The Binomial Multi- Section Transformer
|
|
|
- Charity Cain
- 9 years ago
- Views:
Transcription
1 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 1/17 The Bioial Multi- Sectio Trasforer Recall that a ulti-sectio atchig etwork ca be described usig the theory of sall reflectios as: where: Γ ( ω ) = Γ +Γ e +Γ e + +Γ e i = j 2ωT j 4ωT j2ωt 1 2 = Γ e j2ωt T = v p propagatio tie through 1 sectio ote that for a ulti-sectio trasforer, we have degrees of desig freedo, correspodig to the characteristic ipedace values Z. Q: What should the values of Γ (i.e., Z ) be? A: We eed to defie idepedet desig equatios, which we ca the use to solve for the values of characteristic ipedace Z. First, we start with a sigle desig frequecy ω, where we wish to achieve a perfect atch: Ji Stiles The Uiv. of Kasas Dept. of EECS
2 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 2/17 Γ i ( ω = ω ) = That s just oe desig equatio: we eed -1 ore! These additio equatios ca be selected usig ay Γ criteria oe such criterio is to ake the fuctio ( ω) axially flat at the poit ω = ω. i To accoplish this, we first cosider the Bioial Fuctio: j 2θ ( θ ) A( 1 e ) Γ = + This fuctio has the desirable properties that: ad that: jπ ( θ π 2) A( 1 e ) Γ = = + = ( 1 1) = A d Γ ( θ ) d θ θ = π 2 = for = 123,,,, 1 I other words, this Bioial Fuctio is axially flat at the poit θ π 2 Γ θ = π 2 =. =, where it has a value of ( ) Q: So? What does this have to do with our ulti-sectio atchig etwork? Ji Stiles The Uiv. of Kasas Dept. of EECS
3 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 3/17 A: Let s expad (ultiply out the idetical product ters) of the Bioial Fuctio: j 2θ ( θ ) A( 1 e ) j2θ j 4θ j6θ j2θ = A( C + C1 e + C2 e + C3 e + + C e ) Γ = + where: C!!! ( ) Copare this to a -sectio trasforer fuctio: Γ ( ω) = Γ +Γ e +Γ e + +Γ e i j 2ωT j 4ωT j2ωt 1 2 ad it is obvious the two fuctios have idetical fors, provided that: Γ = AC ad ωt = θ Moreover, we fid that this fuctio is very desirable fro the stadpoit of the a atchig etwork. Recall that Γ θ = at θ = π 2--a perfect atch! ( ) Additioally, the fuctio is axially flat at θ = π 2, therefore Γ( θ ) over a wide rage aroud θ = π 2--a wide badwidth! Ji Stiles The Uiv. of Kasas Dept. of EECS
4 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 4/17 Q: But how does θ = π 2 relate to frequecy ω? A: Reeber that ωt = θ, so the value θ = π 2 correspods to the frequecy: v p 1 π π ω = = T 2 2 This frequecy ( ω ) is therefore our desig frequecy the frequecy where we have a perfect atch. ote that the legth has a iterestig relatioship with this frequecy: v p π 1 π λ π λ = = = = ω 2 β 2 2π 2 4 I other words, a Bioial Multi-sectio atchig etwork will have a perfect atch at the frequecy where the sectio legths are a quarter wavelegth! Thus, we have our first desig rule: Set sectio legths so that they are a quarterwavelegth ( λ 4 ) at the desig frequecy ω. Q: I see! Ad the we select all the values Z such that Γ = AC. But wait! What is the value of A?? Ji Stiles The Uiv. of Kasas Dept. of EECS
5 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 5/17 A: We ca deterie this value by evaluatig a boudary coditio! Specifically, we ca easily deterie the value of Γ ( ω) at ω =. Z Z i Z 1 Z 2 Z R L ote as ω approaches zero, the electrical legth β of each sectio will likewise approach zero. Thus, the iput ipedace Z i will siply be equal to R L as ω. As a result, the iput reflectio coefficiet ( ω ) be: L ( ω ) ( ω ) Zi = Z Γ ( ω = ) = Zi = + Z RL Z = R + Z However, we likewise kow that: ( ) Γ = A 1+ = A 2 j 2 ( ) ( e ) ( 1 1) = A + Γ = ust Ji Stiles The Uiv. of Kasas Dept. of EECS
6 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 6/17 Equatig the two expressios: Ad therefore: R Z Γ ( ) = A 2 = L RL + Z A = 2 L RL R Z + Z (A ca be egative!) We ow have a for to calculate the required argial reflectio coefficiets Γ : Γ = AC = A! ( )!! Of course, we also kow that these argial reflectio coefficiets are physically related to the characteristic ipedaces of each sectio as: Γ = Z Z Z + Z Equatig the two ad solvig, we fid that that the sectio characteristic ipedaces ust satisfy: 1+Γ 1+ AC Z Z Z = = Γ 1 AC Ji Stiles The Uiv. of Kasas Dept. of EECS
