The Binomial Multi- Section Transformer

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The Binomial Multi- Section Transformer"

Transcription

1 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 1/17 The Bioial Multi- Sectio Trasforer Recall that a ulti-sectio atchig etwork ca be described usig the theory of sall reflectios as: where: Γ ( ω ) = Γ +Γ e +Γ e + +Γ e i = j 2ωT j 4ωT j2ωt 1 2 = Γ e j2ωt T = v p propagatio tie through 1 sectio ote that for a ulti-sectio trasforer, we have degrees of desig freedo, correspodig to the characteristic ipedace values Z. Q: What should the values of Γ (i.e., Z ) be? A: We eed to defie idepedet desig equatios, which we ca the use to solve for the values of characteristic ipedace Z. First, we start with a sigle desig frequecy ω, where we wish to achieve a perfect atch: Ji Stiles The Uiv. of Kasas Dept. of EECS

2 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 2/17 Γ i ( ω = ω ) = That s just oe desig equatio: we eed -1 ore! These additio equatios ca be selected usig ay Γ criteria oe such criterio is to ake the fuctio ( ω) axially flat at the poit ω = ω. i To accoplish this, we first cosider the Bioial Fuctio: j 2θ ( θ ) A( 1 e ) Γ = + This fuctio has the desirable properties that: ad that: jπ ( θ π 2) A( 1 e ) Γ = = + = ( 1 1) = A d Γ ( θ ) d θ θ = π 2 = for = 123,,,, 1 I other words, this Bioial Fuctio is axially flat at the poit θ π 2 Γ θ = π 2 =. =, where it has a value of ( ) Q: So? What does this have to do with our ulti-sectio atchig etwork? Ji Stiles The Uiv. of Kasas Dept. of EECS

3 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 3/17 A: Let s expad (ultiply out the idetical product ters) of the Bioial Fuctio: j 2θ ( θ ) A( 1 e ) j2θ j 4θ j6θ j2θ = A( C + C1 e + C2 e + C3 e + + C e ) Γ = + where: C!!! ( ) Copare this to a -sectio trasforer fuctio: Γ ( ω) = Γ +Γ e +Γ e + +Γ e i j 2ωT j 4ωT j2ωt 1 2 ad it is obvious the two fuctios have idetical fors, provided that: Γ = AC ad ωt = θ Moreover, we fid that this fuctio is very desirable fro the stadpoit of the a atchig etwork. Recall that Γ θ = at θ = π 2--a perfect atch! ( ) Additioally, the fuctio is axially flat at θ = π 2, therefore Γ( θ ) over a wide rage aroud θ = π 2--a wide badwidth! Ji Stiles The Uiv. of Kasas Dept. of EECS

4 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 4/17 Q: But how does θ = π 2 relate to frequecy ω? A: Reeber that ωt = θ, so the value θ = π 2 correspods to the frequecy: v p 1 π π ω = = T 2 2 This frequecy ( ω ) is therefore our desig frequecy the frequecy where we have a perfect atch. ote that the legth has a iterestig relatioship with this frequecy: v p π 1 π λ π λ = = = = ω 2 β 2 2π 2 4 I other words, a Bioial Multi-sectio atchig etwork will have a perfect atch at the frequecy where the sectio legths are a quarter wavelegth! Thus, we have our first desig rule: Set sectio legths so that they are a quarterwavelegth ( λ 4 ) at the desig frequecy ω. Q: I see! Ad the we select all the values Z such that Γ = AC. But wait! What is the value of A?? Ji Stiles The Uiv. of Kasas Dept. of EECS

5 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 5/17 A: We ca deterie this value by evaluatig a boudary coditio! Specifically, we ca easily deterie the value of Γ ( ω) at ω =. Z Z i Z 1 Z 2 Z R L ote as ω approaches zero, the electrical legth β of each sectio will likewise approach zero. Thus, the iput ipedace Z i will siply be equal to R L as ω. As a result, the iput reflectio coefficiet ( ω ) be: L ( ω ) ( ω ) Zi = Z Γ ( ω = ) = Zi = + Z RL Z = R + Z However, we likewise kow that: ( ) Γ = A 1+ = A 2 j 2 ( ) ( e ) ( 1 1) = A + Γ = ust Ji Stiles The Uiv. of Kasas Dept. of EECS

