1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model"

Transcription

1 . Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses the following rules to calculate parking fees: A flat rate of $5. for an amount of time up to and including the first hour A flat rate of $.5 for an amount of time over h and up to and including h A flat rate of $3 plus $3 per hour for each hour after h? How can ou describe the function for parking fees in terms of the number of hours parked? EXAMPLE Representing the problem using a graphical model Use a graphical model to represent the function for parking fees. Solution Time (h) Parking Fee ($) Create a table of values.. Piecewise Functions

2 . Plot the points in the table of values. Use a solid dot to include a value in an interval. Use an open dot to eclude a value from an interval. Cost ($) 3 Time (h) 5 The domain of this piecewise function is $. The function is linear over the domain, but it is discontinuous at 5,, and. There is a solid dot at (, ) and an open dot at (, 5) because the parking fee at h is $.. There is a closed dot at (, 5) and an open dot at (,.5) because the parking fee at h is $5.. There is a closed dot at (,.5) and an open dot at (, 3) because the parking fee at h is $.5. The last part of the graph continues in a straight line since the rate of change is constant after h. piecewise function a function defined b using two or more rules on two or more intervals; as a result, the graph is made up of two or more pieces of similar or different functions Each part of a piecewise function can be described using a specific equation for the interval of the domain. EXAMPLE Representing the problem using an algebraic model Use an algebraic model to represent the function for parking fees. Solution if 5 if, # if, # if. Write the relation for each rule. Chapter 7

3 f () 5 μ, if 5 5, if, #.5, if, # 3 3, if. Combine the relations into a piecewise function. The domain of the function is $. The function is discontinuous at 5,, and because there is a break in the function at each of these points. Reflecting A. How do ou sketch the graph of a piecewise function? B. How do ou create the algebraic representation of a piecewise function? C. How do ou determine from a graph or from the algebraic representation of a piecewise function if there are an discontinuities? APPLY the Math EXAMPLE 3 Representing a piecewise function using a graph Graph the following piecewise function.,if, f () 5 e 3, if $ Solution Create a table of values. f () 5 f () 5 3 f() f() From the equations given, the graph consists of part of a parabola that opens up and a line that rises from left to right. Both tables include 5 since this is where the description of the function changes.. Piecewise Functions

4 . = f() Plot the points, and draw the graph. A solid dot is placed at (, 7) since 5 is included with f() 5 3. An open dot is placed at (, ) since 5 is ecluded from f() 5. f () is discontinuous at 5. EXAMPLE = f () Representing a piecewise function using an algebraic model Determine the algebraic representation of the following piecewise function. Solution f () 5,if #, if. The graph is made up of two pieces. One piece is part of the reciprocal function defined b 5 when #. The other piece is a horizontal line defined b 5 when.. The solid dot indicates that point Q, R belongs with the reciprocal function. Chapter 9

5 EXAMPLE 5 Reasoning about the continuit of a piecewise function Is this function continuous at the points where it is pieced together? Eplain., if # g() 5, if,, 3, if $ 3 Solution The function is continuous at the points where it is pieced together if the functions being joined have the same -values at these points. Calculate the values of the function at 5 using the relevant equations: () 5 Calculate the values of the function at 5 3 using the relevant equations: 5 5 (3) The function is discontinuous, since there is a break in the graph at 5 3. The graph is made up of three pieces. One piece is part of an increasing line defined b 5 when #. The second piece is an increasing line defined b 5 when,, 3. The third piece is part of a parabola that opens down, defined b 5 when $ 3. The two -values are the same, so the two linear pieces join each other at 5. The two -values are different, so the second linear piece does not join with the parabola at 5 3. Tech Support For help using a graphing calculator to graph a piecewise function, see Technical Appendi, T-. Verif b graphing. 5. Piecewise Functions