7 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 7/17 ote this is a iterative result we deterie Z 1 fro Z, Z 2 fro Z 1, ad so forth. Q: This result appears to be our secod desig equatio. Is there soe reaso why you did t draw a big blue box aroud it? A: Alas, there is a big proble with this result. ote that there are +1 coefficiets,1,, ) i the Bioial series, yet there are oly desig degrees of freedo (i.e., there are oly trasissio lie sectios!). Γ (i.e., { } Thus, our desig is a bit over costraied, a result that aifests itself the fially argial reflectio coefficiet Γ. ote fro the iterative solutio above, the last trasissio lie ipedace Z is selected to satisfy the atheatical requireet of the peultiate reflectio coefficiet Γ : 1 Z Z Γ = = AC Z + Z 1 Thus the last ipedace ust be: Z 1 + AC 1 = Z 1 1 AC 1 Ji Stiles The Uiv. of Kasas Dept. of EECS
8 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 8/17 But there is oe ore atheatical requireet! The last argial reflectio coefficiet ust likewise satisfy: Γ = AC = 2 L RL R Z + Z where we have used the fact that C = 1. But, we just selected Z to satisfy the requireet for Γ, we have o physical desig paraeter to satisfy this 1 last atheatical requireet! As a result, we fid to our great costeratio that the last requireet is ot satisfied: R Z Γ = L R + Z AC L!!!!!! Q: Yikes! Does this ea that the resultig atchig etwork will ot have the desired Bioial frequecy respose? A: That s exactly what it eas! Q: You big #%@#$%&!!!! Why did you waste all y tie by discussig a over-costraied desig proble that ca t be built? A: Relax; there is a solutio to our dilea albeit a approxiate oe. Ji Stiles The Uiv. of Kasas Dept. of EECS
9 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 9/17 You udoubtedly have previously used the approxiatio: y x 1 y l y + x 2 x A approxiatio that is especially accurate whe y x is y sall (i.e., whe 1 x ) y l 2 x y x y + x y x ow, we kow that the values of Z + 1 ad Z i a ulti-sectio atchig etwork are typically very close, such that Z Z is sall. Thus, we use the approxiatio: + 1 Z Z 1 Z Γ = l Z Z 2 Z + 1 Ji Stiles The Uiv. of Kasas Dept. of EECS
10 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 1/17 Likewise, we ca also apply this approxiatio (although ot as accurately) to the value of A : A R Z L ( 1) R L = l R + Z Z L So, let s start over, oly this tie we ll use these approxiatios. First, deterie A : ( 1) 2 + R L A l Z (A ca be egative!) ow use this result to calculate the atheatically required argial reflectio coefficiets Γ : Γ = AC = A! ( )!! Of course, we also kow that these argial reflectio coefficiets are physically related to the characteristic ipedaces of each sectio as: 1 Z l + 1 Γ 2 Z Ji Stiles The Uiv. of Kasas Dept. of EECS
11 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 11/17 Equatig the two ad solvig, we fid that that the sectio characteristic ipedaces ust satisfy: Z = Z exp Γ ow this is our secod desig rule. ote it is a iterative rule we deterie Z 1 fro Z, Z 2 fro Z 1, ad so forth. Q: Huh? How is this ay better? How does applyig approxiate ath lead to a better desig result?? A: Applyig these approxiatios help resolve our overcostraied proble. Recall that the over-costrait resulted i: R Z L Γ = R + Z AC L But, as it turs out, these approxiatios leads to the happy situatio where: 1 R L Γ l A C = 2 Z Saity check!! provided that the value A is likewise the approxiatio give above. Ji Stiles The Uiv. of Kasas Dept. of EECS
12 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 12/17 Effectively, these approxiatios couple the results, such that each value of characteristic ipedace Z approxiately satisfies both Γ ad Γ + 1. Suarizig: * If you use the exact desig equatios to deterie the characteristic ipedaces Z, the last value Γ will exhibit a sigificat ueric error, ad your desig will ot appear to be axially flat. * If you istead use the approxiate desig equatios to deterie the characteristic ipedaces Z, all values Γ will exhibit a slight error, but the resultig desig will appear to be axially flat, Bioial reflectio coefficiet fuctio Γ ω! ( ) Figure 5.15 (p. 25) Reflectio coefficiet agitude versus frequecy for ultisectio bioial atchig trasforers of Exaple 5.6 Z L = 5Ω ad Z = 1Ω. Ji Stiles The Uiv. of Kasas Dept. of EECS
