Homework 3 Solutions

Size: px
Start display at page:

Download "Homework 3 Solutions"

Transcription

1 CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}. () The lnguge {w Σ w ends with } with three sttes., () The lnguge {w Σ w contins the sustring 11, i.e., w = x11y for some x,y Σ } with five sttes.,1, (c) The lnguge {w Σ w contins t lest two s, or exctly two 1s} with six sttes.,1 1,1 ε (d) The lnguge {ε} with one stte. 1

2 1 (e) The lnguge 1 with three sttes. 1 ε () Show y giving n exmple tht, if M is n NFA tht recognizes lnguge C, swpping the ccept nd non-ccept sttes in M doesn t necessrily yield new NFA tht recognizes C. Answer: The NFA M elow recognizes the lnguge C = {w Σ w ends with }, where Σ = {,1}., Swpping the ccept nd non-ccept sttes of M gives the following NFA M :, Note tht M ccepts the string 1 C = {w w does not end with }, so M does not recognize the lnguge C. () Is the clss of lnguges recognized y NFAs closed under complement? Explin your nswer. Answer: The clss of lnguges recognized y NFAs is closed under complement, which we cn prove s follows. Suppose tht C is lnguge recognized y some NFA M, i.e., C = L(M). Since every NFA hs n equivlent DFA (Theorem 1.19), there is DFA D such tht L(D) = L(M) = C. By prolem 3 on Homework 2, we then know there is nother DFA D tht recognizes the lnguge L(D). Since 2

3 every DFA is lso n NFA, this then shows tht there is n NFA, in prticulr D, tht recognizes the lnguge C = L(D). Thus, the clss of lnguges recognized y NFAs is closed under complement. 3. Use the construction given in Theorem 1.39 to convert the following NFA N into n equivlent DFA. ε 1 2 3, Answer: Let NFA N = (Q,Σ,δ,1,F), where Q =, Σ = {,}, 1 is the strt stte, F = {2}, nd the trnsition function δ s in the digrm of N. To construct DFA M = (Q,Σ,δ,q,F ) tht is equivlent to NFA N, first we compute the ε-closure of every suset of Q =. Then define Q = P(Q), so Set R Q ε-closure E(R) {1} {2} {2} {3} {3} {1,3} {2,3} {2,3} Q = {, {1}, {2}, {3},, {1,3}, {2,3}, }. The strt stte of M is then E({1}) =. The set of ccept sttes of M is F = { {2},, {2,3}, }. We define the trnsitions in the DFA M s in the following digrm: 3

4 {2,3}, Note tht we left out some of the sttes (e.g., {1}) in P(Q) from our digrm of the DFA M since they re not ccessile from the strt stte. Also, we hd to dd n rc from stte to itself lelled with, so tht this stte hs n rc leving it corresponding to ech symol in the lphet Σ, which is requirement for ny DFA. The lgorithm given in the notes nd textook will lwys correctly construct n equivlent DFA from given NFA, ut we don t lwys hve to go through ll the steps of the lgorithm to otin n equivlent DFA. For exmple, on this prolem, we egin y figuring out wht sttes the NFA cn e in without reding ny symols. In this cse, this is E({1}) = since 1 is the strting stte of the NFA, nd the NFA cn jump from 1 to 2 without reding ny symols y tking the ε-trnsition. Thus, we first crete DFA stte corresponding to the set : The stte is the strt stte of the DFA since this is where the NFA cn e without reding ny symols. The stte is lso n ccepting stte for the DFA since it contins 2, which is ccepting for the NFA. Now for DFA stte, determine where the NFA cn go on n from ech NFA stte within this DFA stte, nd where the NFA cn go on from ech NFA stte within this DFA stte. On n, the NFA cn go from stte 1 to stte 3; lso, the NFA cn go from stte 2 to 1, nd then it lso cn go further from 1 to 2 on the ε. So from NFA sttes 1 nd 2 on n, the NFA cn end up in sttes 1, 2, nd 3, so drw trnsition in the DFA from stte to new stte, which is n ccepting stte since it contins 2 F: 4