6 . In Summar Ke Ideas Some functions are represented b two or more pieces. These functions are called piecewise functions. Each piece of a piecewise function is defined for a specific interval in the domain of the function. Need to Know To graph a piecewise function, graph each piece of the function over the given interval. A piecewise function can be either continuous or not. If all the pieces of the function join together at the endpoints of the given intervals, then the function is continuous. Otherwise, it is discontinuous at these values of the domain. CHECK Your Understanding. Graph each piecewise function., if,,if # a) f () 5 e d) f () 5 e 3,if $, if., if, f () 5 e e), if $, if # c) f () 5 e f) f () 5,if,,if.,if $. State whether each function in question is continuous or not. If not, state where it is discontinuous. 3. Write the algebraic representation of each piecewise function, using function notation. a) = f () f () 5 e!,if,,if $ = f (). State the domain of each piecewise function in question 3, and comment on the continuit of the function. Chapter 5

7 PRACTISING 5. Graph the following piecewise functions. Determine whether each K function is continuous or not, and state the domain and range of the function., if, a) f () 5 e c) 3, if $ f () 5 e, if,, if $, if, f () 5 e,if # d) f () 5, if # # 3,if. 5, if. 3. Graham s long-distance telephone plan includes the first 5 min per A month in the $5. monthl charge. For each minute after 5 min, Graham is charged $.. Write a function that describes Graham s total long-distance charge in terms of the number of long distance minutes he uses in a month. 7. Man income ta sstems are calculated using a tiered method. Under a certain ta law, the first $ of earnings are subject to a 35% ta; earnings greater than $ and up to $5 are subject to a 5% ta. An earnings greater than $5 are taed at 55%. Write a piecewise function that models this situation.. Find the value of k that makes the following function continuous. T Graph the function. f () 5 e k,if,, if $ 9. The fish population, in thousands, in a lake at an time,, in ears is modelled b the following function:,if # # f () 5 e, if. This function describes a sudden change in the population at time 5, due to a chemical spill. a) Sketch the graph of the piecewise function. Describe the continuit of the function. c) How man fish were killed b the chemical spill? d) At what time did the population recover to the level it was before the chemical spill? e) Describe other events relating to fish populations in a lake that might result in piecewise functions. 5. Piecewise Functions

8 . Create a flow chart that describes how to plot a piecewise function with two pieces. In our flow chart, include how to determine where the function is continuous... An absolute value function can be written as a piecewise function that C involves two linear functions. Write the function f () 5 3 as a piecewise function, and graph our piecewise function to check it.. The demand for a new CD is described b D(p) 5 p,if, p # 5, if p. 5 where D is the demand for the CD at price p, in dollars. Determine where the demand function is discontinuous and continuous. Etending 3. Consider a function, f (), that takes an element of its domain and rounds it down to the nearest. Thus, f (5.) 5, while f (.7) 5 and f (3) 5 3. Draw the graph, and write the piecewise function. You ma limit the domain to P[, 5). Wh do ou think graphs like this one are often referred to as step functions?. Eplain wh there is no value of k that will make the following function continuous. 5, if, f () 5 k, if # # 3,if The greatest integer function is a step function that is written as f () 5 3, where f () is the greatest integer less than or equal to. In other words, the greatest integer function rounds an number down to the nearest integer. For eample, the greatest integer less than or equal to the number [5.3] is 5, while the greatest integer less than or equal to the number 35.3 is. Sketch the graph of f () a) Create our own piecewise function using three different transformed parent functions. Graph the function ou created in part a). c) Is the function ou created continuous or not? Eplain. d) If the function ou created is not continuous, change the interval or adjust the transformations used as required to change it to a continuous function. Chapter 53

9 .7 Eploring Operations with Functions GOAL Eplore the properties of the sum, difference, and product of two functions. A popular coffee house sells iced cappuccino for $ and hot cappuccino for $3. The manager would like to predict the relationship between the outside temperature and the total dail revenue from each tpe of cappuccino sold. The manager discovers that ever C increase in temperature leads to an increase in the sales of cold drinks b three cups per da and to a decrease in the sales of hot drinks b five cups per da. The function f () 5 3 can be used to model the number of iced cappuccinos sold. Number of iced cappuccinos sold 5 5 f() = Outside temperature (C) The function g() 55 can be used to model the number of hot cappuccinos sold. Number of hot cappuccinos sold g() = Outside temperature (C) In both functions, represents the dail average outside temperature. In the first function, f () represents the dail average number of iced cappuccinos sold. In the second function, g() represents the dail average number of hot cappuccinos sold.? How does the outside temperature affect the dail revenue from cappuccinos sold? A. Make a table of values for each function, with the temperature in intervals of 5, from to. B. What does h() 5 f () g() represent? 5.7 Eploring Operations with Functions

