Java CUP. Java CUP Specifications. User Code Additions You may define Java code to be included within the generated parser:


 Joseph Lucas
 2 years ago
 Views:
Transcription
1 Jv CUP Jv CUP is prsergenertion tool, similr to Ycc. CUP uilds Jv prser for LALR(1) grmmrs from production rules nd ssocited Jv code frgments. When prticulr production is recognized, its ssocited code frgment is executed (typiclly to uild n AST). CUP genertes Jv source file prser.jv. It contins clss prser, with method Symol prse() The Symol returned y the prser is ssocited with the grmmr s strt symol nd contins the AST for the whole source progrm. The file sym.jv is lso uilt for use with JLexuilt scnner (so tht oth scnner nd prser use the sme token codes). If n unrecovered syntx error occurs, Exception() is thrown y the prser. CUP nd Ycc ccept exctly the sme clss of grmmrs ll LL(1) grmmrs, plus mny useful non LL(1) grmmrs. CUP is clled s jv jv_cup.min < file.cup Jv CUP Specifictions User Code Additions You my define Jv code to e included within the generted prser: ction code {: /*jv code */ This code is plced within the generted ction clss (which holds userspecified production ctions). prser code {: /*jv code */ This code is plced within the generted prser clss. init with{: /*jv code */ This code is used to initilize the generted prser. scn with{: /*jv code */ This code is used to tell the generted prser how to get tokens from the scnner. Jv CUP specifictions re of the form: Pckge nd import specifictions User code dditions Terminl nd nonterminl declrtions A contextfree grmmr, ugmented with Jv code frgments Pckge nd Import Specifictions You define pckge nme s: pckge nme You dd imports to e used s: import jv_cup.runtime.*
2 Terminl nd Nonterminl Declrtions You define terminl symols you will use s: terminl clssnme nme 1, nme 2,... clssnme is clss used y the scnner for tokens (CSXToken, CSXIdentifierToken, etc.) You define nonterminl symols you will use s: non terminl clssnme nme 1, nme 2,... clssnme is the clss for the AST node ssocited with the nonterminl (stmtnode, exprnode, etc.) Production Rules Production rules re of the form nme ::= nme 1 nme 2... ction or nme ::= nme 1 nme 2... ction 1 nme 3 nme 4... ction 2... Nmes re the nmes of terminls or nonterminls, s declred erlier. Actions re Jv code frgments, of the form {: /*jv code */ The Jv oject ssocted with symol ( token or AST node) my e nmed y dding :id suffix to terminl or nonterminl in rule RESULT nmes the lefthnd side nonterminl. The Jv clsses of the symols re defined in the terminl nd nonterminl declrtion sections. For exmple, prog ::= LBRACE:l stmts:s RBRACE {: RESULT = new csxlitenode(s, l.linenum,l.colnum) This corresponds to the production prog { stmts } The left rce is nmed l the stmts nonterminl is clled s. In the ction code, new CSXLiteNode is creted nd ssigned to prog. It is constructed from the AST node ssocited with s. Its line nd column numers re those given to the left rce, l (y the scnner). To tell CUP wht nonterminl to use s the strt symol (prog in our exmple), we use the directive: strt with prog
