Review. Scan Conversion. Rasterizing Polygons. Rasterizing Polygons. Triangularization. Convex Shapes. Utah School of Computing Spring 2013


 Melina Foster
 1 years ago
 Views:
Transcription
1 Uth Shool of Computing Spring 2013 Review Leture Set 4 Sn Conversion CS5600 Computer Grphis Spring 2013 Line rsteriztion Bsi Inrementl Algorithm Digitl Differentil Anlzer Rther thn solve line eqution t eh piel, use evlution of line from previous piel nd slope to pproimte line eqution Bresenhm Use integer rithmeti nd midpoint disrimintor to test etween two possile piels (over vs. overndup) Rsterizing Polgons In intertive grphis, polgons rule the world Two min resons: Lowest ommon denomintor for surfes Cn represent n surfe with ritrr ur Splines, mthemtil funtions, volumetri isosurfes Mthemtil simpliit lends itself to simple, regulr rendering lgorithms Like those we re out to disuss Suh lgorithms emed well in hrdwre Rsterizing Polgons Tringle is the miniml unit of polgon All polgons n e roken up into tringles Conve, onve, omple Tringles re gurnteed to e: Plnr Conve Wht etl does it men to e onve? Conve Shpes A twodimensionl shpe is onve if nd onl if ever line segment onneting two points on the oundr is entirel ontined. Conve polgons esil tringulted Tringulriztion Conve polgons present hllenge Computer Grphis CS5600
2 Uth Shool of Computing Spring 2013 Rsterizing Tringles Sn Conversion Intertive grphis hrdwre sometimes uses edge wlking or edge eqution tehniques for rsterizing tringles Intertive grphis hrdwre more ommonl uses rentri oordintes for rsterizing tringles In snline rendering surfes re projeted on the sreen nd spe filling rsterizing lgorithms re used to fill in the olor. Color vlues from light re pproimted. Tringle Rsteriztion Issues Etl whih piels should e lit? A: Those piels inside the tringle edges Wht out piels etl on the edge? Drw them: order of tringles mtters (it shouldn t) Don t drw them: gps possile etween tringles We need onsistent (if ritrr) rule Emple: drw piels on left nd ottom edge, ut not on right or top edge Tringle Rsteriztion Issues Sliver Tringle Rsteriztion Issues Moving Slivers Tringle Rsteriztion Issues Shred Edge Ordering Computer Grphis CS5600
3 Uth Shool of Computing Spring 2013 Computer Grphis CS5600
4 Uth Shool of Computing Spring 2013 Edge Equtions How do we know if it s inside? An edge eqution is simpl the eqution of the line defining tht edge Q: Wht is the impliit eqution of line? A: A + B + C = 0 Q: Given point (,), wht does plugging & into this eqution tell us? A: Whether the point is: On the line: A + B + C = 0 Aove the line: A + B + C > 0 Below the line: A + B + C < 0 Edge Equtions Edge equtions thus define two hlfspes: Edge Equtions And tringle n e defined s the intersetion of three positive hlfspes: A 3 + B 3 + C 3 < 0 A 3 + B 3 + C 3 > 0 A 2 + B 2 + C 2 < 0 A 2 + B 2 + C 2 > 0 A 1 + B 1 + C 1 > 0 A 1 + B 1 + C 1 < 0 Edge Equtions So simpl turn on those piels for whih ll edge equtions evlute to > 0: Computer Grphis CS5600
5 Uth Shool of Computing Spring 2013 Sweepline Sweepline: Notes Bsi ide: Drw edges vertill Interpolte olors up/down edges Fill in horizontl spns for eh snline At eh snline, interpolte edge olors ross spn Order three tringle verties in nd Find middle point in dimension nd ompute if it is to the left or right of polgon. Also ould e flt top or flt ottom tringle We know where left nd right edges re. Proeed from top snline downwrds (nd other w too) Fill eh spn Until ottom/top verte is rehed Advntge: n e mde ver fst Disdvntges: Lots of finik speil ses Sweep line: Disdvntges Frtionl offsets: Be reful when interpolting olor vlues! Bewre of gps etween djent edges Bewre of dupliting shred edges Computer Grphis CS5600
6 Uth Shool of Computing Spring 2013 Polgon Sn Conversion Intersetion Points Other points in the spn Computer Grphis CS5600