13 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 13/17 ote that as we icrease the uber of sectios, the atchig badwidth icreases. Q: Ca we deterie the value of this badwidth? A: Sure! But we first ust defie what we ea by badwidth. As we ove fro the desig (perfect atch) frequecy f the value Γ ( f ) will icrease. At soe frequecy (f, say) the agitude of the reflectio coefficiet will icrease to soe uacceptably high value ( Γ, say). At that poit, we o loger cosider the device to be atched. Γ ( f ) Γ Δ f f f 1 f f 2 ote there are two values of frequecy f oe value less tha desig frequecy f, ad oe value greater tha desig frequecy f. These two values defie the badwidth Δ f of the atchig etwork: ( ) ( ) Δ f = f f = 2 f f = 2 f f Ji Stiles The Uiv. of Kasas Dept. of EECS
14 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 14/17 Q: So what is the uerical value of Γ? A: I do t kow it s up to you to decide! Every egieer ust deterie what they cosider to be a acceptable atch (i.e., decide Γ ). This decisio depeds o the applicatio ivolved, ad the specificatios of the overall icrowave syste beig desiged. However, we typically set Γ to be.2 or less. Q: OK, after we have selected Γ, ca we deterie the two frequecies f? A: Sure! We just have to do a little algebra. We start by rewritig the Bioial fuctio: j 2θ ( θ ) A( 1 e ) j θ + jθ jθ = Ae ( e + e ) j θ + jθ jθ = Ae ( e + e ) Γ = + = Ae j θ ( 2cos θ ) ow, we take the agitude of this fuctio: ( θ ) 2 Γ = = 2 Ae jθ Acosθ cosθ Ji Stiles The Uiv. of Kasas Dept. of EECS
15 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 15/17 ow, we defie the values θ where Γ ( θ ) = 2 ( θ θ ) Γ = Γ = Acosθ =Γ as θ. I.E., : We ca ow solve for θ (i radias!) i ters of Γ : θ Γ = cos 2 A θ Γ = cos 2 A ote that there are two solutios to the above equatio (oe less that π 2 ad oe greater tha π 2)! ow, we ca covert the values of θ ito specific frequecies. Recall thatωt = θ, therefore: v ω = θ = θ T 1 p But recall also that = λ 4, where λ is the wavelegth at the desig frequecy f (ot f!), ad where λ = vp f. Thus we ca coclude: v 4v ω θ θ θ ( 4f ) p p = = = λ Ji Stiles The Uiv. of Kasas Dept. of EECS
16 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 16/17 or: ( 4 ) θ ( 2 ) 1 v f f θ f = = = 2π 2π π p θ where θ is expressed i radias. Therefore: f 1 1 2f 1 1 Γ = cos + π 2 A f 2 1 2f 1 1 Γ = cos π 2 A Thus, the badwidth of the bioial atchig etwork ca be deteried as: ( ) Δ f = 2 f f 1 1 4f 1 1 Γ = 2f cos + π 2 A ote that this equatio ca be used to deterie the badwidth of a bioial atchig etwork, give Γ ad uber of sectios. However, it ca likewise be used to deterie the uber of sectios required to eet a specific badwidth requireet! Ji Stiles The Uiv. of Kasas Dept. of EECS
17 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 17/17 Fially, we ca list the desig steps for a bioial atchig etwork: 1. Deterie the value required to eet the badwidth ( Δ f ad Γ ) requireets. 2. Deterie the approxiate value A fro Z, R L ad. 3. Deterie the argial reflectio coefficiets Γ = AC required by the bioial fuctio. 4. Deterie the characteristic ipedace of each sectio usig the iterative approxiatio: Z = Z exp Γ 5. Perfor the saity check: 1 R L Γ l 2 Z = A C 6. Deterie sectio legth = λ 4 for desig frequecy f. Ji Stiles The Uiv. of Kasas Dept. of EECS
5.7 Chebyshev Multi-section Matching Transformer
/9/ 5_7 Chebyshev Multisection Matching Transforers / 5.7 Chebyshev Multi-section Matching Transforer Reading Assignent: pp. 5-55 We can also build a ultisection atching network such that Γ f is a Chebyshev
Soving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:
Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network
Multiplexers and Demultiplexers
I this lesso, you will lear about: Multiplexers ad Demultiplexers 1. Multiplexers 2. Combiatioal circuit implemetatio with multiplexers 3. Demultiplexers 4. Some examples Multiplexer A Multiplexer (see
Properties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
Section 8.3 : De Moivre s Theorem and Applications
The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =
0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley
Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these
Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
Heat (or Diffusion) equation in 1D*
Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire
Partial Di erential Equations
Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio
A probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
Chapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
CHAPTER 4: NET PRESENT VALUE
EMBA 807 Corporate Fiace Dr. Rodey Boehe CHAPTER 4: NET PRESENT VALUE (Assiged probles are, 2, 7, 8,, 6, 23, 25, 28, 29, 3, 33, 36, 4, 42, 46, 50, ad 52) The title of this chapter ay be Net Preset Value,
Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
CHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling
Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria
Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
I. Chi-squared Distributions
1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.
CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8
CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive
Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring
No-life isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy
Hypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics
University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.
Sequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
Infinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
Domain 1: Designing a SQL Server Instance and a Database Solution
Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a
hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation
HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics
Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork
Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the
Convention Paper 6764
Audio Egieerig Society Covetio Paper 6764 Preseted at the 10th Covetio 006 May 0 3 Paris, Frace This covetio paper has bee reproduced from the author's advace mauscript, without editig, correctios, or
1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
Department of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
Convexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction
THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
Lesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig
AP Calculus BC 2003 Scoring Guidelines Form B
AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet
CHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
Math 113 HW #11 Solutions
Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate
Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value
Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig
MARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
Numerical Analysis for Characterization of a Salty Water Meter
Nuerical Aalysis for Characterizatio of a Salty Water Meter José Erique Salias Carrillo Departaeto de Ciecias Básicas Istituto Tecológico de Tehuacá Bolio Arago Perdoo Departaeto de Mecatróica Istituto
7.1 Finding Rational Solutions of Polynomial Equations
4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?
Incremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich [email protected] [email protected] Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
Lecture 4: Cheeger s Inequality
Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular
Understanding Financial Management: A Practical Guide Guideline Answers to the Concept Check Questions
Udestadig Fiacial Maagemet: A Pactical Guide Guidelie Aswes to the Cocept Check Questios Chapte 4 The Time Value of Moey Cocept Check 4.. What is the meaig of the tems isk-etu tadeoff ad time value of
Time Value of Money, NPV and IRR equation solving with the TI-86
Time Value of Moey NPV ad IRR Equatio Solvig with the TI-86 (may work with TI-85) (similar process works with TI-83, TI-83 Plus ad may work with TI-82) Time Value of Moey, NPV ad IRR equatio solvig with
Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
Normal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
3. Greatest Common Divisor - Least Common Multiple
3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value
S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.