3 Exmple Let s look t the CUP specifiction for CSXlite. Recll its CFG is progrm { stmts } stmts stmt stmts λ stmt id = expr if ( expr ) stmt expr expr + id expr  id id The corresponding CUP specifiction is: /*** This Is A Jv CUP Specifiction For CSXlite, Smll Suset of The CSX Lnguge, Used In Cs536 ***/ /* Preliminries to set up nd use the scnner. */ import jv_cup.runtime.* prser code {: pulic void syntx_error (Symol cur_token){ report_error( CSX syntx error t line + String.vlueOf(((CSXToken) cur_token.vlue).linenum), null)} init with {: scn with {: return Scnner.next_token() /* Terminls (tokens returned y the scnner). */ terminl CSXIdentifierToken IDENTIFIER terminl CSXToken SEMI, LPAREN, RPAREN, ASG, LBRACE, RBRACE terminl CSXToken PLUS, MINUS, rw_if /* Non terminls */ non terminl csxlitenode prog non terminl stmtsnode stmts non terminl stmtnode stmt non terminl exprnode exp non terminl ident strt with prog prog::= LBRACE:l stmts:s RBRACE new csxlitenode(s, l.linenum,l.colnum) stmts::= stmt:s1 stmts:s2 new stmtsnode(s1,s2, s1.linenum,s1.colnum) stmtsnode.null stmt::= ident:id ASG exp:e SEMI new sgnode(id,e, id.linenum,id.colnum) rw_if:i LPAREN exp:e RPAREN stmt:s new ifthennode(e,s, stmtnode.null, i.linenum,i.colnum) exp::= exp:leftvl PLUS:op ident:rightvl new inryopnode(leftvl, sym.plus, rightvl, op.linenum,op.colnum) exp:leftvl MINUS:op ident:rightvl new inryopnode(leftvl, sym.minus,rightvl, op.linenum,op.colnum) ident:i {: RESULT = i
4 ident::= IDENTIFIER:i {: RESULT = new ( new (i.identifiertext, i.linenum,i.colnum), exprnode.null, i.linenum,i.colnum) Let s prse { = } First, is prsed using ident::= IDENTIFIER:i {: RESULT = new ( new (i.identifiertext, i.linenum,i.colnum), exprnode.null, i.linenum,i.colnum) We uild Next, is prsed using ident::= IDENTIFIER:i {: RESULT = new ( new (i.identifiertext, i.linenum,i.colnum), exprnode.null, i.linenum,i.colnum) We uild Then s sutree is recognized s n exp: ident:i {: RESULT = i Now the ssignment sttement is recognized: stmt::= ident:id ASG exp:e SEMI new sgnode(id,e, id.linenum,id.colnum) We uild sgnode
5 The stmts λ production is mtched (indicting tht there re no more sttements in the progrm). CUP mtches stmts::= stmtsnode.null nd we uild This uilds stmtsnode sgnode nullstmtsnode nullstmtsnode Next, stmts stmt stmts is mtched using stmts::= stmt:s1 stmts:s2 new stmtsnode(s1,s2, s1.linenum,s1.colnum) As the lst step of the prse, the prser mtches progrm { stmts } using the CUP rule prog::= LBRACE:l stmts:s RBRACE new csxlitenode(s, l.linenum,l.colnum) The finl AST reurned y the prser is csxlitenode stmtsnode sgnode nullstmtsnode Errors in ContextFree Grmmrs Contextfree grmmrs cn contin errors, just s progrms do. Some errors re esy to detect nd fix others re more sutle. In contextfree grmmrs we strt with the strt symol, nd pply productions until terminl string is produced. Some contextfree grmmrs my contin useless nonterminls. Nonterminls tht re unrechle (from the strt symol) or tht derive no terminl string re considered useless. Useless nonterminls (nd productions tht involve them) cn e sfely removed from
6 grmmr without chnging the lnguge defined y the grmmr. A grmmr contining useless nonterminls is sid to e nonreduced. After useless nonterminls re removed, the grmmr is reduced. Consider S A B x B A A C d Which nonterminls re unrechle? Which derive no terminl string? Finding Useless Nonterminls To find nonterminls tht cn derive one or more terminl strings, we ll use mrking lgorithm. We itertively mrk terminls tht cn derive string of terminls, until no more nonterminls cn e mrked. Unmrked nonterminls re useless. (1) Mrk ll terminl symols (2) Repet If ll symols on the righthnd side of production re mrked Then mrk the lefthnd side Until no more nonterminls cn e mrked We cn use similr mrking lgorithm to determine which nonterminls cn e reched from the strt symol: (1) Mrk the Strt Symol (2) Repet If the lefthnd side of production is mrked Then mrk ll nonterminls in the righthnd side Until no more nonterminls cn e mrked 242
Homework 3 Solutions
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.
