# Regular Sets and Expressions

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite utomt re circuits!) Computer scientists dore them ecuse they dpt very nicely to lgorithm design, for exmple the lexicl nlysis portion of compiling nd trnsltion. Mthemticins re intrigued y them too due to the fct tht there re severl nifty mthemticl chrcteriztions of the sets they ccept. This is prtilly wht this section is out. We shll uild expressions from the symol, 1, +, nd & using the opertions of union, conctention, nd Kleene closure. Severl intuitive exmples of our nottion re: ) 01 mens zero followed y one (conctention) ) 0+1 mens either zero or one (union) c) 0 * mens ^ (Kleene closure) With prentheses we cn uild lrger expressions. And we cn ssocite menings with our expressions. Here's how: Expression Set Represented (0+1) * ll strings over {0,1}. 0 * 10 * 10 * strings contining exctly two ones. (0+1) * 11 strings which end with two ones. Tht is the intuitive pproch to these new expressions or formuls. Now for precise, forml view. Severl definitions should do the jo. Definition. 0, 1, ε, nd re regulr expressions. Definition. If α nd β re regulr expressions, then so re (αβ), (α + β), nd (α) *. OK, fine. Regulr expressions re strings put together with zeros, ones, epsilons, strs, plusses, nd mtched prentheses in certin wys. But why did we do it? And wht do they men? We shll nswer this with list of wht vrious generl regulr expressions represent. First, let us define wht some specific regulr expressions represent.

2 Regulr Sets 2 ) 0 represents the set {0} ) 1 represents the set {1} c) ε represents the set {ε} (the empty string) d) represents the empty set Now for some generl cses. If α nd β re regulr expressions representing the sets A nd B, then: ) (αβ) represents the set AB ) (α + β) represents the set A B c) (α) * represents the set A * The sets which cn e represented y regulr expressions re clled regulr sets. When writing down regulr expressions to represent regulr sets we shll often drop prentheses round conctentions. Some exmples re 11(0 + 1) * (the set of strings eginning with two ones), 0 * 1 * (ll strings which contin possily empty sequence of zeros followed y possily null string of ones), nd the exmples mentioned erlier. We lso should note tht {0,1} is not the only lphet for regulr sets. Any finite lphet my e used. From our precise definitions of the regulr expressions nd the sets they represent we cn derive the following nice chrcteriztion of the regulr sets. Then, very quickly we shll relte them to finite utomt. Theorem 1. The clss of regulr sets is the smllest clss contining the sets {0}, {1}, {ε}, nd which is closed under union, conctention, nd Kleene closure. See why the ove chrcteriztion theorem is true? And why we left out the proof? Anywy, tht is ll rther net ut, wht exctly does it hve to do with finite utomt? Theorem 2. Every regulr set cn e ccepted y finite utomton. Proof. The singleton sets {0}, {1}, {ε}, nd cn ll e ccepted y finite utomt. The fct tht the clss of sets ccepted y finite utomt is closed under union, conctention, nd Kleene closure completes the proof. Just from closure properties we know tht we cn uild finite utomt to ccept ll of the regulr sets. And this is indeed done using the constructions