S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,
How To Solve The Homewor Problem Beautifully
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
Chapter 6: Variance, the law of large numbers and the Monte-Carlo method
Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
Building Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
What Is Required? You need to find the final temperature of an iron ring heated by burning alcohol. 4.95 g
Calculatig Theral Eergy i a Bob Calorieter (Studet textbook page 309) 31. Predict the fial teperature of a 5.00 10 2 g iro rig that is iitially at 25.0 C ad is heated by cobustig 4.95 g of ethaol, C 2
A Mathematical Perspective on Gambling
A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,
NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical
Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
A zero one programming model for RNA structures with arc length 4
Iraia Joural of Matheatical Cheistry, Vol. 3, No.2, Septeber 22, pp. 85 93 IJMC A zero oe prograig odel for RNA structures with arc legth 4 G. H. SHIRDEL AND N. KAHKESHANI Departet of Matheatics, Faculty
Distributed Storage Allocations for Optimal Delay
Distributed Storage Allocatios for Optial Delay Derek Leog Departet of Electrical Egieerig Califoria Istitute of echology Pasadea, Califoria 925, USA derekleog@caltechedu Alexadros G Diakis Departet of
Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory
The Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV [email protected] 1 Itroductio Imagie you are a matchmaker,
Confidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
Transient Vibration of the single degree of freedom systems.
Trasiet Vibratio of the sigle degree of freedo systes. 1. -INTRODUCTION. Trasiet vibratio is defied as a teporarily sustaied vibratio of a echaical syste. It ay cosist of forced or free vibratios, or both
Controller Area Network (CAN) Schedulability Analysis with FIFO queues
Cotroller Area Network (CAN) Schedulability Aalysis with FIFO queues Robert I. Davis Real-Tie Systes Research Group, Departet of Coputer Sciece, Uiversity of York, YO10 5DD, York, UK [email protected]
2-3 The Remainder and Factor Theorems
- The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
Fast Fourier Transform
18.310 lecture otes November 18, 2013 Fast Fourier Trasform Lecturer: Michel Goemas I these otes we defie the Discrete Fourier Trasform, ad give a method for computig it fast: the Fast Fourier Trasform.
Controller Area Network (CAN) Schedulability Analysis: Refuted, Revisited and Revised
Cotroller Area Networ (CAN) Schedulability Aalysis: Refuted, Revisited ad Revised Robert. Davis ad Ala Burs Real-ie Systes Research Group, Departet of Coputer Sciece, Uiversity of Yor, YO1 5DD, Yor (UK)
Notes on exponential generating functions and structures.
Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the
A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design
A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 [email protected] Abstract:
Section 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
An Electronic Tool for Measuring Learning and Teaching Performance of an Engineering Class
A Electroic Tool for Measurig Learig ad Teachig Perforace of a Egieerig Class T.H. Nguye, Ph.D., P.E. Abstract Creatig a egieerig course to eet the predefied learig objectives requires a appropriate ad
Overview on S-Box Design Principles
Overview o S-Box Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA -721302 What is a S-Box? S-Boxes are Boolea
Elementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4
GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5
BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets
BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts
INTEGRATED TRANSFORMER FLEET MANAGEMENT (ITFM) SYSTEM
INTEGRATED TRANSFORMER FLEET MANAGEMENT (ITFM SYSTEM Audrius ILGEVICIUS Maschiefabrik Reihause GbH, [email protected] Alexei BABIZKI Maschiefabrik Reihause GbH [email protected] ABSTRACT The
Asymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
Basic Elements of Arithmetic Sequences and Series
MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
Review: Classification Outline
Data Miig CS 341, Sprig 2007 Decisio Trees Neural etworks Review: Lecture 6: Classificatio issues, regressio, bayesia classificatio Pretice Hall 2 Data Miig Core Techiques Classificatio Clusterig Associatio