6 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 6/17 Equatig the two expressios: Ad therefore: R Z Γ ( ) = A 2 = L RL + Z A = 2 L RL R Z + Z (A ca be egative!) We ow have a for to calculate the required argial reflectio coefficiets Γ : Γ = AC = A! ( )!! Of course, we also kow that these argial reflectio coefficiets are physically related to the characteristic ipedaces of each sectio as: Γ = Z Z Z + Z Equatig the two ad solvig, we fid that that the sectio characteristic ipedaces ust satisfy: 1+Γ 1+ AC Z Z Z = = Γ 1 AC Ji Stiles The Uiv. of Kasas Dept. of EECS

7 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 7/17 ote this is a iterative result we deterie Z 1 fro Z, Z 2 fro Z 1, ad so forth. Q: This result appears to be our secod desig equatio. Is there soe reaso why you did t draw a big blue box aroud it? A: Alas, there is a big proble with this result. ote that there are +1 coefficiets,1,, ) i the Bioial series, yet there are oly desig degrees of freedo (i.e., there are oly trasissio lie sectios!). Γ (i.e., { } Thus, our desig is a bit over costraied, a result that aifests itself the fially argial reflectio coefficiet Γ. ote fro the iterative solutio above, the last trasissio lie ipedace Z is selected to satisfy the atheatical requireet of the peultiate reflectio coefficiet Γ : 1 Z Z Γ = = AC Z + Z 1 Thus the last ipedace ust be: Z 1 + AC 1 = Z 1 1 AC 1 Ji Stiles The Uiv. of Kasas Dept. of EECS

8 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 8/17 But there is oe ore atheatical requireet! The last argial reflectio coefficiet ust likewise satisfy: Γ = AC = 2 L RL R Z + Z where we have used the fact that C = 1. But, we just selected Z to satisfy the requireet for Γ, we have o physical desig paraeter to satisfy this 1 last atheatical requireet! As a result, we fid to our great costeratio that the last requireet is ot satisfied: R Z Γ = L R + Z AC L!!!!!! Q: Yikes! Does this ea that the resultig atchig etwork will ot have the desired Bioial frequecy respose? A: That s exactly what it eas! Q: You big Why did you waste all y tie by discussig a over-costraied desig proble that ca t be built? A: Relax; there is a solutio to our dilea albeit a approxiate oe. Ji Stiles The Uiv. of Kasas Dept. of EECS

9 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 9/17 You udoubtedly have previously used the approxiatio: y x 1 y l y + x 2 x A approxiatio that is especially accurate whe y x is y sall (i.e., whe 1 x ) y l 2 x y x y + x y x ow, we kow that the values of Z + 1 ad Z i a ulti-sectio atchig etwork are typically very close, such that Z Z is sall. Thus, we use the approxiatio: + 1 Z Z 1 Z Γ = l Z Z 2 Z + 1 Ji Stiles The Uiv. of Kasas Dept. of EECS

10 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 1/17 Likewise, we ca also apply this approxiatio (although ot as accurately) to the value of A : A R Z L ( 1) R L = l R + Z Z L So, let s start over, oly this tie we ll use these approxiatios. First, deterie A : ( 1) 2 + R L A l Z (A ca be egative!) ow use this result to calculate the atheatically required argial reflectio coefficiets Γ : Γ = AC = A! ( )!! Of course, we also kow that these argial reflectio coefficiets are physically related to the characteristic ipedaces of each sectio as: 1 Z l + 1 Γ 2 Z Ji Stiles The Uiv. of Kasas Dept. of EECS

11 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 11/17 Equatig the two ad solvig, we fid that that the sectio characteristic ipedaces ust satisfy: Z = Z exp Γ ow this is our secod desig rule. ote it is a iterative rule we deterie Z 1 fro Z, Z 2 fro Z 1, ad so forth. Q: Huh? How is this ay better? How does applyig approxiate ath lead to a better desig result?? A: Applyig these approxiatios help resolve our overcostraied proble. Recall that the over-costrait resulted i: R Z L Γ = R + Z AC L But, as it turs out, these approxiatios leads to the happy situatio where: 1 R L Γ l A C = 2 Z Saity check!! provided that the value A is likewise the approxiatio give above. Ji Stiles The Uiv. of Kasas Dept. of EECS