3 Regulr Sets 3 from the theorems. For exmple, to uild mchine ccepting ( + ) *, we design: M which ccepts {}, M which ccepts {}, M + which ccepts {, } (from M nd M ), M * which ccepts *, nd so forth until the desired mchine hs een uilt. This is esily done utomticlly, nd is not too d fter the finl mchine is reduced. But it would e nice though to hve some lgorithm for converting regulr expressions directly to utomt. The following lgorithm for this will e presented in intuitive terms in lnguge reminiscent of lnguge prsing nd trnsltion. Initilly, we shll tke regulr expression nd rek it into suexpressions. For exmple, the regulr expression ( + ) * () * cn e roken into the three suexpressions: ( + ) *,, nd () *. (These cn e roken down lter on in the sme mnner if necessry.) Then we numer the symols in the expression so tht we cn distinguish etween them lter. Our three suexpressions now re: ( ) *, 3 2, nd ( 3 4 ) *. Symols which led n expression re importnt s re those which end the expression. We group these in sets nmed FIRST nd LAST. These sets for our suexpressions re: Expression FIRST LAST ( ) * 1, 1 2, ( 3 4 ) * 3 4 Note tht since the FIRST suexpression contined union there were two symols in its FIRST set. The FIRST set for the entire expression is: { 1, 3, 1 }. The reson tht 3 ws in this set is tht since the first suexpression ws strred, it could e skipped nd thus the first symol of the next suexpression could e the first symol for the entire expression. For similr resons, the LAST set for the whole expression is { 2, 4 }. Forml, precise rules do govern the construction of the FIRST nd LAST sets. We know tht FIRST() = {} nd tht we lwys uild FIRST nd LAST sets from the ottom up. Here re the remining rules for FIRST sets.

4 Regulr Sets 4 Definition. If α nd β re regulr expressions then: ) FIRST(α + β) = FIRST(α) FIRST(β) ) FIRST(α*) = FIRST(α) {ε} FIRST(α) if ε FIRST(α) c) FIRST(αβ) = FIRST(α) FIRST(β) otherwise Exmining these rules with cre revels tht the ove chrt ws not quite wht the rules cll for since empty strings were omitted. The correct, complete chrt is: Expression FIRST LAST ( ) * 1, 1, ε 2, 1, ε ( 3 4 ) * 3, ε 4, ε Rules for the LAST sets re much the sme in spirit nd their formultion will e left s n exercise. One more notion is needed, the set of symols which might follow ech symol in ny strings generted from the expression. We shll first provide n exmple nd explin in moment. Symol FOLLOW 2 1, 3, 2 1, 3, Now, how did we do this? It is lmost ovious if given little thought. The FOLLOW set for symol is ll of the symols which could come next. The lgorithm goes s follows. To find FOLLOW(), we keep reking the expression into suexpressions until the symol is in the LAST set of suexpression. Then FOLLOW() is the FIRST set of the next suexpression. Here is n exmple. Suppose tht we hve αβ s our expression nd know tht LAST(α). Then FOLLOW() = FIRST(β). In most cses, this is the wy it we compute FOLLOW sets.

5 Regulr Sets 5 But, there re three exceptions tht must e noted. 1) If n expression of the form γ* is in α then we must lso include the FIRST set of this strred suexpression γ. 2) If α is of the form β* then FOLLOW() lso contins α's FIRST set. 3) If the suexpression to the right of α hs n ε in its FIRST set, then we keep on to the right unioning FIRST sets until we no longer find n ε in one. Another exmple. Let's find the FOLLOW set for 1 in the regulr expression ( * ) * 2 * (3 + 3 ). First we rek it down into suexpressions until 1 is in LAST set. These re: ( * ) * 2 * ( ) Their FIRST nd LAST sets re: Expression FIRST LAST ( * 2 ) * 1, 1, ε 1, 1, 2, ε 2 * 2, ε 2, ε ( ) 3, 3 3, 3 Since 1 is in the LAST set of suexpression which is strred then we plce tht suexpression's FIRST set { 1, 1 } into FOLLOW( 1 ). Since * 2 cme fter 1 nd ws strred we must include 2 lso. We lso plce the FIRST set of the next suexpression ( * 2 ) in the FOLLOW set. Since tht set contined n ε, we must put the next FIRST set in lso. Thus in this exmple, ll of the FIRST sets re comined nd we hve: FOLLOW( 1 ) = { 1, 1, 2, 2, 3, 3 } Severl other FOLLOW sets re: FOLLOW( 1 ) = { 1, 1, 2, 3, 3 } FOLLOW( 2 ) = { 2, 3, 3 } After computing ll of these sets it is not hrd to set up finite utomton for ny regulr expression. Begin with stte nmed. Connect it to sttes