10 C. Simplif h() 5 (3 ) (5 )..7 D. Make a table of values for the function in part C, with the temperature in intervals of 5, from to. How do the values compare with the values in each table ou made in part A? How do the domains of f (), g(), and h() compare? E. What does h() 5 f () g() represent? F. Simplif h() 5 (3 ) (5 ). G. Make a table of values for the function in part F, with the temperature in intervals of 5, from to. How do the values compare with the values in each table ou made in part A? How do the domains of f (), g(), and h() compare? H. What does R() 5 f () 3g() represent? I. Simplif R() 5 (3 ) 3(5 ). J. Make a table of values for the function in part I, with the temperature in intervals of 5, from to. How do the values compare with the values in each table ou made in part A? How do the domains of f (), g(), and R() compare? K. How does temperature affect the dail revenue from cappuccinos sold? Reflecting L. Eplain how the sum function, h(), would be different if a) both f () and g() were increasing functions both f () and g() were decreasing functions M. What does the function k() 5 g() f () represent? Is its graph identical to the graph of h() 5 f () g()? Eplain. N. Determine the function h() 5 f () 3 g(). Does this function have an meaning in the contet of the dail revenue from cappuccinos sold? Eplain how the table of values for this function is related to the tables of values ou made in part A. O. If ou are given the graphs of two functions, eplain how ou could create a graph that represents a) the sum of the two functions the difference between the two functions c) the product of the two functions Chapter 55

11 In Summar Ke Idea If two functions have domains that overlap, the can be added, subtracted, or multiplied to create a new function on that shared domain. Need to Know Two functions can be added, subtracted, or multiplied graphicall b adding, subtracting, or multipling the values of the dependent variable for identical values of the independent variable. Two functions can be added, subtracted, or multiplied algebraicall b adding, subtracting, or multipling the epressions for the dependent variable and then simplifing. The properties of each original function have an impact on the properties of the new function. FURTHER Your Understanding. Let f 5 5(, ), (, ), (, 3), (3, 5), (, ) and g 5 5(, ), (, ), (, ), (, ), (, ), (, ). Determine: a) f g f g c) g f d) fg. Use the graphs of f and g to sketch the graphs of f g. a) f f g g 3. Use the graphs of f and g to sketch the graphs of f g. a) f g f g 5.7 Eploring Operations with Functions

12 .7. Use the graphs of f and g to sketch the graphs of fg. a) f g g f 5. Determine the equation of each new function, and then sketch its graph. a) h() 5 f () g(), where f () 5 and g() 5 p() 5 m() n(), where m() 5 and n() 57 c) r() 5 s() t(), where s() 5 and t() 5 d) a() 5 b() 3 c(), where b() 5 and c() 5. a) Using the graphs ou sketched in question 5, compare and contrast the relationship between the properties of the original functions and the properties of the new function. Which properties of the original functions determined the properties of the new function? 7. Let f () 5 3 and g() 5 5, PR. a) Sketch each graph on the same set of aes. Make a table of values for 3 # # 3, and determine the corresponding values of h() 5 f () 3 g(). c) Use the table to sketch h() on the same aes. Describe the shape of the graph. d) Determine the algebraic model for h(). What is its degree? e) What is the domain of h()? How does this domain compare with the domains of f () and g()?. Let f () 5 and g() 5, PR. a) Sketch each graph on the same set of aes. Make a table of values for 3 # # 3, and determine the corresponding values of h() 5 f () 3 g(). c) Use the table to sketch h() on the same aes. Describe the shape of the graph. d) Determine the algebraic model for h(). What is its degree? e) What is the domain of h()? Chapter 57