7 Uth Shool of Computing Spring 2013 Determining Inside vs. Outside Verties nd Prit Use the oddprit rule Set prit even initill Invert prit t eh intersetion point Drw piels when prit is odd, do not drw when it is even How do we ount verties, i.e., do we invert prit when verte flls etl on sn line? Sn line????? How do we ount the interseting verte in the prit omputtion? Verties nd Prit We need to either ount it 0 times, or 2 times to keep prit orret. Wht out: Sn line We need to ount this verte one????? Verties nd Prit If we ount verte s one intersetion, the seond polgon gets drwn orretl, ut the first does not. If we ount verte s zero or two intersetions, the first polgon gets drwn orretl, ut the seond does not. How do we hndle this? Count onl verties tht re the min verte for tht line Verties nd Prit How do we del with horizontl edges???? Horizontl Edges Both ses now work orretl Don t ount their verties in the prit lultion! Computer Grphis CS5600
8 Uth Shool of Computing Spring 2013 Effet of onl ounting min : Top spns of polgons re not drwn Top Spns of Polgons Shred Polgon Edges Drw Lst polgon wins Wht if two polgons shre n edge? If two polgons shre this edge, it is not prolem. Wht out if this is the onl polgon with tht edge? Ornge lst Solution: Spn is losed on left nd open on right ( min < m ) Sn lines losed on ottom nd open on top ( min < m ) Blue lst Generl Piel Ownership Rule Hlfplne rule: A oundr piel (whose enter flls etl on n edge) is not onsidered prt of primitive if the hlf plne formed the edge nd ontining the primitive lies to the left or elow the edge. Applies to ritrr polgons s well s to retngles... Shred edge Consequenes: Spns re missing the rightmost piel Eh polgon is missing its topmost spn Generl Polgon Rsteriztion Consider the following polgon: D B A F C How do we know whether given piel on the snline is inside or outside the polgon? E InsideOutside Points Polgon Rsteriztion Polgon Rsteriztion InsideOutside Points Computer Grphis CS5600
9 Uth Shool of Computing Spring 2013 Generl Polgon Rsteriztion Bsi ide: use prit test for eh snline edgecnt = 0; for eh piel on snline (l to r) if (oldpiel>newpiel rosses edge) edgecnt ++; // drw the piel if edgecnt odd if (edgecnt % 2) setpiel(piel); Generl Polgon Rsteriztion Count our verties refull G F I H E C J D A B Fster Polgon Rsteriztion How n we optimize the ode? for eh snline edgecnt = 0; for eh piel on snline (l to r) if (oldpiel>newpiel rosses edge) edgecnt ++; // drw the piel if edgecnt odd if (edgecnt % 2) setpiel(piel); Big ost: testing piels ginst eh edge Solution: tive edge tle (AET) Ative Edge Tle Ative Edge Tle Ide: Edges interseting given snline re likel to interset the net snline The order of edge intersetions doesn t hnge muh from snline to snline Preproess: Sort on Y Edge Tle Y m, t min,slope Computer Grphis CS5600
10 Uth Shool of Computing Spring 2013 Ative Edge Tle Ative Edge Tle Preproess: Sort on Y Edge Tle Preproess: Sort on Y Edge Tle AB: Y m, t min,slope Y m, t min,slope AB: 3 75/2 CB: Ative Edge Tle Ative Edge Tle Preproess: Sort on Y Edge Tle Y m, t min,slope AB: 3 75/2 CB: 5 7 6/4 CD: Preproess: Sort on Y Edge Tle Y m, t min,slope AB: 3 75/2 CB: 5 7 6/4 CD: DE: Ative Edge Tle Ative Edge Tle Preproess: Sort on Y Edge Tle Y m, t min,slope AB: 3 75/2 CB: 5 7 6/4 CD: DE: /4 EF: Preproess: Sort on Y Edge Tle Y m, t min,slope AB: 3 75/2 CB: 5 7 6/4 CD: DE: /4 EF: 9 75/2 FA: Computer Grphis CS5600
11 Uth Shool of Computing Spring 2013 Ative Edge Tle Ative Edge Tle Preproess: Sort on Y Edge Tle Y m, t min,slope AB: 3 75/2 CB: 5 7 6/4 CD: DE: /4 EF: 9 75/2 FA: Preproess: Sort on Y Edge Tle Y m, t min,slope AB: 3 75/2 CB: 5 7 6/4 CD: DE: /4 EF: 9 75/2 FA: Wht out Y min? Ative Edge Tle Ative Edge Tle Preproess: Sort on Y Edge Tle Y m, min,slope Algorithm: snline from ottom to top Sort ll edges their minimum oord (lst slide) Strting t smllest Y oord with in entr in edge tle For eh snline: Add edges with Y min = Y (move edges in edge tle to AET) Retire edges with Y m < Y (ompleted edges) Sort edges in AET intersetion Wlk from left to right, setting piels prit rule Inrement snline Relulte edge intersetions (how?) Stop when Y > Y m for edge tle nd AET is empt Ative Edge Tle Ative