6 Regulr Sets 6 denoting the FIRST sets of the expression. (By sets we men: split the FIRST set into two prts, one for ech type of symol.) Our first exmple ( ) * 3 2 ( 3 4 ) * provides: 1,3 1 Next, connect the sttes just generted to sttes denoting the FOLLOW sets of ll their symols. Agin, we hve: 1, Continue on until everything is connected. Any edges missing t this point should e connected to rejecting stte nmed s r. The sttes contining symols in the expression's LAST set re the ccepting sttes. The complete construction for our exmple ( + ) * () * is: 1, s r 4,

7 Regulr Sets 7 This construction did indeed produce n equivlent finite utomton, nd in not too inefficient mnner. Though if we note tht 2 nd 4 re siclly the sme, nd tht 1 nd 2 re similr, we cn esily stremline the utomton to: 1,3 2,4 2 1 s r 3, Our construction method provides: s 0 1, for our finl exmple. There is very simple equivlent mchine. Try to find it! We now close this section with the equivlence theorem concerning finite utomt nd regulr sets. Hlf of it ws proven erlier in the section, ut the trnsltion of finite utomt into regulr expressions remins. This is not included for two resons. First, tht it is very tedious, nd secondly tht noody ever ctully does tht trnsltion for ny prcticl reson! (It is n interesting demonstrtion of correctness proof which involves severl levels of itertion nd should e looked up y the interested reder.) Theorem 3. The regulr sets re exctly those sets ccepted y finite utomt.

### Finite Automata. Informatics 2A: Lecture 3. John Longley. 25 September School of Informatics University of Edinburgh

Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 25 September 2015 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is

### Homework 3 Solutions

CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

### Formal Languages and Automata Exam

Forml Lnguges nd Automt Exm Fculty of Computers & Informtion Deprtment: Computer Science Grde: Third Course code: CSC 34 Totl Mrk: 8 Dte: 23//2 Time: 3 hours Answer the following questions: ) Consider

### One Minute To Learn Programming: Finite Automata

Gret Theoreticl Ides In Computer Science Steven Rudich CS 15-251 Spring 2005 Lecture 9 Fe 8 2005 Crnegie Mellon University One Minute To Lern Progrmming: Finite Automt Let me tech you progrmming lnguge

### Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;

B-26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndom-numer genertor supplied s stndrd with ll computer systems Stn Kelly-Bootle,

### Union, Intersection and Complement. Formal Foundations Computer Theory

Union, Intersection nd Complement FAs Union, Intersection nd Complement FAs Forml Foundtions Computer Theory Ferury 21, 2013 This hndout shows (y exmples) how to construct FAs for the union, intersection

### In the following there are presented four different kinds of simulation games for a given Büchi automaton A = :

Simultion Gmes Motivtion There re t lest two distinct purposes for which it is useful to compute simultion reltionships etween the sttes of utomt. Firstly, with the use of simultion reltions it is possile

### DFA Operations. Complement, Product, Union, Intersection, Difference, Equivalence and Minimization of DFAs

DFA Opertions Complement, Product, nion, Intersection, Difference, Equivlence nd inimiztion of DFAs Wednesdy, Octoer 7, 2009 eding: ipser pp. 45-46, toughton 3.11 3.12 C235 nguges nd Automt Deprtment of

### Reasoning to Solve Equations and Inequalities

Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

### flex Regular Expressions and Lexical Scanning Regular Expressions and flex Examples on Alphabet A = {a,b} (Standard) Regular Expressions on Alphabet A

flex Regulr Expressions nd Lexicl Scnning Using flex to Build Scnner flex genertes lexicl scnners: progrms tht discover tokens. Tokens re the smllest meningful units of progrm (or other string). flex is

0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

### Solving Linear Equations - Formulas

1. Solving Liner Equtions - Formuls Ojective: Solve liner formuls for given vrile. Solving formuls is much like solving generl liner equtions. The only difference is we will hve severl vriles in the prolem