More informationRegular Sets and Expressions
Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite
More informationAssignment 2. Solutions. Compiler Design I (Kompilatorteknik I) 2011
Assignment 2 olutions Compiler Design I Kompiltorteknik I) 2011 1 Contextfree grmmrs Give the definition of context free grmmr over the lphbet Σ = {, b} tht describes ll strings tht hve different number
More informationMATLAB: Mfiles; Numerical Integration Last revised : March, 2003
MATLAB: Mfiles; Numericl Integrtion Lst revised : Mrch, 00 Introduction to Mfiles In this tutoril we lern the bsics of working with Mfiles in MATLAB, so clled becuse they must use.m for their filenme
More informationUnion, Intersection and Complement. Formal Foundations Computer Theory
Union, Intersection nd Complement FAs Union, Intersection nd Complement FAs Forml Foundtions Computer Theory Ferury 21, 2013 This hndout shows (y exmples) how to construct FAs for the union, intersection
More informationFinite Automata. Informatics 2A: Lecture 3. John Longley. 25 September School of Informatics University of Edinburgh
Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 25 September 2015 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is
More informationProtocol Analysis. 17654/17764 Analysis of Software Artifacts Kevin Bierhoff
Protocol Anlysis 17654/17764 Anlysis of Softwre Artifcts Kevin Bierhoff TkeAwys Protocols define temporl ordering of events Cn often be cptured with stte mchines Protocol nlysis needs to py ttention
More informationBinary Golomb Codes. CSE 589 Applied Algorithms Autumn Constructing a Binary Golomb Code. Example. Example. Comparison of GC with Entropy
CSE 589 pplied lgorithms utumn Golom Coding rithmetic Coding LZW Sequitur Binry Golom Codes Binry source with s much more frequent thn s. Vriletovrile length code Prefix code. Golom code of order 4 input
More informationAssuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;
B26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndomnumer genertor supplied s stndrd with ll computer systems Stn KellyBootle,
More informationParse Trees. Prog. Prog. Stmts. { Stmts } Stmts = Stmts ; Stmt. id + id = Expr. Stmt. id = Expr. Expr + id
Parse Trees To illustrate a derivation, we can draw a derivation tree (also called a parse tree): Prog { Stmts } Stmts ; Stmt Stmt = xpr = xpr xpr + An abstract syntax tree (AST) shows essential structure
More informationSuffix Trees CMSC 423
Suffix Trees CMSC 423 Preprocessing Strings Over the next few lectures, we ll see severl methods for preprocessing string dt into dt structures tht mke mny questions (like serching) esy to nswer: Suffix
More informationSection 54 Trigonometric Functions
5 Trigonometric Functions Section 5 Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
More informationModular Generic Verification of LTL Properties for Aspects
Modulr Generic Verifiction of LTL Properties for Aspects Mx Goldmn Shmuel Ktz Computer Science Deprtment Technion Isrel Institute of Technology {mgoldmn, ktz}@cs.technion.c.il ABSTRACT Aspects re seprte
More informationChapter 21. Arrays as Objects Array Parameters
253 Chpter 21 Arrys s Objects An rry is simply n object reference (see Section 20.1). As such, it cn be used like ny object reference; n rry cn be pssed s n ctul prmeter to method nd returned from method
More informationBasic technologies. Lexical analysis. Lexical analysis. Basic technologies. Syntactical analysis Parser generators Rewrite engines
Bsc technologes Generc Lnguge Technology: Bsc technologes Pro.dr. Mrk vn den Brnd Syntctcl nlyss Prser genertors Rewrte engnes / Fcultet Wskunde en Inormtc 292010 PAGE 1 Tsks nd orgnzton o lexcl nlyzer
More informationFormal Languages and Automata Exam
Forml Lnguges nd Automt Exm Fculty of Computers & Informtion Deprtment: Computer Science Grde: Third Course code: CSC 34 Totl Mrk: 8 Dte: 23//2 Time: 3 hours Answer the following questions: ) Consider
More informationVariable Dry Run (for Python)
Vrile Dr Run (for Pthon) Age group: Ailities ssumed: Time: Size of group: Focus Vriles Assignment Sequencing Progrmming 7 dult Ver simple progrmming, sic understnding of ssignment nd vriles 2050 minutes
More informationOne Minute To Learn Programming: Finite Automata