5 Similrly, to determine where the DFA moves on from DFA stte, determine ll the possiilities of where the NFA cn go from NFA sttes 1 nd 2 on. From stte 1, the NFA cn t go nywhere on ; lso, the NFA cn t go nywhere from stte 2 on. Thus, the NFA cn t go nywhere from sttes 2 nd 3 on, so we dd -edge in the DFA from stte to new DFA stte, which is not ccepting since it contins no ccept sttes of the NFA: Now every time we dd new DFA stte, we hve to determine ll the possiilities of where the NFA cn go on n from ech NFA stte within tht DFA stte, nd where the NFA cn go on from ech NFA stte within tht DFA stte. For DFA stte, we next determine where the NFA cn go on n from ech of the NFA sttes 1, 2 nd 3. From NFA stte 1, the NFA on n cn go to NFA stte 3; from NFA stte 2, the NFA on n cn go to NFA stte 1, nd then it cn lso further jump to 2 on ε; from NFA stte 3, the NFA on n cn go to NFA stte 2. Thus, if the NFA is in sttes 1, 2 nd 3, it cn go on n to sttes 1, 2 nd 3, so we dd to the DFA n -edge from to. Now we determine where the -edge from DFA stte goes to. To do this, we exmine wht hppens to the NFA from sttes 1, 2 nd 3 on. If the NFA is in stte 1, then there is nowhere to go on ; if the NFA is in stte 2, then there is nowhere to go on ; if the NFA is in stte 3, then the NFA cn go to 2 or 3 on. Hence, if the NFA is in sttes 1, 2 nd 3, the NFA on cn end in sttes 2 nd 3. Thus, in the DFA, drw n edge from stte to new stte {2,3}, which is ccepting since it contins 2 F: 5

6 {2,3} Now do the sme for DFA sttes {2,3} nd. If ny new DFA sttes rise, then we need to determine the nd trnsitions out of those sttes s well. We stop once every DFA stte hs n -trnsition nd -trnsition out of it. Accepting sttes in the DFA re ny DFA sttes tht contin t lest one ccepting NFA stte. We eventully end up with the DFA elow s efore: {2,3}, FortheDFAstte,thererenoversionsoftheNFAcurrentlyctive, i.e., ll threds hve crshed, so the NFA cnnot proceed nd the input string will not e ccepted. However, ccording to the definition of DFA, ech stte must hve edges leving it corresponding to ech symol in the lphet Σ. Thus, we dd loop from the DFA stte ck to itself leled with Σ, which in our cse is,. 4. Give regulr expressions tht generte ech of the following lnguges. In ll cses, the lphet is Σ = {,}. 6

7 () The lnguge {w Σ w is odd}. Answer: ( )(( )( )) () The lnguge {w Σ w hs n odd numer of s}. Answer: ( ) (c) The lnguge {w w contins t lest two s, or exctly two s}. Answer: ( ) (d) The lnguge {w Σ w ends in doule letter}. (A string contins doule letter if it contins or s sustring.) Answer: ( ) ( ) (e) The lnguge {w Σ w does not end in doule letter}. Answer: ε ( ) ( ) (f) The lnguge {w Σ w contins exctly one doule letter}. For exmple, hs exctly one doule letter, ut hs two doule letters. Answer: (ε )() () (ε ) (ε )() () (ε ) 5. Suppose we define restricted version of the Jv progrmming lnguge in which vrile nmes must stisfy ll of the following conditions: A vrile nme cn only use Romn letters (i.e.,,,..., z, A, B,..., Z) or Aric numerls (i.e.,, 1, 2,..., 9); i.e., underscore nd dollr sign re not llowed. A vrile nme must strt with Romn letter:,,..., z, A, B,..., Z The length of vrile nme must e no greter thn 8. A vrile nme cnnot e keyword (e.g., if). The set of keywords is finite. Let L e the set of ll vlid vrile nmes in our restricted version of Jv. () Let L e the set of strings stisfying the first 3 conditions ove; i.e., we do not require the lst condition. Give regulr expression for L. Answer: To simplify the regulr expression, we define Then regulr expression for L is = {,,...,z,a,b,...,z} Σ 2 = {,1,2,...,9}. ( Σ 2 ε) ( Σ 2 ε). } {{ } 7 times Note tht y including the ε in ech of the lst prts, we cn generte strings tht hve length strictly less thn 8. 7

