx The Chin Rule The Chin Rule In this section, we generlize the chin rule to functions of more thn one vrible. In prticulr, we will show tht the product in the single-vrible chin rule extends to n inner

More information

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

Applications to Physics and Engineering

Applications to Physics and Engineering Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

More information