12 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 12/17 Effectively, these approxiatios couple the results, such that each value of characteristic ipedace Z approxiately satisfies both Γ ad Γ + 1. Suarizig: * If you use the exact desig equatios to deterie the characteristic ipedaces Z, the last value Γ will exhibit a sigificat ueric error, ad your desig will ot appear to be axially flat. * If you istead use the approxiate desig equatios to deterie the characteristic ipedaces Z, all values Γ will exhibit a slight error, but the resultig desig will appear to be axially flat, Bioial reflectio coefficiet fuctio Γ ω! ( ) Figure 5.15 (p. 25) Reflectio coefficiet agitude versus frequecy for ultisectio bioial atchig trasforers of Exaple 5.6 Z L = 5Ω ad Z = 1Ω. Ji Stiles The Uiv. of Kasas Dept. of EECS

13 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 13/17 ote that as we icrease the uber of sectios, the atchig badwidth icreases. Q: Ca we deterie the value of this badwidth? A: Sure! But we first ust defie what we ea by badwidth. As we ove fro the desig (perfect atch) frequecy f the value Γ ( f ) will icrease. At soe frequecy (f, say) the agitude of the reflectio coefficiet will icrease to soe uacceptably high value ( Γ, say). At that poit, we o loger cosider the device to be atched. Γ ( f ) Γ Δ f f f 1 f f 2 ote there are two values of frequecy f oe value less tha desig frequecy f, ad oe value greater tha desig frequecy f. These two values defie the badwidth Δ f of the atchig etwork: ( ) ( ) Δ f = f f = 2 f f = 2 f f Ji Stiles The Uiv. of Kasas Dept. of EECS

14 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 14/17 Q: So what is the uerical value of Γ? A: I do t kow it s up to you to decide! Every egieer ust deterie what they cosider to be a acceptable atch (i.e., decide Γ ). This decisio depeds o the applicatio ivolved, ad the specificatios of the overall icrowave syste beig desiged. However, we typically set Γ to be.2 or less. Q: OK, after we have selected Γ, ca we deterie the two frequecies f? A: Sure! We just have to do a little algebra. We start by rewritig the Bioial fuctio: j 2θ ( θ ) A( 1 e ) j θ + jθ jθ = Ae ( e + e ) j θ + jθ jθ = Ae ( e + e ) Γ = + = Ae j θ ( 2cos θ ) ow, we take the agitude of this fuctio: ( θ ) 2 Γ = = 2 Ae jθ Acosθ cosθ Ji Stiles The Uiv. of Kasas Dept. of EECS

15 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 15/17 ow, we defie the values θ where Γ ( θ ) = 2 ( θ θ ) Γ = Γ = Acosθ =Γ as θ. I.E., : We ca ow solve for θ (i radias!) i ters of Γ : θ Γ = cos 2 A θ Γ = cos 2 A ote that there are two solutios to the above equatio (oe less that π 2 ad oe greater tha π 2)! ow, we ca covert the values of θ ito specific frequecies. Recall thatωt = θ, therefore: v ω = θ = θ T 1 p But recall also that = λ 4, where λ is the wavelegth at the desig frequecy f (ot f!), ad where λ = vp f. Thus we ca coclude: v 4v ω θ θ θ ( 4f ) p p = = = λ Ji Stiles The Uiv. of Kasas Dept. of EECS

16 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 16/17 or: ( 4 ) θ ( 2 ) 1 v f f θ f = = = 2π 2π π p θ where θ is expressed i radias. Therefore: f 1 1 2f 1 1 Γ = cos + π 2 A f 2 1 2f 1 1 Γ = cos π 2 A Thus, the badwidth of the bioial atchig etwork ca be deteried as: ( ) Δ f = 2 f f 1 1 4f 1 1 Γ = 2f cos + π 2 A ote that this equatio ca be used to deterie the badwidth of a bioial atchig etwork, give Γ ad uber of sectios. However, it ca likewise be used to deterie the uber of sectios required to eet a specific badwidth requireet! Ji Stiles The Uiv. of Kasas Dept. of EECS