Gret Theoreticl Ides In Computer Science Steven Rudich CS 15251 Spring 2005 Lecture 9 Fe 8 2005 Crnegie Mellon University One Minute To Lern Progrmming: Finite Automt Let me tech you progrmming lnguge
More informationflex Regular Expressions and Lexical Scanning Regular Expressions and flex Examples on Alphabet A = {a,b} (Standard) Regular Expressions on Alphabet A
flex Regulr Expressions nd Lexicl Scnning Using flex to Build Scnner flex genertes lexicl scnners: progrms tht discover tokens. Tokens re the smllest meningful units of progrm (or other string). flex is
More informationAntiSpyware Enterprise Module 8.5
AntiSpywre Enterprise Module 8.5 Product Guide Aout the AntiSpywre Enterprise Module The McAfee AntiSpywre Enterprise Module 8.5 is n ddon to the VirusScn Enterprise 8.5i product tht extends its ility
More informationA Visual and Interactive Input abb Automata. Theory Course with JFLAP 4.0
Strt Puse Step Noninverted Tree A Visul nd Interctive Input Automt String ccepted! 5 nodes generted. Theory Course with JFLAP 4.0 q0 even 's, even 's q2 even 's, odd 's q1 odd 's, even 's q3 odd 's, odd
More information1.00/1.001 Introduction to Computers and Engineering Problem Solving Fall 2011  Final Exam
1./1.1 Introduction to Computers nd Engineering Problem Solving Fll 211  Finl Exm Nme: MIT Emil: TA: Section: You hve 3 hours to complete this exm. In ll questions, you should ssume tht ll necessry pckges
More informationConcept Formation Using Graph Grammars
Concept Formtion Using Grph Grmmrs Istvn Jonyer, Lwrence B. Holder nd Dine J. Cook Deprtment of Computer Science nd Engineering University of Texs t Arlington Box 19015 (416 Ytes St.), Arlington, TX 760190015
More informationUnit4: Regular properties
1/26 Unit4: Regulr properties B. Srivthsn Chenni Mthemticl Institute NPTELcourse July  November 2015 2/26 Module 2: A gentle introduction to utomt 3/26 { p 1 } { p 1,p 2 } request=1 redy request=1 busy
More informationChapter 4: Dynamic Programming
Chpter 4: Dynmic Progrmming Objectives of this chpter: Overview of collection of clssicl solution methods for MDPs known s dynmic progrmming (DP) Show how DP cn be used to compute vlue functions, nd hence,
More informationTuring Machine Extensions
Red K & S 4.3.1, 4.4. Do Homework 19. Turing Mchine Extensions Turing Mchine Definitions An lterntive definition of Turing mchine: (K, Σ, Γ, δ, s, H): Γ is finite set of llowble tpe symbols. One of these
More information1. The leves re either lbeled with sentences in ;, or with sentences of the form All X re X. 2. The interior leves hve two children drwn bove them) if
Q520 Notes on Nturl Logic Lrry Moss We hve seen exmples of wht re trditionlly clled syllogisms lredy: All men re mortl. Socrtes is mn. Socrtes is mortl. The ide gin is tht the sentences bove the line should
More informationSolutions for Selected Exercises from Introduction to Compiler Design
Solutions for Selected Exercises from Introduction to Compiler Design Torben Æ. Mogensen Lst updte: My 30, 2011 1 Introduction This document provides solutions for selected exercises from Introduction
More informationhas the desired form. On the other hand, its product with z is 1. So the inverse x
First homework ssignment p. 5 Exercise. Verify tht the set of complex numers of the form x + y 2, where x nd y re rtionl, is sufield of the field of complex numers. Solution: Evidently, this set contins
More informationCSC 143S 6 CSC 143S 3
CSC 143 Trees [Chpter 10] Everydy Exmples of Trees Fmily tree Compny orgniztion chrt Tble of contents Any hierrchicl orgniztion of informtion, representing components in terms of their subcomponents NB:
More informationMembrane Systems with Marked Membranes
Membrne Systems with Mrked Membrnes Mtteo Cvliere Microsoft Reserch  University of Trento Centre for Computtionl nd Systems Biology Itly Dep. of Computer Science nd Artificil Intelligence University of
More information10.5 Graphing Quadratic Functions
0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions
More information4.0 5Minute Review: Rational Functions
mth 130 dy 4: working with limits 1 40 5Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two
More informationa. Implement the function using a minimal network of 2:4 decoders and OR gates.