13 Chapter Review Stud Aid See Lesson., Eamples, 3, and. Tr Chapter Review Questions 7,, and 9. FREQUENTLY ASKED Questions Q: In what order are transformations performed on a function? Function Perform all stretches/compressions and reflections. Perform all translations. A: All stretches/compressions (vertical and horizontal) and reflections can be applied at the same time b multipling the - and -coordinates on the parent function b the appropriate factors. Both vertical and horizontal translations can then be applied b adding or subtracting the relevant numbers to the - and -coordinates of the points. Stud Aid See Lesson.5, Eamples,, and 3. Tr Chapter Review Questions to 3. Q: How do ou find the inverse relation of a function? A: You can find the inverse relation of a function numericall, graphicall, or algebraicall. To find the inverse relation of a function numericall, using a table of values, switch the values for the independent and dependent variables. f() f (, ) (, ) To find the inverse relation graphicall, reflect the graph of the function in the line 5. This is accomplished b switching the - and -coordinates in each ordered pair. To find the algebraic representation of the inverse relation, interchange the positions of the - and -variables in the function and solve for. 5 Chapter Review

14 Q: Is an inverse of a function alwas a function? A: No; if an element in the domain of the original function corresponds to more than one number in the range, then the inverse relation is not a function. Q: What is a piecewise function? A: A piecewise function is a function that has two or more function rules for different parts of its domain.,if, For eample, the function defined b f () 5 e, if $ consists of two pieces. The first equation defines half of a parabola that opens down when,. The second equation defines a decreasing line with a -intercept of when $. The graph confirms this. Stud Aid Chapter Review See Lesson.5, Eamples,, and 3. Tr Chapter Review Questions to 3. Stud Aid See Lesson., Eamples,, 3, and. Tr Chapter Review Questions to 7. Q: If ou are given the graphs or equations of two functions, how can ou create a new function? A: You can create a new function b adding, subtracting, or multipling the two given functions. This can be done graphicall b adding, subtracting, or multipling the -coordinates in each pair of ordered pairs that have identical -coordinates. This can be done algebraicall b adding, subtracting, or multipling the epressions for the dependent variable and then simplifing. Stud Aid See Lesson.7. Tr Chapter Review Questions to. Chapter 59

15 PRACTICE Questions Lesson.. Determine whether each relation is a function, and state its domain and range. a) c) d). A cell phone compan charges a monthl fee of $3, plus $. per minute of call time. a) Write the monthl cost function, C(t), where t is the amount of time in minutes of call time during a month. Find the domain and range of C. Lesson Graph f () 5 3, and state the domain and range.. Describe this interval using absolute value notation Lesson.3 5. For each pair of functions, give a characteristic that the two functions have in common and a characteristic that distinguishes them. a) f () 5 and g() 5 sin f () 5 and g() 5 c) f () 5 and g() 5 d) f () 5 and g() 5. Identif the intervals of increase/decrease, the smmetr, and the domain and range of each function. a) c) Lesson. f () 5 3 f () 5 f () 5 7. For each of the following equations, state the parent function and the transformations that were applied. Graph the transformed function. a) 5 5.5"3( 7) c) 5 sin (3), # # 3 d) 5 3. The graph of 5 is horizontall stretched b a factor of, reflected in the -ais, and shifted 3 units down. Find the equation that results from the transformation, and graph it. 9. (, ) is a point on the graph of 5 f (). Find the corresponding point on the graph of each of the following functions. a) 5f () 5 f (( 9)) 7 c) 5 f ( ) d) 5.3f (5( 3)) e) 5 f ( ) f) 5f (( )) Chapter Review