8 () Prove tht L hs regulr expression, where L is the set of strings stisfying ll four conditions. Answer: We proved in Homework 1, prolem 4(), tht L is finite. Thus, L is regulr, so it hs regulr expression. Although the prolem didn t sk for it, we cn write regulr expression for L y listing ll of the strings in L nd putting in etween ech pir of consecutive strings. This works ecuse L is finite. (c) Give DFA for the lnguge L in prt (), where the lphet Σ is the set of ll printle chrcters on computer keyord (no control chrcters), except for prentheses to void confusion. Answer: Define nd Σ 2 s in prt (), nd let Σ 3 = Σ ( Σ 2 ) e ll of the other chrcters on computer keyord except for prentheses. Then DFA for L is s follows: Σ 2 Σ Σ 2 Σ 3 Σ 3 Σ 3 Σ 3 Σ Σ 6. Define L to e the set of strings tht represent numers in modified version of Jv. The gol in this prolem is to define regulr expression nd n NFA for L. To precisely define L, let the set of digits e = {, 1, 2,..., 9}, nd define the set of signs to e Σ 2 = {+, -}. Then L = L 1 L 2 L 3, where L 1 is the set of ll strings tht re deciml integer numers. Specificlly, L 1 consists of strings tht strt with n optionl sign, followed y one or more digits. Exmples of strings in L 1 re 2, +9, nd L 2 is the set of ll strings tht re floting-point numers tht re not in exponentil nottion. Specificlly, L 2 consists of strings tht strt with n optionl sign, followed y zero or more digits, followed y deciml point, nd end with zero or more digits, where there must e t lest one digit in the string. Exmples of strings in L 2 re , -28. nd.124. All strings in L 2 hve exctly one deciml point. L 3 is the set of ll strings tht re floting-point numers in exponentil nottion. Specificlly, L 3 consists of strings tht strt with string from L 1 or L 2, followed y E or e, nd end with string from L 1. Exmples of strings in L 3 re -8.1E-83, +8.E5 nd 1e+31. Assume tht there is no limit on the numer of digits in string in L. Also, we do not llow for the suffixes L, l, F, f, D, d, t the end of numers to denote types (long integers, flots, nd doules). Define Σ s the lphet of ll printle chrcters on computer keyord (no control chrcters), except for prentheses to void confusion. 8

9 () Give regulr expression for L 1. Also, give n NFA nd DFA for L 1 over the lphet Σ. Answer: A regulr expression for L 1 is R 1 = (+ - ε) Σ 1 where = {, 1, 2,..., 9} s previously defined. An NFA for L 1 is q 1 q 2 q 3 Define Σ 3 = Σ ( Σ 2 ) with Σ 2 = {-, +}, s efore. Then DFA for L 1 is 3 Σ Σ Σ Σ 3 4 Σ Notice tht the DFA is more complicted thn the NFA. () Give regulr expression for L 2. Also, give n NFA for L 2 over the lphet Σ. Answer: A regulr expression for L 2 is R 2 = (+ - ε)( Σ 1.Σ 1.Σ 1 ) Note tht the regulr expression (+ - ε)σ 1.Σ 1 is not correct since it cn generte the strings., +. nd -., which re not vlid floting-point numers. An NFA for L 2 is r 1 r 2 r 3 r 5 r 4 9

10 (c) Give regulr expression for L 3. Also, give n NFA for L 3 over the lphet Σ. Answer: A regulr expression for L 3 is R 3 = (R 1 R 2 )(E e)r 1 where R 1 nd R 2 re defined in the previous prts. An NFA for L 3 is s 3 s 1 s 2 E, e s 4 s 5 s 6 s 7 s 8 (d) Give regulr expression for the lnguge L. Also, give n NFA for L over the lphet Σ. Answer: Note tht L = L 1 L 2 L 3, so regulr expression for L is R 4 = R 1 R 2 R 3 We cn construct n NFA for L y tking the union of the NFA s for L 1, L 2 nd L 3, s follows: 1