### Section 5-4 Trigonometric Functions

5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

### Algebra Review. How well do you remember your algebra?

Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

### Binary Representation of Numbers Autar Kaw

Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

### 4.0 5-Minute Review: Rational Functions

mth 130 dy 4: working with limits 1 40 5-Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two

### Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

### Square Roots Teacher Notes

Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

### PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

### Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful

Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this

### Content Objectives: After completing the activity, students will gain experience of informally proving Pythagoras Theorem

Pythgors Theorem S Topic 1 Level: Key Stge 3 Dimension: Mesures, Shpe nd Spce Module: Lerning Geometry through Deductive Approch Unit: Pythgors Theorem Student ility: Averge Content Ojectives: After completing

Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.

### Solutions to Section 1

Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this

### Integration by Substitution

Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

### Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

### Exponentiation: Theorems, Proofs, Problems Pre/Calculus 11, Veritas Prep.

Exponentition: Theorems, Proofs, Problems Pre/Clculus, Verits Prep. Our Exponentition Theorems Theorem A: n+m = n m Theorem B: ( n ) m = nm Theorem C: (b) n = n b n ( ) n n Theorem D: = b b n Theorem E:

### Equations between labeled directed graphs

Equtions etween leled directed grphs Existence of solutions Grret-Fontelles A., Misnikov A., Ventur E. My 2013 Motivtionl prolem H 1 nd H 2 two sugroups of the free group generted y X A, F (X, A). H 1

### In this section make precise the idea of a matrix inverse and develop a method to find the inverse of a given square matrix when it exists.

Mth 52 Sec S060/S0602 Notes Mtrices IV 5 Inverse Mtrices 5 Introduction In our erlier work on mtrix multipliction, we sw the ide of the inverse of mtrix Tht is, for squre mtrix A, there my exist mtrix

### 0.1 Basic Set Theory and Interval Notation

0.1 Bsic Set Theory nd Intervl Nottion 3 0.1 Bsic Set Theory nd Intervl Nottion 0.1.1 Some Bsic Set Theory Notions Like ll good Mth ooks, we egin with definition. Definition 0.1. A set is well-defined

### Basic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, }

ƒ Bsic Mth Review Numers NATURAL NUMBERS {1,, 3, 4, 5, } WHOLE NUMBERS {0, 1,, 3, 4, } INTEGERS {, 3,, 1, 0, 1,, } The Numer Line 5 4 3 1 0 1 3 4 5 Negtive integers Positive integers RATIONAL NUMBERS All

### Quadratic Equations. Math 99 N1 Chapter 8

Qudrtic Equtions Mth 99 N1 Chpter 8 1 Introduction A qudrtic eqution is n eqution where the unknown ppers rised to the second power t most. In other words, it looks for the vlues of x such tht second degree

### EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

### Regular Languages and Finite Automata

N Lecture Notes on Regulr Lnguges nd Finite Automt for Prt IA of the Computer Science Tripos Mrcelo Fiore Cmbridge University Computer Lbortory First Edition 1998. Revised 1999, 2000, 2001, 2002, 2003,

### Unambiguous Recognizable Two-dimensional Languages

Unmbiguous Recognizble Two-dimensionl Lnguges Mrcell Anselmo, Dor Gimmrresi, Mri Mdoni, Antonio Restivo (Univ. of Slerno, Univ. Rom Tor Vergt, Univ. of Ctni, Univ. of Plermo) W2DL, My 26 REC fmily I REC

### 1.2 The Integers and Rational Numbers

.2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl

### Math 135 Circles and Completing the Square Examples

Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

### Section 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables

The Clculus of Functions of Severl Vribles Section 2.3 Motion Along Curve Velocity ccelertion Consider prticle moving in spce so tht its position t time t is given by x(t. We think of x(t s moving long

### Uniform convergence and its consequences

Uniform convergence nd its consequences The following issue is centrl in mthemtics: On some domin D, we hve sequence of functions {f n }. This mens tht we relly hve n uncountble set of ordinry sequences,

### CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001

CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic

### Algorithms Chapter 4 Recurrences

Algorithms Chpter 4 Recurrences Outline The substitution method The recursion tree method The mster method Instructor: Ching Chi Lin 林清池助理教授 chingchilin@gmilcom Deprtment of Computer Science nd Engineering

### The Quadratic Formula and the Discriminant

9-9 The Qudrtic Formul nd the Discriminnt Objectives Solve qudrtic equtions by using the Qudrtic Formul. Determine the number of solutions of qudrtic eqution by using the discriminnt. Vocbulry discriminnt

### Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

### Solution to Problem Set 1

CSE 5: Introduction to the Theory o Computtion, Winter A. Hevi nd J. Mo Solution to Prolem Set Jnury, Solution to Prolem Set.4 ). L = {w w egin with nd end with }. q q q q, d). L = {w w h length t let

### The Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center

Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,

### CS 341 Homework 1 Basic Techniques

II. Homework CS 341 Homework 1 Bsic Techniques 1. Wht re these sets? Write them using rces, comms, numerls, (for infinite sets), nd only. () ({1, 3, 5} {3, 1}) {3, 5, 7} () {{3}, {3, 5}, {{5, 7}, {7, 9}}}

### Lines and Angles. 2. Straight line is a continuous set of points going on forever in both directions:

Lines nd Angles 1. Point shows position. A 2. Stright line is continuous set of points going on forever in oth directions: 3. Ry is line with one endpoint. The other goes on forever. G 4. Line segment

### Generalized Inverses: How to Invert a Non-Invertible Matrix

Generlized Inverses: How to Invert Non-Invertible Mtrix S. Swyer September 7, 2006 rev August 6, 2008. Introduction nd Definition. Let A be generl m n mtrix. Then nturl question is when we cn solve Ax

### Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

### Java CUP. Java CUP Specifications. User Code Additions You may define Java code to be included within the generated parser:

Jv CUP Jv CUP is prser-genertion tool, similr to Ycc. CUP uilds Jv prser for LALR(1) grmmrs from production rules nd ssocited Jv code frgments. When prticulr production is recognized, its ssocited code

### LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

### and thus, they are similar. If k = 3 then the Jordan form of both matrices is

Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

### Treatment Spring Late Summer Fall 0.10 5.56 3.85 0.61 6.97 3.01 1.91 3.01 2.13 2.99 5.33 2.50 1.06 3.53 6.10 Mean = 1.33 Mean = 4.88 Mean = 3.

The nlysis of vrince (ANOVA) Although the t-test is one of the most commonly used sttisticl hypothesis tests, it hs limittions. The mjor limittion is tht the t-test cn be used to compre the mens of only

### 9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

### Simple Electric Circuits

Simple Eletri Ciruits Gol: To uild nd oserve the opertion of simple eletri iruits nd to lern mesurement methods for eletri urrent nd voltge using mmeters nd voltmeters. L Preprtion Eletri hrges move through

### 6.2 Volumes of Revolution: The Disk Method

mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

### FORMAL LANGUAGES, AUTOMATA AND THEORY OF COMPUTATION EXERCISES ON REGULAR LANGUAGES

FORMAL LANGUAGES, AUTOMATA AND THEORY OF COMPUTATION EXERCISES ON REGULAR LANGUAGES Introduction This compendium contins exercises out regulr lnguges for the course Forml Lnguges, Automt nd Theory of Computtion

### A new algorithm for generating Pythagorean triples

A new lgorithm for generting Pythgoren triples RH Dye 1 nd RWD Nicklls 2 The Mthemticl Gzette (1998); 82 (Mrch, No. 493), p. 86 91 (JSTOR rchive) http://www.nicklls.org/dick/ppers/mths/pythgtriples1998.pdf