16 Lesson.5. For each point on a function, state the corresponding point on the inverse relation. a) (, ) d) f (5) 5 7 (, 9) e) g() 53 c) (, 7) f) h() 5. Given the domain and range of a function, state the domain and range of the inverse relation. a) D 5 5PR, R 5 5 PR,, D 5 5PR $ 7, R 5 5 PR,. Graph each function and its inverse relation on the same set of aes. Determine whether the inverse relation is a function. a) f () 5 g() 5 3. Find the inverse of each function. a) f () 5 g() 5 3 Lesson.. Graph the following function. Determine whether it is discontinuous and, if so, where. State the domain and the range of the function., if, f () 5 e, if $ 5. Write the algebraic representation for the following piecewise function, using function notation If f () 5 e, if, 3,if $ is f () continuous at 5? Eplain. 7. A telephone compan charges $3 a month and gives the customer free call minutes. After the min, the compan charges $.3 a minute. a) Write the function using function notation. Find the cost for talking 35 min in a month. c) Find the cost for talking min in a month. Lesson.7. Given f 5 5(, ), (, 3), (, 7), (5, ) and g 5 5(, ), (, ), (, 3), (, ), (, 9), determine the following. a) f () g() f () g() c) 3 f ()3g() 9. Given f () 5, # # 3 and g() 5, 3 # # 5, graph the following. a) f d) f g g e) fg c) f g. f () 5 and g() 5. Match the answer with the operation. Answer: Operation: a) 3 3 A f () g() B f () g() c) 3 C g() f () d) D f () 3 g(). f () 5 3 and g() 5, a) Complete the table. 3 f() g() (f g)() Chapter Review Use the table to graph f () and g() on the same aes. c) Graph (f g)() on the same aes as part. d) State the equation of (f g)(). e) Verif the equation of (f g)() using two of the ordered pairs in the table. Chapter

17 Chapter Self-Test Consider the graph of the relation shown. a) Is the relation a function? Eplain. State the domain and range.. Given the following information about a function: D 5 5PR R 5 5 PR $ decreasing on the interval (`, ) increasing on the interval (, `) a) What is a possible parent function? Draw a possible graph of the function. c) Describe the transformation that was performed. 3. Show algebraicall that the function f () 5 3 is an even function.. Both f () 5 and g() 5 have a domain of all real numbers. List as man characteristics as ou can to distinguish the two functions Describe the transformations that must be applied to 5 to obtain the function f () 5( 3) 5, then graph the function.. Given the graph shown, describe the transformations that were performed to get this function. Write the algebraic representation, using function notation. 7. (3, 5) is a point on the graph of 5 f (). Find the corresponding point on the graph of each of the following relations. a) 5 3f ( ) 5 f (). Find the inverse of f () 5( ). 9. A certain ta polic states that the first $5 of income is taed at 5% and an income above $5 is taed at %. a) Calculate the ta on $5. Write a function that models the ta polic.. a) Sketch the graph of where f () 5 e, if, f ()! 3, if $ Is f () continuous over its entire domain? Eplain. c) State the intervals of increase and decrease. d) State the domain and range of this function. Chapter Self-Test

18 Chapter Task Modelling with Functions In 95, a team of chemists led b Dr. W. F. Libb developed a method for determining the age of an natural specimen, up to approimatel ears of age. Dr. Libb s method is based on the fact that all living materials contain traces of carbon-. His method involves measuring the percent of carbon- that remains when a specimen is found. The percent of carbon- that remains in a specimen after various numbers of ears is shown in the table below. Years Carbon- Remaining (%) ? 573 How can ou use the function P(t) 5 (.5) to model this situation and determine the age of a natural specimen? t A. What percent of carbon is remaining for t 5? What does this mean in the contet of Dr. Libb s method? B. Draw a graph of the function P(t) 5 (.5), using the given table of values. C. What is a reasonable domain for P(t)? What is a reasonable range? D. Determine the approimate age of a specimen, given that P(t) 5 7. E. Draw the graph of the inverse function. F. What information does the inverse function provide? G. What are the domain and range of the inverse function? t Task Checklist Did ou show all our steps? Did ou draw and label our graphs accuratel? Did ou determine the age of the specimen that had 7% carbon- remaining? Did ou eplain our thinking clearl? Chapter 3