11 q 1 q 2 q 3 ε q ε r 1 r 2 r 3 r 5 r 4 ε s 3 s 1 s 2 E, e s 4 s 5 s 6 s 7 s 8 A simpler NFA for L is to tke the NFA for L 3 nd mke s 3 nd s 5 lso ccepting sttes in ddition to s 8. 11

One Minute To Learn Programming: Finite Automata

One Minute To Learn Programming: Finite Automata Gret Theoreticl Ides In Computer Science Steven Rudich CS 15-251 Spring 2005 Lecture 9 Fe 8 2005 Crnegie Mellon University One Minute To Lern Progrmming: Finite Automt Let me tech you progrmming lnguge

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

Solution to Problem Set 1

Solution to Problem Set 1 CSE 5: Introduction to the Theory o Computtion, Winter A. Hevi nd J. Mo Solution to Prolem Set Jnury, Solution to Prolem Set.4 ). L = {w w egin with nd end with }. q q q q, d). L = {w w h length t let

More information

FORMAL LANGUAGES, AUTOMATA AND THEORY OF COMPUTATION EXERCISES ON REGULAR LANGUAGES

FORMAL LANGUAGES, AUTOMATA AND THEORY OF COMPUTATION EXERCISES ON REGULAR LANGUAGES FORMAL LANGUAGES, AUTOMATA AND THEORY OF COMPUTATION EXERCISES ON REGULAR LANGUAGES Introduction This compendium contins exercises out regulr lnguges for the course Forml Lnguges, Automt nd Theory of Computtion

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

0.1 Basic Set Theory and Interval Notation

0.1 Basic Set Theory and Interval Notation 0.1 Bsic Set Theory nd Intervl Nottion 3 0.1 Bsic Set Theory nd Intervl Nottion 0.1.1 Some Bsic Set Theory Notions Like ll good Mth ooks, we egin with definition. Definition 0.1. A set is well-defined

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

flex Regular Expressions and Lexical Scanning Regular Expressions and flex Examples on Alphabet A = {a,b} (Standard) Regular Expressions on Alphabet A

flex Regular Expressions and Lexical Scanning Regular Expressions and flex Examples on Alphabet A = {a,b} (Standard) Regular Expressions on Alphabet A flex Regulr Expressions nd Lexicl Scnning Using flex to Build Scnner flex genertes lexicl scnners: progrms tht discover tokens. Tokens re the smllest meningful units of progrm (or other string). flex is

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

Words Symbols Diagram. abcde. a + b + c + d + e

Words Symbols Diagram. abcde. a + b + c + d + e Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001 CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic

More information

Regular Languages and Finite Automata

Regular Languages and Finite Automata N Lecture Notes on Regulr Lnguges nd Finite Automt for Prt IA of the Computer Science Tripos Mrcelo Fiore Cmbridge University Computer Lbortory First Edition 1998. Revised 1999, 2000, 2001, 2002, 2003,

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

1.2 The Integers and Rational Numbers

1.2 The Integers and Rational Numbers .2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

FAULT TREES AND RELIABILITY BLOCK DIAGRAMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University

FAULT TREES AND RELIABILITY BLOCK DIAGRAMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University SYSTEM FAULT AND Hrry G. Kwtny Deprtment of Mechnicl Engineering & Mechnics Drexel University OUTLINE SYSTEM RBD Definition RBDs nd Fult Trees System Structure Structure Functions Pths nd Cutsets Reliility

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

Solutions for Selected Exercises from Introduction to Compiler Design

Solutions for Selected Exercises from Introduction to Compiler Design Solutions for Selected Exercises from Introduction to Compiler Design Torben Æ. Mogensen Lst updte: My 30, 2011 1 Introduction This document provides solutions for selected exercises from Introduction

More information

5.6 POSITIVE INTEGRAL EXPONENTS

5.6 POSITIVE INTEGRAL EXPONENTS 54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

Java CUP. Java CUP Specifications. User Code Additions You may define Java code to be included within the generated parser:

Java CUP. Java CUP Specifications. User Code Additions You may define Java code to be included within the generated parser: Jv CUP Jv CUP is prser-genertion tool, similr to Ycc. CUP uilds Jv prser for LALR(1) grmmrs from production rules nd ssocited Jv code frgments. When prticulr production is recognized, its ssocited code

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

Modular Generic Verification of LTL Properties for Aspects

Modular Generic Verification of LTL Properties for Aspects Modulr Generic Verifiction of LTL Properties for Aspects Mx Goldmn Shmuel Ktz Computer Science Deprtment Technion Isrel Institute of Technology {mgoldmn, ktz}@cs.technion.c.il ABSTRACT Aspects re seprte

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

Bypassing Space Explosion in Regular Expression Matching for Network Intrusion Detection and Prevention Systems

Bypassing Space Explosion in Regular Expression Matching for Network Intrusion Detection and Prevention Systems Bypssing Spce Explosion in Regulr Expression Mtching for Network Intrusion Detection n Prevention Systems Jignesh Ptel, Alex Liu n Eric Torng Dept. of Computer Science n Engineering Michign Stte University

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

Protocol Analysis. 17-654/17-764 Analysis of Software Artifacts Kevin Bierhoff

Protocol Analysis. 17-654/17-764 Analysis of Software Artifacts Kevin Bierhoff Protocol Anlysis 17-654/17-764 Anlysis of Softwre Artifcts Kevin Bierhoff Tke-Awys Protocols define temporl ordering of events Cn often be cptured with stte mchines Protocol nlysis needs to py ttention

More information

Quick Reference Guide: One-time Account Update

Quick Reference Guide: One-time Account Update Quick Reference Guide: One-time Account Updte How to complete The Quick Reference Guide shows wht existing SingPss users need to do when logging in to the enhnced SingPss service for the first time. 1)

More information

Lec 2: Gates and Logic

Lec 2: Gates and Logic Lec 2: Gtes nd Logic Kvit Bl CS 34, Fll 28 Computer Science Cornell University Announcements Clss newsgroup creted Posted on we-pge Use it for prtner finding First ssignment is to find prtners Due this

More information

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this

More information

1.00/1.001 Introduction to Computers and Engineering Problem Solving Fall 2011 - Final Exam

1.00/1.001 Introduction to Computers and Engineering Problem Solving Fall 2011 - Final Exam 1./1.1 Introduction to Computers nd Engineering Problem Solving Fll 211 - Finl Exm Nme: MIT Emil: TA: Section: You hve 3 hours to complete this exm. In ll questions, you should ssume tht ll necessry pckges

More information

Answer, Key Homework 10 David McIntyre 1

Answer, Key Homework 10 David McIntyre 1 Answer, Key Homework 10 Dvid McIntyre 1 This print-out should hve 22 questions, check tht it is complete. Multiple-choice questions my continue on the next column or pge: find ll choices efore mking your

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

DATABASDESIGN FÖR INGENJÖRER - 1056F

DATABASDESIGN FÖR INGENJÖRER - 1056F DATABASDESIGN FÖR INGENJÖRER - 06F Sommr 00 En introuktionskurs i tssystem http://user.it.uu.se/~ul/t-sommr0/ lt. http://www.it.uu.se/eu/course/homepge/esign/st0/ Kjell Orsorn (Rusln Fomkin) Uppsl Dtse

More information

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5. . Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry

More information

I calculate the unemployment rate as (In Labor Force Employed)/In Labor Force

I calculate the unemployment rate as (In Labor Force Employed)/In Labor Force Introduction to the Prctice of Sttistics Fifth Edition Moore, McCbe Section 4.5 Homework Answers to 98, 99, 100,102, 103,105, 107, 109,110, 111, 112, 113 Working. In the lnguge of government sttistics,

More information

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

19. The Fermat-Euler Prime Number Theorem

19. The Fermat-Euler Prime Number Theorem 19. The Fermt-Euler Prime Number Theorem Every prime number of the form 4n 1 cn be written s sum of two squres in only one wy (side from the order of the summnds). This fmous theorem ws discovered bout

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

2 DIODE CLIPPING and CLAMPING CIRCUITS

2 DIODE CLIPPING and CLAMPING CIRCUITS 2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of

More information

Econ 4721 Money and Banking Problem Set 2 Answer Key

Econ 4721 Money and Banking Problem Set 2 Answer Key Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity

Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

, and the number of electrons is -19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow.