17 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 17/17 Fially, we ca list the desig steps for a bioial atchig etwork: 1. Deterie the value required to eet the badwidth ( Δ f ad Γ ) requireets. 2. Deterie the approxiate value A fro Z, R L ad. 3. Deterie the argial reflectio coefficiets Γ = AC required by the bioial fuctio. 4. Deterie the characteristic ipedace of each sectio usig the iterative approxiatio: Z = Z exp Γ 5. Perfor the saity check: 1 R L Γ l 2 Z = A C 6. Deterie sectio legth = λ 4 for desig frequecy f. Ji Stiles The Uiv. of Kasas Dept. of EECS

5.7 Chebyshev Multi-section Matching Transformer

5.7 Chebyshev Multi-section Matching Transformer /9/ 5_7 Chebyshev Multisection Matching Transforers / 5.7 Chebyshev Multi-section Matching Transforer Reading Assignent: pp. 5-55 We can also build a ultisection atching network such that Γ f is a Chebyshev

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

Multiplexers and Demultiplexers

Multiplexers and Demultiplexers I this lesso, you will lear about: Multiplexers ad Demultiplexers 1. Multiplexers 2. Combiatioal circuit implemetatio with multiplexers 3. Demultiplexers 4. Some examples Multiplexer A Multiplexer (see

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Section 8.3 : De Moivre s Theorem and Applications

Section 8.3 : De Moivre s Theorem and Applications The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Heat (or Diffusion) equation in 1D*

Heat (or Diffusion) equation in 1D* Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire

More information

Partial Di erential Equations

Partial Di erential Equations Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

CHAPTER 4: NET PRESENT VALUE

CHAPTER 4: NET PRESENT VALUE EMBA 807 Corporate Fiace Dr. Rodey Boehe CHAPTER 4: NET PRESENT VALUE (Assiged probles are, 2, 7, 8,, 6, 23, 25, 28, 29, 3, 33, 36, 4, 42, 46, 50, ad 52) The title of this chapter ay be Net Preset Value,

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

More information

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring No-life isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Domain 1: Designing a SQL Server Instance and a Database Solution

Domain 1: Designing a SQL Server Instance and a Database Solution Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a

More information

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics

More information

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the

More information

Convention Paper 6764

Convention Paper 6764 Audio Egieerig Society Covetio Paper 6764 Preseted at the 10th Covetio 006 May 0 3 Paris, Frace This covetio paper has bee reproduced from the author's advace mauscript, without editig, correctios, or

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

AP Calculus BC 2003 Scoring Guidelines Form B

AP Calculus BC 2003 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

Math 113 HW #11 Solutions

Math 113 HW #11 Solutions Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

More information

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

More information

MARTINGALES AND A BASIC APPLICATION

MARTINGALES AND A BASIC APPLICATION MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

ECONOMICS. Calculating loan interest no. 3.758

ECONOMICS. Calculating loan interest no. 3.758 F A M & A N H S E E S EONOMS alculatig loa iterest o. 3.758 y Nora L. Dalsted ad Paul H. Gutierrez Quick Facts... The aual percetage rate provides a coo basis to copare iterest charges associated with

More information

Numerical Analysis for Characterization of a Salty Water Meter

Numerical Analysis for Characterization of a Salty Water Meter Nuerical Aalysis for Characterizatio of a Salty Water Meter José Erique Salias Carrillo Departaeto de Ciecias Básicas Istituto Tecológico de Tehuacá Bolio Arago Perdoo Departaeto de Mecatróica Istituto

More information

7.1 Finding Rational Solutions of Polynomial Equations

7.1 Finding Rational Solutions of Polynomial Equations 4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions

Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isk-etu tadeoff ad time value of

More information

Time Value of Money, NPV and IRR equation solving with the TI-86

Time Value of Money, NPV and IRR equation solving with the TI-86 Time Value of Moey NPV ad IRR Equatio Solvig with the TI-86 (may work with TI-85) (similar process works with TI-83, TI-83 Plus ad may work with TI-82) Time Value of Moey, NPV ad IRR equatio solvig with

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51 Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

What Is Required? You need to find the final temperature of an iron ring heated by burning alcohol. 4.95 g

What Is Required? You need to find the final temperature of an iron ring heated by burning alcohol. 4.95 g Calculatig Theral Eergy i a Bob Calorieter (Studet textbook page 309) 31. Predict the fial teperature of a 5.00 10 2 g iro rig that is iitially at 25.0 C ad is heated by cobustig 4.95 g of ethaol, C 2