19 Answers Chapter Getting Started, p.. a) c) 5 d) a 5a. a) ( )( ) (5 )( 3) c) ( )( ) d) (a ( ) 3. a) horizontal translation 3 units to the right, vertical translation units up; horizontal translation unit to the right, vertical translation units up; c) horizontal stretch b a factor of, vertical stretch b a factor of, reflection across the -ais; d) horizontal compression b a factor of vertical stretch b a factor of,, reflection across the -ais; a) D 5 5PR # #, f) R 5 5PR # # D 5 5PR, R 5 5 PR $9 c) D 5 5PR, R 5 5 PR d) D 5 5PR, R 5 5 PR 3 # $ 3 e) D 5 5PR, R 5 5 PR. 5. a) This is not a function; it does not pass the vertical line test. This is a function; for each -value, there is eactl one corresponding -value. c) This is not a function; for each -value greater than, there are two corresponding -values. d) This is a function; for each -value, there is eactl one corresponding -value. e) This is a function; for each -value, there is eactl one corresponding -value.. a) about.7 7. If a relation is represented b a set of ordered pairs, a table, or an arrow diagram, one can determine if the relation is a function b checking that each value of the independent variable is paired with no more than one value of the dependent variable. If a relation is represented using a graph or scatter plot, the vertical line test can be used to determine if the relation is a function. A relation ma also be represented b a description/rule or b using function notation or an equation. In these cases, one can use reasoning to determine if there is more than one value of the dependent variable paired with an value of the independent variable. Lesson., pp. 3. a) D 5 5PR; R 5 5PR # #; This is a function because it passes the vertical line test. D 5 5PR # # 7; R 5 5 PR 3 # # ; This is a function because it passes the vertical line test. c) D 5 5,, 3, ; R 5 55,, 7, 9, ; This is not a function because is sent to more than one element in the range. d) D 5 5PR; R 5 5PR; This is a function because ever element in the domain produces eactl one element in the range. e) D 5 5, 3,, ; R 5 5,,, 3; This is a function because ever element of the domain is sent to eactl one element in the range. D 5 5PR; R 5 5PR # ; This is a function because ever element in the domain produces eactl one element in the range.. a) D 5 5PR; R 5 5 PR #3; This is a function because ever element in the domain produces eactl one element in the range. D 5 5PR 3; R 5 5 PR ; This is a function because ever element in the domain produces eactl one element in the range. c) D 5 5PR; R 5 5 PR. ; This is a function because ever element in the domain produces eactl one element in the range. d) D 5 5PR; R 5 5 PR # # ; This is a function because ever element in the domain produces eactl one element in the range. e) D 5 5PR 3 # # 3; R 5 5PR 3 # # 3; This is not a function because (, 3) and (, 3) are both in the relation. f) D 5 5PR; R 5 5PR # # ; This is a function because ever element in the domain produces eactl one element in the range. 3. a) function; D 5 5, 3, 5, 7; R 5 5,, function; D 5 5,,, 5; R 5 5, 3, c) function; D 5 5,,, 3; R 5 5, d) not a function; D 5 5,, ; R 5 5, 3, 5, 7 e) not a function; D 5 5,, ; R 5 5,,, 3 f) function; D 5 5,, 3, ; R 5 5,, 3,. a) function; D 5 5PR; R 5 5 PR $. not a function; D 5 5PR $ ; R 5 5 PR c) function; D 5 5PR; R 5 5 PR $.5 d) not a function; D 5 5PR $ ; R 5 5 PR e) function; D 5 5PR ; R 5 5 PR f) function; D 5 5PR; R 5 5 PR 5. a) 5 3 c) 5 3( ) 5 5 d) 5 5 Answers

20 . a). a) The length is twice the width. f () 5 ; f (7) 5 ; f () 5 5 f (l ) 5 3 l Yes, f (5) 5 f (3) 3 f (5) c) Yes, f () 5 f (3) 3 f () c) f(b) d) Yes, there are others that will work. f (a) 3 f ( 5 f (a 3 whenever a and b have no common factors other than. 3. Answers ma var. For eample: B independent numerical variable model d) length 5 m; width 5 m 7. a) Time (s) D 5 5,,,,,,,,,,,, c) R 5 5, 5, d) It is a function because it passes the vertical line test. e) Height (m) Time (s) Height (m) f) It is not a function because (5, ) and (5, ) are both in the relation.. a) 5(, ), (3, ), (5, ) 5(, ), (3, ), (5, ) c) 5(, ), (, 3), (5, ) 9. If a vertical line passes through a function and hits two points, those two points have identical -coordinates and different -coordinates. This means that one -coordinate is sent to two different elements in the range, violating the definition of function.. a) Yes, because the distance from (, 3) to (, ) is 5. No, because the distance from (, 5) to (, ) is not 5. c) No, because (, 3) and (, 3) are both in the relation.. a) g() 5 3 g(3) g() g(3 ) 5 g() 5 So, g(3) g() g(3 ).. domain range dependent variable The first is not a function because it fails the vertical line test: D 5 5PR 5 # # 5; R 5 5PR 5 # # 5. The second is a function because it passes the vertical line test: D 5 5PR 5 # # 5; R 5 5PR # # is a function of if the graph passes the horizontal line test. This occurs when an horizontal line hits the graph at most once. Lesson., p. FUNCTION function notation. 5,, 5,, 5. a) c) e) 35 d) f) 3. a). 3 c) $ # d) 5. a) mapping model algebraic model graphical model vertical line test c) The absolute value of a number is alwas greater than or equal to. There are no solutions to this inequalit. d) 5. a) # 3 c) $. d),. a) The graphs are the same. Answers ma var. For eample, 5( ), so the are negatives of each other and have the same absolute value. 7. a) c) d). When the number ou are adding or subtracting is inside the absolute value signs, it moves the function to the left (when adding) or to the right (when subtracting) of the origin. When the number ou are Answers Answers 3