CSE4 Eercise Solutions I. Given threeinput Boolen function f(,, c) = m(, 2, 4, 6, 7) + d().. Implement the function using miniml network of 2:4 decoders nd OR gtes. Stndrd solution: Use s the enle signl,
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationMATLAB Workshop 13  Linear Systems of Equations
MATLAB: Workshop  Liner Systems of Equtions pge MATLAB Workshop  Liner Systems of Equtions Objectives: Crete script to solve commonly occurring problem in engineering: liner systems of equtions. MATLAB
More informationAlgebra Review. How well do you remember your algebra?
Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then
More informationIn the following there are presented four different kinds of simulation games for a given Büchi automaton A = :
Simultion Gmes Motivtion There re t lest two distinct purposes for which it is useful to compute simultion reltionships etween the sttes of utomt. Firstly, with the use of simultion reltions it is possile
More informationFORMAL LANGUAGES, AUTOMATA AND THEORY OF COMPUTATION EXERCISES ON REGULAR LANGUAGES
FORMAL LANGUAGES, AUTOMATA AND THEORY OF COMPUTATION EXERCISES ON REGULAR LANGUAGES Introduction This compendium contins exercises out regulr lnguges for the course Forml Lnguges, Automt nd Theory of Computtion
More information1 Numerical Solution to Quadratic Equations
cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll
More informationFormal Language Theory
Chpter 6 Forml Lnguge Theory In this chpter, we introduce forml lnguge theory, the computtionl theories of lnguges nd grmmrs. The models re ctully inspired y forml logic, enriched with insights from the
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationIn this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.
Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix
More informationObject Semantics. 6.170 Lecture 2
Object Semntics 6.170 Lecture 2 The objectives of this lecture re to: to help you become fmilir with the bsic runtime mechnism common to ll objectoriented lnguges (but with prticulr focus on Jv): vribles,
More informationA new algorithm for generating Pythagorean triples
A new lgorithm for generting Pythgoren triples RH Dye 1 nd RWD Nicklls 2 The Mthemticl Gzette (1998); 82 (Mrch, No. 493), p. 86 91 (JSTOR rchive) http://www.nicklls.org/dick/ppers/mths/pythgtriples1998.pdf
More information0.1 Basic Set Theory and Interval Notation
0.1 Bsic Set Theory nd Intervl Nottion 3 0.1 Bsic Set Theory nd Intervl Nottion 0.1.1 Some Bsic Set Theory Notions Like ll good Mth ooks, we egin with definition. Definition 0.1. A set is welldefined
More informationTemplate deed of assignment of intellectual property
Templte deed of ssignment of intellectul property User notes This document is intended for use y the founders of strt up compny to formlly trnsfer intellectul property relevnt to the usiness, products
More informationWell say we were dealing with a weak acid K a = 1x10, and had a formal concentration of.1m. What is the % dissociation of the acid?