, and the number of electrons is -19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow. Prolem 1. f current of 80.0 ma exists in metl wire, how mny electrons flow pst given cross section of the wire in 10.0 min? Sketch the directions of the current nd the electrons motion. Solution: The chrge

More information

The remaining two sides of the right triangle are called the legs of the right triangle.

The remaining two sides of the right triangle are called the legs of the right triangle. 10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right

More information

Generating In-Line Monitors For Rabin Automata

Generating In-Line Monitors For Rabin Automata Generting In-Line Monitors For Rin Automt Hugues Chot, Rphel Khoury, nd Ndi Twi Lvl University, Deprtment of Computer Science nd Softwre Engineering, Pvillon Adrien-Pouliot, 1065, venue de l Medecine Queec

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

A Visual and Interactive Input abb Automata. Theory Course with JFLAP 4.0

A Visual and Interactive Input abb Automata. Theory Course with JFLAP 4.0 Strt Puse Step Noninverted Tree A Visul nd Interctive Input Automt String ccepted! 5 nodes generted. Theory Course with JFLAP 4.0 q0 even 's, even 's q2 even 's, odd 's q1 odd 's, even 's q3 odd 's, odd

More information

Repeated multiplication is represented using exponential notation, for example:

Repeated multiplication is represented using exponential notation, for example: Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Unambiguous Recognizable Two-dimensional Languages

Unambiguous Recognizable Two-dimensional Languages Unmbiguous Recognizble Two-dimensionl Lnguges Mrcell Anselmo, Dor Gimmrresi, Mri Mdoni, Antonio Restivo (Univ. of Slerno, Univ. Rom Tor Vergt, Univ. of Ctni, Univ. of Plermo) W2DL, My 26 REC fmily I REC

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

5 a LAN 6 a gateway 7 a modem

5 a LAN 6 a gateway 7 a modem STARTER With the help of this digrm, try to descrie the function of these components of typicl network system: 1 file server 2 ridge 3 router 4 ckone 5 LAN 6 gtewy 7 modem Another Novell LAN Router Internet

More information

Chapter. Contents: A Constructing decimal numbers

Chapter. Contents: A Constructing decimal numbers Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting

More information

NQF Level: 2 US No: 7480

NQF Level: 2 US No: 7480 NQF Level: 2 US No: 7480 Assessment Guide Primry Agriculture Rtionl nd irrtionl numers nd numer systems Assessor:.......................................... Workplce / Compny:.................................

More information

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent! MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more

More information

Basic Research in Computer Science BRICS RS-02-13 Brodal et al.: Solving the String Statistics Problem in Time O(n log n)

Basic Research in Computer Science BRICS RS-02-13 Brodal et al.: Solving the String Statistics Problem in Time O(n log n) BRICS Bsic Reserch in Computer Science BRICS RS-02-13 Brodl et l.: Solving the String Sttistics Prolem in Time O(n log n) Solving the String Sttistics Prolem in Time O(n log n) Gerth Stølting Brodl Rune

More information

MODULE 3. 0, y = 0 for all y

MODULE 3. 0, y = 0 for all y Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

More information

1 Fractions from an advanced point of view

1 Fractions from an advanced point of view 1 Frtions from n vne point of view We re going to stuy frtions from the viewpoint of moern lger, or strt lger. Our gol is to evelop eeper unerstning of wht n men. One onsequene of our eeper unerstning

More information

Regular Repair of Specifications

Regular Repair of Specifications Regulr Repir of Specifictions Michel Benedikt Oxford University michel.enedikt@coml.ox.c.uk Griele Puppis Oxford University griele.puppis@coml.ox.c.uk Cristin Riveros Oxford University cristin.riveros@coml.ox.c.uk