More information

A Mathematical Perspective on Gambling

A Mathematical Perspective on Gambling A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,

NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff, NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

A zero one programming model for RNA structures with arc length 4

A zero one programming model for RNA structures with arc length 4 Iraia Joural of Matheatical Cheistry, Vol. 3, No.2, Septeber 22, pp. 85 93 IJMC A zero oe prograig odel for RNA structures with arc legth 4 G. H. SHIRDEL AND N. KAHKESHANI Departet of Matheatics, Faculty

More information

Distributed Storage Allocations for Optimal Delay

Distributed Storage Allocations for Optimal Delay Distributed Storage Allocatios for Optial Delay Derek Leog Departet of Electrical Egieerig Califoria Istitute of echology Pasadea, Califoria 925, USA derekleog@caltechedu Alexadros G Diakis Departet of

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

The Stable Marriage Problem

The Stable Marriage Problem The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Transient Vibration of the single degree of freedom systems.

Transient Vibration of the single degree of freedom systems. Trasiet Vibratio of the sigle degree of freedo systes. 1. -INTRODUCTION. Trasiet vibratio is defied as a teporarily sustaied vibratio of a echaical syste. It ay cosist of forced or free vibratios, or both

More information

Controller Area Network (CAN) Schedulability Analysis with FIFO queues

Controller Area Network (CAN) Schedulability Analysis with FIFO queues Cotroller Area Network (CAN) Schedulability Aalysis with FIFO queues Robert I. Davis Real-Tie Systes Research Group, Departet of Coputer Sciece, Uiversity of York, YO10 5DD, York, UK rob.davis@cs.york.ac.uk

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

Fast Fourier Transform

Fast Fourier Transform 18.310 lecture otes November 18, 2013 Fast Fourier Trasform Lecturer: Michel Goemas I these otes we defie the Discrete Fourier Trasform, ad give a method for computig it fast: the Fast Fourier Trasform.

More information

Controller Area Network (CAN) Schedulability Analysis: Refuted, Revisited and Revised

Controller Area Network (CAN) Schedulability Analysis: Refuted, Revisited and Revised Cotroller Area Networ (CAN) Schedulability Aalysis: Refuted, Revisited ad Revised Robert. Davis ad Ala Burs Real-ie Systes Research Group, Departet of Coputer Sciece, Uiversity of Yor, YO1 5DD, Yor (UK)

More information

Characterizing End-to-End Packet Delay and Loss in the Internet

Characterizing End-to-End Packet Delay and Loss in the Internet Characterizig Ed-to-Ed Packet Delay ad Loss i the Iteret Jea-Chrysostome Bolot Xiyu Sog Preseted by Swaroop Sigh Layout Itroductio Data Collectio Data Aalysis Strategy Aalysis of packet delay Aalysis of

More information

Notes on exponential generating functions and structures.

Notes on exponential generating functions and structures. Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the

More information

A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design

A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 haupt@ieee.org Abstract:

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

An Electronic Tool for Measuring Learning and Teaching Performance of an Engineering Class

An Electronic Tool for Measuring Learning and Teaching Performance of an Engineering Class A Electroic Tool for Measurig Learig ad Teachig Perforace of a Egieerig Class T.H. Nguye, Ph.D., P.E. Abstract Creatig a egieerig course to eet the predefied learig objectives requires a appropriate ad

More information

Overview on S-Box Design Principles

Overview on S-Box Design Principles Overview o S-Box Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA -721302 What is a S-Box? S-Boxes are Boolea

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4 GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

More information

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts

More information

INTEGRATED TRANSFORMER FLEET MANAGEMENT (ITFM) SYSTEM

INTEGRATED TRANSFORMER FLEET MANAGEMENT (ITFM) SYSTEM INTEGRATED TRANSFORMER FLEET MANAGEMENT (ITFM SYSTEM Audrius ILGEVICIUS Maschiefabrik Reihause GbH, a.ilgevicius@reihause.co Alexei BABIZKI Maschiefabrik Reihause GbH a.babizki@reihause.co ABSTRACT The

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Review: Classification Outline

Review: Classification Outline Data Miig CS 341, Sprig 2007 Decisio Trees Neural etworks Review: Lecture 6: Classificatio issues, regressio, bayesia classificatio Pretice Hall 2 Data Miig Core Techiques Classificatio Clusterig Associatio

More information