Edge Tle Emple Algorithm: snline from ottom to top Sort ll edges their minimum oord (lst slide) Strting t smllest Y oord with in entr in edge tle For eh snline: 1. Add edges with Y min = Y (move edges in edge tle to AET) 2. Retire edges with Y m < Y (ompleted edges) 3. Sort edges in AET intersetion 4. Wlk from left to right, setting piels prit rule 5. Inrement snline 6. Relulte edge intersetions (how?) For ever nonvertil edge in the AET updte for the new (lulte the net intersetion of the edge with the sn line). Stop when Y > Y m for edge tle nd AET is empt Emple of n AET ontining edges {FA, EF, DE, CD} on sn line 8: 1. : ( = 8) Get edges from ET uket (none in this se, = 8 hs no entr) 2. : Remove from the AET n entries where m = (none here) 3. : sort X 4. : Drw sn line. To hndle multiple edges, group in pirs: {FA,EF}, {DE,CD} 5. : = +1 ( = 8+1 = 9) 6. : Updte for nonvertil edges, s in simple line drwing. Snline Y vl Current X Slope (FvDFH pges 92, 99) Computer Grphis CS5600
12 Uth Shool of Computing Spring 2013 Ative Edge Tle Emple (ont.) Tringles (ont.) 1. : ( = 9) Get edges from ET uket (none in this se, = 9 hs no entr in ET) Sn line 9 shown in fig 3.28 elow 2. : Remove from the AET n entries with m = (remove FA, EF) 3. : Sort X 4. : Drw sn line etween {DE, CD} 5. : = +1 = : Updte in {DE, CD} 7. : ( = 10) (Sn line 10 shown in fig 3.28 elow) 8. And so on Rsteriztion lgorithms n tke dvntge of tringle properties Grphis hrdwre is optimized for tringles Beuse tringle drwing is so fst, mn sstems will sudivide polgons into tringles prior to sn onversion Y vl Current X Slope (FvDFH pges 92, 99) Wh re Brentri oordintes useful? Brentri Coordintes For n point, if the rentri representtion of tht point:,, < 1 Also,, n e used s mss funtion ross the surfe of tringle to e used for interpoltion. This is used to interpolte normls ross the surfe of tringle to mke polgon surfes look rounder. Consider tringle defined three points,, nd. Define new oordinte sstem in whih is the origin, nd define the oordinte sstem sis vetors Note tht the oordinte sstem will e nonorthogonl. Brentri Coordintes Brentri Coordintes   With this new oordinte sstem, n point n e written s: rerrnging terms, we get: let then p ( ) ( ) p (1 ) ( 1 ) p Computer Grphis CS5600
13 Uth Shool of Computing Spring 2013 = 2 = 1 =0 = 1 Brentri Coordintes  =1  =0 =1 =2 Brentri Coordintes Now n point in the plne n e represented using its rentri oordintes If p then the point lies somewhere in the tringle Brentri Coordintes Computing Brentri Coordintes If one of the oordintes is zero nd the other two re etween 0 nd 1, the point is on n edge If two oordintes re zero nd the other is one, the point is t verte. The rentri oordinte is the signed sled distne from the point to the line pssing through the other two tringle points Impliit form etween two points (,) nd (,) f (, ) ( ) ( ) =1 =0 =1 f (, ) ( ) ( )  d=1 = 2 Brentri Coordintes =1 =0 =1 =2 PDF Slides = 1  =0  = 1 Computer Grphis CS5600
14 Uth Shool of Computing Spring 2013 Computer Grphis CS5600 Computing Brentri Coordintes To ompute the rentri oordintes of point: ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1 Brentri Coordinte Applet Rsterize This! (Rsteriztion intuition) When we render tringle we wnt to determine if piel is within tringle. (rentri oords) Clulte the olor of the piel (use rentri oors). Drw the piel. Repet until the tringle is ppropritel filled. Rsteriztion Pseudo Code Rsteriztion Rsteriztion