### 4.11 Inner Product Spaces

314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

### Rational Functions. Rational functions are the ratio of two polynomial functions. Qx bx b x bx b. x x x. ( x) ( ) ( ) ( ) and

Rtionl Functions Rtionl unctions re the rtio o two polynomil unctions. They cn be written in expnded orm s ( ( P x x + x + + x+ Qx bx b x bx b n n 1 n n 1 1 0 m m 1 m + m 1 + + m + 0 Exmples o rtionl unctions

### . At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

### On the Meaning of Regression Coefficients for Categorical and Continuous Variables: Model I and Model II; Effect Coding and Dummy Coding

Dt_nlysisclm On the Mening of Regression for tegoricl nd ontinuous Vribles: I nd II; Effect oding nd Dummy oding R Grdner Deprtment of Psychology This describes the simple cse where there is one ctegoricl

### 1 Numerical Solution to Quadratic Equations

cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll

### A Visual and Interactive Input abb Automata. Theory Course with JFLAP 4.0

Strt Puse Step Noninverted Tree A Visul nd Interctive Input Automt String ccepted! 5 nodes generted. Theory Course with JFLAP 4.0 q0 even 's, even 's q2 even 's, odd 's q1 odd 's, even 's q3 odd 's, odd

### Lecture 3 Basic Probability and Statistics

Lecture 3 Bsic Probbility nd Sttistics The im of this lecture is to provide n extremely speedy introduction to the probbility nd sttistics which will be needed for the rest of this lecture course. The

### Basic Analysis of Autarky and Free Trade Models

Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

### Calculus of variations with fractional derivatives and fractional integrals

Anis do CNMAC v.2 ISSN 1984-820X Clculus of vritions with frctionl derivtives nd frctionl integrls Ricrdo Almeid, Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 3810-193 Aveiro, Portugl

Alger Module A60 Qudrtic Equtions - 1 Copyright This puliction The Northern Alert Institute of Technology 00. All Rights Reserved. LAST REVISED Novemer, 008 Qudrtic Equtions - 1 Sttement of Prerequisite

### Babylonian Method of Computing the Square Root: Justifications Based on Fuzzy Techniques and on Computational Complexity

Bbylonin Method of Computing the Squre Root: Justifictions Bsed on Fuzzy Techniques nd on Computtionl Complexity Olg Koshelev Deprtment of Mthemtics Eduction University of Texs t El Pso 500 W. University

### Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

### Or more simply put, when adding or subtracting quantities, their uncertainties add.

Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

### Suffix Trees CMSC 423

Suffix Trees CMSC 423 Preprocessing Strings Over the next few lectures, we ll see severl methods for preprocessing string dt into dt structures tht mke mny questions (like serching) esy to nswer: Suffix

### Basics of Logic Design: Boolean Algebra, Logic Gates. Administrative

Bsics of Logic Design: Boolen Alger, Logic Gtes Computer Science 104 Administrtive Homework #3 Due Sundy Midterm I Mondy in clss, closed ook, closed notes Ø Will provide IA32 instruction set hndout Ø Lst

### Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

### Tests for One Poisson Mean

Chpter 412 Tests for One Poisson Men Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson distribution

### Lecture 3 Gaussian Probability Distribution

Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

### 11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π.

. Fourier series Summry of the bsic ides The following is quick summry of the introductory tretment of Fourier series in MATH. We consider function f with period π, tht is, stisfying f(x + π) = f(x) for

### 1. The leves re either lbeled with sentences in ;, or with sentences of the form All X re X. 2. The interior leves hve two children drwn bove them) if

Q520 Notes on Nturl Logic Lrry Moss We hve seen exmples of wht re trditionlly clled syllogisms lredy: All men re mortl. Socrtes is mn. Socrtes is mortl. The ide gin is tht the sentences bove the line should

### Lecture 15 - Curve Fitting Techniques

Lecture 15 - Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting - motivtion For root finding, we used given function to identify where it crossed zero where does fx