More information

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

More information

Automated Grading of DFA Constructions

Automated Grading of DFA Constructions Automted Grding of DFA Constructions Rjeev Alur nd Loris D Antoni Sumit Gulwni Dileep Kini nd Mhesh Viswnthn Deprtment of Computer Science Microsoft Reserch Deprtment of Computer Science University of

More information

Automata theory. An algorithmic approach. Lecture Notes. Javier Esparza

Automata theory. An algorithmic approach. Lecture Notes. Javier Esparza Automt theory An lgorithmic pproch 0 Lecture Notes Jvier Esprz My 3, 2016 2 3 Plese red this! Mny yers go I don t wnt to sy how mny, it s depressing I tught course on the utomt-theoretic pproch to model

More information

New Internet Radio Feature

New Internet Radio Feature XXXXX XXXXX XXXXX /XW-SMA3/XW-SMA4 New Internet Rdio Feture EN This wireless speker hs een designed to llow you to enjoy Pndor*/Internet Rdio. In order to ply Pndor/Internet Rdio, however, it my e necessry

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Geometry 7-1 Geometric Mean and the Pythagorean Theorem Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

Pointed Regular Expressions

Pointed Regular Expressions Pointed Regulr Expressions Andre Asperti 1, Cludio Scerdoti Coen 1, nd Enrico Tssi 2 1 Deprtment of Computer Science, University of Bologn sperti@cs.unio.it scerdot@cs.unio.it 2 INRIA-Micorsoft tssi@cs.unio.it

More information

How fast can we sort? Sorting. Decision-tree model. Decision-tree for insertion sort Sort a 1, a 2, a 3. CS 3343 -- Spring 2009

How fast can we sort? Sorting. Decision-tree model. Decision-tree for insertion sort Sort a 1, a 2, a 3. CS 3343 -- Spring 2009 CS 4 -- Spring 2009 Sorting Crol Wenk Slides courtesy of Chrles Leiserson with smll chnges by Crol Wenk CS 4 Anlysis of Algorithms 1 How fst cn we sort? All the sorting lgorithms we hve seen so fr re comprison

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

Object Semantics. 6.170 Lecture 2

Object Semantics. 6.170 Lecture 2 Object Semntics 6.170 Lecture 2 The objectives of this lecture re to: to help you become fmilir with the bsic runtime mechnism common to ll object-oriented lnguges (but with prticulr focus on Jv): vribles,

More information

Small Businesses Decisions to Offer Health Insurance to Employees

Small Businesses Decisions to Offer Health Insurance to Employees Smll Businesses Decisions to Offer Helth Insurnce to Employees Ctherine McLughlin nd Adm Swinurn, June 2014 Employer-sponsored helth insurnce (ESI) is the dominnt source of coverge for nonelderly dults

More information

Data Compression. Lossless And Lossy Compression

Data Compression. Lossless And Lossy Compression Dt Compression Reduce the size of dt. ƒ Reduces storge spce nd hence storge cost. Compression rtio = originl dt size/compressed dt size ƒ Reduces time to retrieve nd trnsmit dt. Lossless And Lossy Compression

More information

1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply?

1. In the Bohr model, compare the magnitudes of the electron s kinetic and potential energies in orbit. What does this imply? Assignment 3: Bohr s model nd lser fundmentls 1. In the Bohr model, compre the mgnitudes of the electron s kinetic nd potentil energies in orit. Wht does this imply? When n electron moves in n orit, the

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Quick Reference Guide: Reset Password

Quick Reference Guide: Reset Password Quick Reference Guide: Reset Pssword How to reset pssword This Quick Reference Guide shows you how to reset your pssword if you hve forgotten it. There re three wys to reset your SingPss pssword: 1) Online

More information

Brillouin Zones. Physics 3P41 Chris Wiebe

Brillouin Zones. Physics 3P41 Chris Wiebe Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction

More information

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 16 th May 2008. Time: 14:00 16:00

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 16 th May 2008. Time: 14:00 16:00 COMP20212 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Digitl Design Techniques Dte: Fridy 16 th My 2008 Time: 14:00 16:00 Plese nswer ny THREE Questions from the FOUR questions provided

More information