15 Uth Shool of Computing Spring 2013 Rsteriztion Bounding Bo Ym, Xm Ym, Xm Y???, Xmin Y???, Xmin Ymin, X??? Ymin, X??? weighted omintion of verties P P 1 0,, 1 onve omintion of points Brentri Coordintes 1 P2 P3 P 3 P 1 P (1,0,0) 0 (0,0,1) 0. 5 P 2 1 (0,1,0) Brentri Coordintes for I nterpoltion how to ompute,,? use iliner interpoltion or plne equtions interpolte,, z d... one omputed, use to interpolte n # of prmeters from their verte vlues r r1 r2 r3 g g g et. 1 2 g3 Interpolttion: Gourud Shding Gourud Shding Snline Alg need liner funtion over tringle tht ields originl verte olors t verties use rentri oordintes for this ever piel in interior gets olors resulting from miing olors of verties with weights orresponding to rentri oordintes olor t piels is ffine omintion of olors t verties lgorithm modif snline lgorithm for polgon snonversion : linerl interpolte olors long edges of tringle to otin olors for endpoints of spn of piels linerl interpolte olors from these endpoints within the snline Color( 1 Color( ) Color( 1 ) : ) Color( ) 3 X min X X X X X * C m ur m ur Cmin 1 * m X min X m X min X ur m X m Computer Grphis CS5600
16 Uth Shool of Computing Spring 2013 Filling Tehniques Another pproh to polgon fill is using filling tehnique, rther thn sn onversion Pik point inside the polgon, then fill neighoring piels until the polgon oundr is rehed Boundr Fill Approh: Drw polgon oundr in the frme uffer Determine n interior point Strting t the given point, do If the point is not the oundr olor or the fill olor Set this piel to the fill olor Propgte to the piel s neighors nd ontinue Filling Tehniques Flood Fill Approh: Set ll interior piels to ertin olor The oundr n e n other olor Pik n interior point nd set it to the polgon olor Propgte to neighors, s long s the neighor is the interior olor This is used for regions with multiolored oundries Propgting to Neighors Most frequentl used pprohes: 4onneted re 8onneted re Region to e filled 4onneted 8onneted Fill lgorithms hve potentil prolems E.g., 4onneted re fill: Fill Prolems Fill Prolems Similrl, 8onneted n lek over to nother polgon Strting point Fill omplete Strting point Fill omplete Another prolem: the lgorithm is highl reursive Cn use stk of spns to redue mount of reursion Computer Grphis CS5600
17 Uth Shool of Computing Spring 2013 Pttern Filling Often we wnt to fill region with pttern, not just olor Define n n m pimp (or itmp) tht we wish to replite ross the region 54 pimp How do ou determine the nhor point A point on the polgon Leftmost point? The pttern will move with the polgon Diffiult to deide the right nhor point Sreen (or window) origin Esier to determine nhor point The pttern does not move with the ojet Pttern Filling Ojet to e ptterned Finl ptterned ojet Pttern Filling How do we determine whih olor to olor point in the ojet? Use the MOD funtion to tile the pttern ross the polgon For point (, ) Use the pttern olor loted t ( MOD m, MOD n) Pttern Emple For the pttern shown, wht olor does the piel t lotion (235, 168) get olored, ssuming the pttern is nhored t the lower left orner of the ojet? Pttern ??? Pttern Emple Pttern Emple 168??? The pttern piel (2, 0) should mp to sreen lotion (235, 168) Pttern The pttern is Need to find the reltive distne to the point to drw: X = ( ) = 10 Y = ( ) = 5 (2, 0) Let s mp the pttern onto the polgon nd see ??? Net figure out whih pttern piel orresponds to this sreen piel: X pttern = 10 MOD 4 = 2 Y pttern = 5 MOD 5 = 0 (0, 0) pttern lotion Computer Grphis CS5600
18 Uth Shool of Computing Spring 2013 The End Leture Set 4 Sn Conversion 103 Computer Grphis CS5600
Lesson 2.1 Inductive Reasoning
Lesson.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 1, 16,,. 400, 00, 100, 0,,,. 1 8, 7, 1, 4,, 4.,,, 1, 1, 0,,. 60, 180, 10,
More informationPROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * challenge questions
PROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * hllenge questions e The ll will strike the ground 1.0 s fter it is struk. Then v x = 20 m s 1 nd v y = 0 + (9.8 m s 2 )(1.0 s) = 9.8 m s 1 The speed
More informationSECTION 72 Law of Cosines
516 7 Additionl Topis in Trigonometry h d sin s () tn h h d 50. Surveying. The lyout in the figure t right is used to determine n inessile height h when seline d in plne perpendiulr to h n e estlished
More informationPractice Test 2. a. 12 kn b. 17 kn c. 13 kn d. 5.0 kn e. 49 kn
Prtie Test 2 1. A highwy urve hs rdius of 0.14 km nd is unnked. A r weighing 12 kn goes round the urve t speed of 24 m/s without slipping. Wht is the mgnitude of the horizontl fore of the rod on the r?