Chpter 9 Buffers Problems 2, 5, 7, 8, 9, 12, 15, 17,19 A Buffer is solution tht resists chnges in ph when cids or bses re dded or when the solution is diluted. Buffers re importnt in Biochemistry becuse
More informationContent Objectives: After completing the activity, students will gain experience of informally proving Pythagoras Theorem
Pythgors Theorem S Topic 1 Level: Key Stge 3 Dimension: Mesures, Shpe nd Spce Module: Lerning Geometry through Deductive Approch Unit: Pythgors Theorem Student ility: Averge Content Ojectives: After completing
More informationThe Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center
Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,
More informationOn decidability of LTL model checking for process rewrite systems
Act Informtic (2009) 46:1 28 DOI 10.1007/s0023600800823 ORIGINAL ARTICLE On decidbility of LTL model checking for process rewrite systems Lur Bozzelli Mojmír Křetínský Vojtěch Řehák Jn Strejček Received:
More informationIntegration by Substitution
Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is
More information3GPP TSG SA WG3 Security S3#23 S May 2002, Victoria, Canada CRFormv5.1 CHANGE REQUEST
1 TSG SA WG3 Security S3#23 S3020201 1417 My 2002, Victori, Cnd CRFormv5.1 CHANGE REQUEST 33.102 CR CRNum rev  Current version: 4.3.0 For HELP on using this form, see bottom of this pge or look t
More informationAlgorithms Chapter 4 Recurrences
Algorithms Chpter 4 Recurrences Outline The substitution method The recursion tree method The mster method Instructor: Ching Chi Lin 林清池助理教授 chingchilin@gmilcom Deprtment of Computer Science nd Engineering
More informationSample Problems. Practice Problems
Lecture Notes Comple Frctions pge Smple Problems Simplify ech of the following epressions.. +. +. + 8. b b... 7. + + 9. y + y 0. y Prctice Problems Simplify ech of the following epressions...... 8 + +
More informationDFA Operations. Complement, Product, Union, Intersection, Difference, Equivalence and Minimization of DFAs
DFA Opertions Complement, Product, nion, Intersection, Difference, Equivlence nd inimiztion of DFAs Wednesdy, Octoer 7, 2009 eding: ipser pp. 4546, toughton 3.11 3.12 C235 nguges nd Automt Deprtment of
More informationPROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY
MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More informationHelicopter Theme and Variations
Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the
More informationTEACHER S QUICK REFERENCE
Go to www.myon.com Click Login now. LOGIN Enter your School nme, Usernme nd Pssword, nd click OK. GROUPS From the home pge, click Crete group. Select group nme nd description nd enter them into the pproprite
More informationNet Change and Displacement
mth 11, pplictions motion: velocity nd net chnge 1 Net Chnge nd Displcement We hve seen tht the definite integrl f (x) dx mesures the net re under the curve y f (x) on the intervl [, b] Any prt of the
More informationLecture 3 Gaussian Probability Distribution
Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike
More informationEngineertoEngineer Note
EngineertoEngineer Note EE280 Technicl notes on using Anlog Devices DSPs, processors nd development tools Visit our Web resources http://www.nlog.com/eenotes nd http://www.nlog.com/processors or emil
More informationIntroduction to Linear Algebra using MATLAB Tutorial on Material Covered in ENG EK 127 Relevant to Linear Algebra.