### Triangles, Altitudes, and Area Instructor: Natalya St. Clair

Tringle, nd ltitudes erkeley Mth ircles 015 Lecture Notes Tringles, ltitudes, nd re Instructor: Ntly St. lir *Note: This M session is inspired from vriety of sources, including wesomemth, reteem Mth Zoom,

### MATLAB: M-files; Numerical Integration Last revised : March, 2003

MATLAB: M-files; Numericl Integrtion Lst revised : Mrch, 00 Introduction to M-files In this tutoril we lern the bsics of working with M-files in MATLAB, so clled becuse they must use.m for their filenme

### not to be republished NCERT POLYNOMIALS CHAPTER 2 (A) Main Concepts and Results (B) Multiple Choice Questions

POLYNOMIALS (A) Min Concepts nd Results Geometricl mening of zeroes of polynomil: The zeroes of polynomil p(x) re precisely the x-coordintes of the points where the grph of y = p(x) intersects the x-xis.

### Section A-4 Rational Expressions: Basic Operations

A- Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr open-topped bo is to be constructed out of 9- by 6-inch sheets of thin crdbord by cutting -inch squres out of ech corner nd bending the

### Sirindhorn International Institute of Technology Thammasat University at Rangsit

Sirindhorn Interntionl Institute of Technology Thmmst University t Rngsit School of Informtion, Computer nd Communiction Technology COURSE : ECS 204 Bsic Electricl Engineering L INSTRUCTOR : Asst. Prof.

### Words Symbols Diagram. abcde. a + b + c + d + e

Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To

### Factoring Polynomials

Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

### MODULE 3. 0, y = 0 for all y

Topics: Inner products MOULE 3 The inner product of two vectors: The inner product of two vectors x, y V, denoted by x, y is (in generl) complex vlued function which hs the following four properties: i)

### Mathematics Higher Level

Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:

### A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

### SPECIAL PRODUCTS AND FACTORIZATION

MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

### Unit 6: Exponents and Radicals

Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

### 2 DIODE CLIPPING and CLAMPING CIRCUITS

2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of

### Searching All Seeds of Strings with Hamming Distance using Finite Automata

Proceedings of the Interntionl MultiConference of Engineers nd Computer Scientists 2009 Vol I IMECS 2009, Mrch 18-20, 2009, Hong Kong Serching All Seeds of Strings with Hmming Distnce using Finite Automt

### Lesson 10. Parametric Curves

Return to List of Lessons Lesson 10. Prmetric Curves (A) Prmetric Curves If curve fils the Verticl Line Test, it cn t be expressed by function. In this cse you will encounter problem if you try to find

### All pay auctions with certain and uncertain prizes a comment

CENTER FOR RESEARC IN ECONOMICS AND MANAGEMENT CREAM Publiction No. 1-2015 All py uctions with certin nd uncertin prizes comment Christin Riis All py uctions with certin nd uncertin prizes comment Christin

### Learning Outcomes. Computer Systems - Architecture Lecture 4 - Boolean Logic. What is Logic? Boolean Logic 10/28/2010

/28/2 Lerning Outcomes At the end of this lecture you should: Computer Systems - Architecture Lecture 4 - Boolen Logic Eddie Edwrds eedwrds@doc.ic.c.uk http://www.doc.ic.c.uk/~eedwrds/compsys (Hevily sed

### Bypassing Space Explosion in Regular Expression Matching for Network Intrusion Detection and Prevention Systems

Bypssing Spce Explosion in Regulr Expression Mtching for Network Intrusion Detection n Prevention Systems Jignesh Ptel, Alex Liu n Eric Torng Dept. of Computer Science n Engineering Michign Stte University

### Generating In-Line Monitors For Rabin Automata

Generting In-Line Monitors For Rin Automt Hugues Chot, Rphel Khoury, nd Ndi Twi Lvl University, Deprtment of Computer Science nd Softwre Engineering, Pvillon Adrien-Pouliot, 1065, venue de l Medecine Queec

### Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by