More informationRatio and Proportion
Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty
More information1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.
. Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry
More information1. Area under a curve region bounded by the given function, vertical lines and the x axis.
Ares y Integrtion. Are uner urve region oune y the given funtion, vertil lines n the is.. Are uner urve region oune y the given funtion, horizontl lines n the y is.. Are etween urves efine y two given
More informationQuick Guide to Lisp Implementation
isp Implementtion Hndout Pge 1 o 10 Quik Guide to isp Implementtion Representtion o si dt strutures isp dt strutures re lled Sepressions. The representtion o n Sepression n e roken into two piees, the
More informationSection 74 Translation of Axes
62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 74 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the
More informationSection 54 Trigonometric Functions
5 Trigonometric Functions Section 5 Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
More informationAngles 2.1. Exercise 2.1... Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example
2.1 Angles Reognise lternte n orresponing ngles Key wors prllel lternte orresponing vertilly opposite Rememer, prllel lines re stright lines whih never meet or ross. The rrows show tht the lines re prllel
More informationMaximum area of polygon
Mimum re of polygon Suppose I give you n stiks. They might e of ifferent lengths, or the sme length, or some the sme s others, et. Now there re lots of polygons you n form with those stiks. Your jo is
More informationThe remaining two sides of the right triangle are called the legs of the right triangle.
10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right
More informationAppendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:
Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you
More informationUnit 6: Exponents and Radicals
Eponents nd Rdicls : The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N):  counting numers. {,,,,, } Whole Numers (W):  counting numers with 0. {0,,,,,, } Integers (I): 
More informationChapter. Contents: A Constructing decimal numbers
Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting
More informationWords Symbols Diagram. abcde. a + b + c + d + e
Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To
More informationRightangled triangles
13 13A Pythgors theorem 13B Clulting trigonometri rtios 13C Finding n unknown side 13D Finding ngles 13E Angles of elevtion nd depression Rightngled tringles Syllus referene Mesurement 4 Rightngled tringles
More informationEQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in pointdirection nd twopoint
More informationMATH PLACEMENT REVIEW GUIDE
MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your
More informationCalculating Principal Strains using a Rectangular Strain Gage Rosette
Clulting Prinipl Strins using Retngulr Strin Gge Rosette Strin gge rosettes re used often in engineering prtie to determine strin sttes t speifi points on struture. Figure illustrtes three ommonly used
More information1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator
AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.
More informationLECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.
LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 6483.
More informationVectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m
. Slr prout (ot prout): = osθ Vetors Summry Lws of ot prout: (i) = (ii) ( ) = = (iii) = (ngle etween two ientil vetors is egrees) (iv) = n re perpeniulr Applitions: (i) Projetion vetor: B Length of projetion
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationAREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
More informationHeron s Formula for Triangular Area
Heron s Formul for Tringulr Are y Christy Willims, Crystl Holom, nd Kyl Gifford Heron of Alexndri Physiist, mthemtiin, nd engineer Tught t the museum in Alexndri Interests were more prtil (mehnis, engineering,
More informationP.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn
33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationCS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001
CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic
More information50 MATHCOUNTS LECTURES (10) RATIOS, RATES, AND PROPORTIONS
0 MATHCOUNTS LECTURES (0) RATIOS, RATES, AND PROPORTIONS BASIC KNOWLEDGE () RATIOS: Rtios re use to ompre two or more numers For n two numers n ( 0), the rtio is written s : = / Emple : If 4 stuents in
More informationSOLVING EQUATIONS BY FACTORING
316 (560) Chpter 5 Exponents nd Polynomils 5.9 SOLVING EQUATIONS BY FACTORING In this setion The Zero Ftor Property Applitions helpful hint Note tht the zero ftor property is our seond exmple of getting
More informationInterior and exterior angles add up to 180. Level 5 exterior angle
22 ngles n proof Ientify interior n exterior ngles in tringles n qurilterls lulte interior n exterior ngles of tringles n qurilterls Unerstn the ie of proof Reognise the ifferene etween onventions, eﬁnitions
More informationOr more simply put, when adding or subtracting quantities, their uncertainties add.
Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re
More informationMath 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
More informationSOLVING QUADRATIC EQUATIONS BY FACTORING
6.6 Solving Qudrti Equtions y Ftoring (6 31) 307 In this setion The Zero Ftor Property Applitions 6.6 SOLVING QUADRATIC EQUATIONS BY FACTORING The tehniques of ftoring n e used to solve equtions involving
More informationVectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments  they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
More informationPLWAP Sequential Mining: Open Source Code
PL Sequentil Mining: Open Soure Code C.I. Ezeife Shool of Computer Siene University of Windsor Windsor, Ontrio N9B 3P4 ezeife@uwindsor. Yi Lu Deprtment of Computer Siene Wyne Stte University Detroit, Mihign
More informationMultiplication and Division  Left to Right. Addition and Subtraction  Left to Right.
Order of Opertions r of Opertions Alger P lese Prenthesis  Do ll grouped opertions first. E cuse Eponents  Second M D er Multipliction nd Division  Left to Right. A unt S hniqu Addition nd Sutrction
More informationVolumes by Cylindrical Shells: the Shell Method
olumes Clinril Shells: the Shell Metho Another metho of fin the volumes of solis of revolution is the shell metho. It n usull fin volumes tht re otherwise iffiult to evlute using the Dis / Wsher metho.
More informationDouble Integrals over General Regions
Double Integrls over Generl egions. Let be the region in the plne bounded b the lines, x, nd x. Evlute the double integrl x dx d. Solution. We cn either slice the region verticll or horizontll. ( x x Slicing
More informationAssembly & Installation Instructions: Impulse 2Leg Workcenter IM3E487830DX
Assemly & Instlltion Instrutions: Impulse Leg Workenter IM3E487830DX Prts Inluded, Frme Set A Impulse Bse Assemly Qty: D M5 0 mm Phillips Wood Srews Qty: 8 M0 35 mm Soket ed Srews Qty: 8 Box E Swith
More informationChapter. Fractions. Contents: A Representing fractions
Chpter Frtions Contents: A Representing rtions B Frtions o regulr shpes C Equl rtions D Simpliying rtions E Frtions o quntities F Compring rtion sizes G Improper rtions nd mixed numers 08 FRACTIONS (Chpter
More informationA.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324
A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................
More informationLecture 3: orientation. Computer Animation
Leture 3: orienttion Computer Animtion Mop tutoril sessions Next Thursdy (Feb ) Tem distribution: :  :3  Tems 7, 8, 9 :3  :  Tems nd :  :3  Tems 5 nd 6 :3  :  Tems 3 nd 4 Pper ssignments Pper ssignment
More informationSCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra
SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting
More informationBUSINESS PROCESS MODEL TRANSFORMATION ISSUES The top 7 adversaries encountered at defining model transformations
USINESS PROCESS MODEL TRANSFORMATION ISSUES The top 7 dversries enountered t defining model trnsformtions Mrion Murzek Women s Postgrdute College for Internet Tehnologies (WIT), Institute of Softwre Tehnology
More informationCS 316: Gates and Logic
CS 36: Gtes nd Logi Kvit Bl Fll 27 Computer Siene Cornell University Announements Clss newsgroup reted Posted on wepge Use it for prtner finding First ssignment is to find prtners P nd N Trnsistors PNP
More informationThe art of Paperarchitecture (PA). MANUAL
The rt of Pperrhiteture (PA). MANUAL Introution Pperrhiteture (PA) is the rt of reting threeimensionl (3D) ojets out of plin piee of pper or ror. At first, esign is rwn (mnully or printe (using grphil
More informationEquivalence Checking. Sean Weaver
Equivlene Cheking Sen Wever Equivlene Cheking Given two Boolen funtions, prove whether or not two they re funtionlly equivlent This tlk fouses speifilly on the mehnis of heking the equivlene of pirs of
More informationUNCORRECTED SAMPLE PAGES
6 Chpter Length, re, surfe re n volume Wht you will lern 6A Length n perimeter 6B Cirumferene of irles n perimeter of setors 6C Are of qurilterls n tringles 6D Are of irles 6E Perimeter n re of omposite
More informationBinary Representation of Numbers Autar Kaw
Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse rel number to its binry representtion,. convert binry number to n equivlent bse number. In everydy
More informationStudent Access to Virtual Desktops from personally owned Windows computers
Student Aess to Virtul Desktops from personlly owned Windows omputers Mdison College is plesed to nnoune the ility for students to ess nd use virtul desktops, vi Mdison College wireless, from personlly
More informationGeometry 71 Geometric Mean and the Pythagorean Theorem
Geometry 71 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationPROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
More informationGraphs on Logarithmic and Semilogarithmic Paper
0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl
More informationMA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!
MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more
More informationAssuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;
B26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndomnumer genertor supplied s stndrd with ll computer systems Stn KellyBootle,
More informationHomework 3 Solutions
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.
More informationEnterprise Digital Signage Create a New Sign
Enterprise Digitl Signge Crete New Sign Intended Audiene: Content dministrtors of Enterprise Digitl Signge inluding stff with remote ess to sign.pitt.edu nd the Content Mnger softwre pplition for their
More informationInterdomain Routing
COMP 631: COMPUTER NETWORKS Interdomin Routing Jsleen Kur Fll 2014 1 Internetsle Routing: Approhes DV nd linkstte protools do not sle to glol Internet How to mke routing slle? Exploit the notion of
More information1 GSW IPv4 Addressing
1 For s long s I ve een working with the Internet protools, people hve een sying tht IPv6 will e repling IPv4 in ouple of yers time. While this remins true, it s worth knowing out IPv4 ddresses. Even when
More informationThe Pythagorean Theorem
The Pythgoren Theorem Pythgors ws Greek mthemtiin nd philosopher, orn on the islnd of Smos (. 58 BC). He founded numer of shools, one in prtiulr in town in southern Itly lled Crotone, whose memers eventully
More informationRadius of the Earth  Radii Used in Geodesy James R. Clynch Naval Postgraduate School, 2002
dius of the Erth  dii Used in Geodesy Jmes. Clynh vl Postgrdute Shool, 00 I. Three dii of Erth nd Their Use There re three rdii tht ome into use in geodesy. These re funtion of ltitude in the ellipsoidl
More informationIf two triangles are perspective from a point, then they are also perspective from a line.
Mth 487 hter 4 Prtie Prolem Solutions 1. Give the definition of eh of the following terms: () omlete qudrngle omlete qudrngle is set of four oints, no three of whih re olliner, nd the six lines inident
More information. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2
7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6
More informationVectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.
Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles
More informationStrong acids and bases
Monoprotic AcidBse Equiliri (CH ) ϒ Chpter monoprotic cids A monoprotic cid cn donte one proton. This chpter includes uffers; wy to fi the ph. ϒ Chpter 11 polyprotic cids A polyprotic cid cn donte multiple
More informationBrillouin Zones. Physics 3P41 Chris Wiebe
Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction
More informationc b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00
Chter 19, exmle rolems: (19.06) A gs undergoes two roesses. First: onstnt volume @ 0.200 m 3, isohori. Pressure inreses from 2.00 10 5 P to 5.00 10 5 P. Seond: Constnt ressure @ 5.00 10 5 P, isori. olume
More informationReleased Assessment Questions, 2015 QUESTIONS
Relesed Assessmet Questios, 15 QUESTIONS Grde 9 Assessmet of Mthemtis Ademi Red the istrutios elow. Alog with this ooklet, mke sure you hve the Aswer Booklet d the Formul Sheet. You my use y spe i this
More informationEnd of term: TEST A. Year 4. Name Class Date. Complete the missing numbers in the sequences below.
End of term: TEST A You will need penil nd ruler. Yer Nme Clss Dte Complete the missing numers in the sequenes elow. 8 30 3 28 2 9 25 00 75 25 2 Put irle round ll of the following shpes whih hve 3 shded.