Introduction to Liner Algebr using MATLAB Tutoril on Mteril Covered in ENG EK 7 Relevnt to Liner Algebr By Stormy Attwy Reference: Stormy Attwy, MATLAB: A Prcticl Introduction to Progrmming nd Problem
More informationVirtual Machine. Part II: Program Control. Building a Modern Computer From First Principles. www.nand2tetris.org
Virtul Mchine Prt II: Progrm Control Building Modern Computer From First Principles www.nnd2tetris.org Elements of Computing Systems, Nisn & Schocken, MIT Press, www.nnd2tetris.org, Chpter 8: Virtul Mchine,
More informationAnnouncements. CS 188: Artificial Intelligence. Example: Weather HMM. Filtering / Monitoring. Hidden Markov Models   Filters
Announcements P4 Byes Nets / Tresure Hunting hs een relesed. It s due Mondy April 4th t :59pm. HW7 hs een relesed. It s due Tuesdy April 5th, t :59pm. It s out twice s long s typicl homework. We encourge
More informationEngineertoEngineer Note
EngineertoEngineer Note EE234 Technicl notes on using Anlog Devices DSPs, processors nd development tools Contct our technicl support t dsp.support@nlog.com nd t dsptools.support@nlog.com Or visit our
More informationBypassing Space Explosion in Regular Expression Matching for Network Intrusion Detection and Prevention Systems
Bypssing Spce Explosion in Regulr Expression Mtching for Network Intrusion Detection n Prevention Systems Jignesh Ptel, Alex Liu n Eric Torng Dept. of Computer Science n Engineering Michign Stte University
More informationQuadratic Equations. Math 99 N1 Chapter 8
Qudrtic Equtions Mth 99 N1 Chpter 8 1 Introduction A qudrtic eqution is n eqution where the unknown ppers rised to the second power t most. In other words, it looks for the vlues of x such tht second degree
More informationSuffix Trees. Description follows Dan Gusfield s book Algorithms on Strings, Trees and Sequences
Suffix Trees Description follows Dn Gusfield s ook Algorithms on Strings, Trees nd Sequences Slides sources: Pvel Shviko, (University of Trento), Him Kpln (Tel Aviv University) CG 12 Ron Shmir Outline
More informationLecture 15  Curve Fitting Techniques
Lecture 15  Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting  motivtion For root finding, we used given function to identify where it crossed zero where does fx
More informationNetwork Configuration Independence Mechanism
3GPP TSG SA WG3 Security S3#19 S3010323 36 July, 2001 Newbury, UK Source: Title: Document for: AT&T Wireless Network Configurtion Independence Mechnism Approvl 1 Introduction During the lst S3 meeting
More informationIaaS Configuration for Virtual Platforms
IS Configurtion for Virtul Pltforms vcloud Automtion Center 6.0 This document supports the version of ech product listed nd supports ll susequent versions until the document is replced y new edition. To
More informationScanning and parsing. Topics. Announcements Pick a partner by Monday Makeup lecture will be on Monday August 29th at 3pm
Scanning and Parsing Announcements Pick a partner by Monday Makeup lecture will be on Monday August 29th at 3pm Today Outline of planned topics for course Overall structure of a compiler Lexical analysis
More informationHillsborough Township Public Schools Mathematics Department Computer Programming 1
Essentil Unit 1 Introduction to Progrmming Pcing: 15 dys Common Unit Test Wht re the ethicl implictions for ming in tody s world? There re ethicl responsibilities to consider when writing computer s. Citizenship,
More informationGenerating InLine Monitors For Rabin Automata
Generting InLine Monitors For Rin Automt Hugues Chot, Rphel Khoury, nd Ndi Twi Lvl University, Deprtment of Computer Science nd Softwre Engineering, Pvillon AdrienPouliot, 1065, venue de l Medecine Queec
More informationTests for One Poisson Mean
Chpter 412 Tests for One Poisson Men Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson distribution
More informationAngles. Angles. Curriculum Ready.
ngles ngles urriculum Redy www.mthletics.com ngles mesure the mount of turn in degrees etween two lines tht meet t point. Mny gmes re sed on interpreting using ngles such s pool, snooker illirds. lck
More informationPlotting and Graphing
Plotting nd Grphing Much of the dt nd informtion used by engineers is presented in the form of grphs. The vlues to be plotted cn come from theoreticl or empiricl (observed) reltionships, or from mesured
More informationEngineertoEngineer Note
EngineertoEngineer Note EE265 Technicl notes on using Anlog Devices DSPs, processors nd development tools Contct our technicl support t dsp.support@nlog.com nd t dsptools.support@nlog.com Or visit our
More information9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More information5.2 The Definite Integral
5.2 THE DEFINITE INTEGRAL 5.2 The Definite Integrl In the previous section, we sw how to pproximte totl chnge given the rte of chnge. In this section we see how to mke the pproximtion more ccurte. Suppose
More informationAddition and subtraction of rational expressions
Lecture 5. Addition nd subtrction of rtionl expressions Two rtionl expressions in generl hve different denomintors, therefore if you wnt to dd or subtrct them you need to equte the denomintors first. The
More informationSection A4 Rational Expressions: Basic Operations
A Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr opentopped bo is to be constructed out of 9 by 6inch sheets of thin crdbord by cutting inch squres out of ech corner nd bending the
More informationAMTH247 Lecture 16. Numerical Integration I
AMTH47 Lecture 16 Numericl Integrtion I 3 My 006 Reding: Heth 8.1 8., 8.3.1, 8.3., 8.3.3 Contents 1 Numericl Integrtion 1.1 MonteCrlo Integrtion....................... 1. Attinble Accurcy.........................
More informationLearning Harmonic Progression Using Markov Models
Lerning Hrmonic Progression Using Mrkov Models EECS545 Project Brdley J. Clement rdc@umich.edu April 25, 1998 1. ntroduction n n effort to try to utomte the lerning of the structure of musicl compositions,
More informationSTRM Log Manager Installation Guide
Security Thret Response Mnger Relese 2012.0 Juniper Networks, Inc. 1194 North Mthild Avenue Sunnyvle, CA 94089 USA 4087452000 www.juniper.net Pulished: 20120912 Copyright Notice Copyright 2012 Juniper
More informationWritten Homework 6 Solutions
Written Homework 6 Solutions Section.10 0. Explin in terms of liner pproximtions or differentils why the pproximtion is resonble: 1.01) 6 1.06 Solution: First strt by finding the liner pproximtion of f
More informationLecture 5. Inner Product
Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right
More informationLines and Angles. 2. Straight line is a continuous set of points going on forever in both directions:
Lines nd Angles 1. Point shows position. A 2. Stright line is continuous set of points going on forever in oth directions: 3. Ry is line with one endpoint. The other goes on forever. G 4. Line segment
More informationGene Expression Programming: A New Adaptive Algorithm for Solving Problems
Gene Expression Progrmming: A New Adptive Algorithm for Solving Prolems Cândid Ferreir Deprtmento de Ciêncis Agráris Universidde dos Açores 9701851 TerrChã Angr do Heroísmo, Portugl Complex Systems,
More informationtrademark and symbol guidelines FOR CORPORATE STATIONARY APPLICATIONS reviewed 01.02.2007
trdemrk nd symbol guidelines trdemrk guidelines The trdemrk Cn be plced in either of the two usul configurtions but horizontl usge is preferble. Wherever possible the trdemrk should be plced on blck bckground.
More informationAutomated Grading of DFA Constructions
Automted Grding of DFA Constructions Rjeev Alur nd Loris D Antoni Sumit Gulwni Dileep Kini nd Mhesh Viswnthn Deprtment of Computer Science Microsoft Reserch Deprtment of Computer Science University of
More informationRegular Languages and Finite Automata
N Lecture Notes on Regulr Lnguges nd Finite Automt for Prt IA of the Computer Science Tripos Mrcelo Fiore Cmbridge University Computer Lbortory First Edition 1998. Revised 1999, 2000, 2001, 2002, 2003,
More informationCS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001
CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic
More information2.6.3 Characteristic of Compoundwound motor connection common use aids speed falls opposes speed increases ratio seriestoshunt field ampereturns
.6.3 Chrcteristic of Compoundwound motor A compoundwound motor hs both series nd shunt field winding, (i.e. one winding in series nd one in prllel with the rmture circuit), by vrying the number of turns
More informationJPAE Application: A StepbyStep Guide
JPAE Appliction: A StepyStep Guide Copyright 2016 2014 NCS Pte. Pte. Ltd. Ltd. All All Rights Rights Reserved. Step 1: Access JPAE You my ccess the JPAE Appliction t jpe.polytechnic.edu.sg You will e
More informationSirindhorn International Institute of Technology Thammasat University at Rangsit
Sirindhorn Interntionl Institute of Technology Thmmst University t Rngsit School of Informtion, Computer nd Communiction Technology COURSE : ECS 204 Bsic Electricl Engineering L INSTRUCTOR : Asst. Prof.
More informationPentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simplelooking set of objects through which some powerful
Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this
More information