More informationAngles and Triangles
nges nd Tringes n nge is formed when two rys hve ommon strting point or vertex. The mesure of n nge is given in degrees, with ompete revoution representing 360 degrees. Some fmiir nges inude nother fmiir
More informationCHAPTER 31 CAPACITOR
. Given tht Numer of eletron HPTER PITOR Net hrge Q.6 9.6 7 The net potentil ifferene L..6 pitne v 7.6 8 F.. r 5 m. m 8.854 5.4 6.95 5 F... Let the rius of the is R re R D mm m 8.85 r r 8.85 4. 5 m.5 m
More informationCell Breathing Techniques for Load Balancing in Wireless LANs
1 Cell rething Tehniques for Lod lning in Wireless LANs Yigl ejerno nd SeungJe Hn ell Lortories, Luent Tehnologies Astrt: Mximizing the network throughput while providing firness is one of the key hllenges
More informationActive Directory Service
In order to lern whih questions hve een nswered orretly: 1. Print these pges. 2. Answer the questions. 3. Send this ssessment with the nswers vi:. FAX to (212) 9673498. Or. Mil the nswers to the following
More informationOne Minute To Learn Programming: Finite Automata
Gret Theoreticl Ides In Computer Science Steven Rudich CS 15251 Spring 2005 Lecture 9 Fe 8 2005 Crnegie Mellon University One Minute To Lern Progrmming: Finite Automt Let me tech you progrmming lnguge
More informationSquare Roots Teacher Notes
Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this
More informationPROBLEMS 13  APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS  APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
More information1 Fractions from an advanced point of view
1 Frtions from n vne point of view We re going to stuy frtions from the viewpoint of moern lger, or strt lger. Our gol is to evelop eeper unerstning of wht n men. One onsequene of our eeper unerstning
More information9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is soclled becuse when the sclr product of two vectors
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More informationOUTLINE SYSTEMONCHIP DESIGN. GETTING STARTED WITH VHDL August 31, 2015 GAJSKI S YCHART (1983) TOPDOWN DESIGN (1)
August 31, 2015 GETTING STARTED WITH VHDL 2 Topdown design VHDL history Min elements of VHDL Entities nd rhitetures Signls nd proesses Dt types Configurtions Simultor sis The testenh onept OUTLINE 3 GAJSKI
More informationCypress Creek High School IB Physics SL/AP Physics B 2012 2013 MP2 Test 1 Newton s Laws. Name: SOLUTIONS Date: Period:
Nme: SOLUTIONS Dte: Period: Directions: Solve ny 5 problems. You my ttempt dditionl problems for extr credit. 1. Two blocks re sliding to the right cross horizontl surfce, s the drwing shows. In Cse A
More informationOperations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
More informationPure C4. Revision Notes
Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd
More informationPreparing the PW5. The following is a stepby procedure for assembly and disassembly
Prepring the PW5 The following is stepy ystep proedure for ssemly nd disssemly Begin with opening the triler Otin the keys from the green ox in the wll power ox. Untie the restrining ropes t eh side
More informationPhysics 43 Homework Set 9 Chapter 40 Key
Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nmwide region t x
More informationChap.6 Surface Energy
Chp.6 urfe Energy (1) Bkground: Consider the toms in the bulk nd surfe regions of rystl: urfe: toms possess higher energy sine they re less tightly bound. Bulk: toms possess lower energy sine they re muh
More informationForensic Engineering Techniques for VLSI CAD Tools
Forensi Engineering Tehniques for VLSI CAD Tools Jennifer L. Wong, Drko Kirovski, Dvi Liu, Miorg Potkonjk UCLA Computer Siene Deprtment University of Cliforni, Los Angeles June 8, 2000 Computtionl Forensi
More informationSummary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:
Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos
More informationAlgebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
More informationH SERIES. Area and Perimeter. Curriculum Ready. www.mathletics.com
Are n Perimeter Curriulum Rey www.mthletis.om Copyright 00 3P Lerning. All rights reserve. First eition printe 00 in Austrli. A tlogue reor for this ook is ville from 3P Lerning Lt. ISBN 7886307 Ownership
More informationExperiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
More informationThe Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center
Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,
More information5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.
5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous relvlued
More informationFactoring Trinomials of the Form. x 2 b x c. Example 1 Factoring Trinomials. The product of 4 and 2 is 8. The sum of 3 and 2 is 5.
Section P.6 Fctoring Trinomils 6 P.6 Fctoring Trinomils Wht you should lern: Fctor trinomils of the form 2 c Fctor trinomils of the form 2 c Fctor trinomils y grouping Fctor perfect squre trinomils Select
More information DAY 1  Website Design and Project Planning
Wesite Design nd Projet Plnning Ojetive This module provides n overview of the onepts of wesite design nd liner workflow for produing wesite. Prtiipnts will outline the sope of wesite projet, inluding
More informationDistributions. (corresponding to the cumulative distribution function for the discrete case).
Distributions Recll tht n integrble function f : R [,] such tht R f()d = is clled probbility density function (pdf). The distribution function for the pdf is given by F() = (corresponding to the cumultive
More information