21 adding or subtracting is outside the absolute value signs, it moves the function down (when subtracting) or up (when adding) from the origin. The graph of the function will be the absolute value function moved to the left 3 units and up units from the origin. 9. This is the graph of g() 5 horizontall compressed b a factor of and translated unit to the left.. This is the graph of g() 5 horizontall compressed b a factor of reflected over the -ais, translated, units to the right, and translated 3 units up. Lesson.3, pp Answers ma var. For eample, domain because most of the parent functions have all real numbers as a domain.. Answers ma var. For eample, the end behaviour because the onl two that match are and. 3. Given the horizontal asmptote, the function must be derived from. But the asmptote is at 5, so it must have been translated up two. Therefore, the function is f () 5.. a) Both functions are odd, but their domains are different. Both functions have a domain of all real numbers, but sin () has more zeros. c) Both functions have a domain of all real numbers, but different end behaviour. d) Both functions have a domain of all real numbers, but different end behaviour. 5. a) even d) odd odd e) neither even nor odd c) odd f) neither even nor odd. a), because it is a measure of distance from a number sin (), because the heights are periodic. c), because population tends to increase eponentiall d), because there is $ on the first da, $ on the second, $3 on the third, etc. 7. a) f () 5! c) f () 5 f () 5 sin d) f () 5. a) f () g() 5 sin 3 c) h() a) f () 5 ( ) There is not onl one function. f () 5 3 works as well. ( ) c) There is more than one function that satisfies the propert. f () 5 and f () 5 both work.. is a smooth curve, while has a sharp, pointed corner at (, ).. See net page. 3. It is important to name parent functions in order to classif a wide range of functions according to similar behaviour and characteristics. D 5 5PR, R 5 5 f ()PR; interval of increase 5 (`, `), no interval of decrease, no discontinuities, - and -intercept at (, ), odd, S `, S `, and S `, S `. It is ver similar to f () 5. It does not, however, have a constant slope. 5. No, cos is a horizontal translation of sin.. The graph can have,, or zeros. zeros: zero: 3 zeros: Mid-Chapter Review, p.. a) function; D 5 5, 3, 5, 7, R 5 5, 3, function; D 5 5PR, R 5 5PR c) not a function; D 5 5PR 5 # # 5, R 5 5PR 5 # # 5 d) not a function; D 5 5,,, R 5 5, 3,, 7. a) Yes. Ever element in the domain gets sent to eactl one element in the range. D 5 5,,, 3,, 5,, 7,, 9, c) R 5 5,, 5, 3, 35,, 5, 5 Answers

22 . Parent Function f() 5 g() 5 h() 5 k() 5 m() 5! p() 5 r() 5 sin Sketch. r() = sin Domain 5PR 5PR 5PR 5PR 5PR $ 5PR 5PR Range 5f() PR 5f()PR f() $ 5f()PR f() 5f()PR f() $ 5f()PR f() $ 5f()PR f(). 5f()PR # f() # Intervals of Increase (`, `) (, `) None (, `) (, `) (`, `) 39(k ), 9(k 3) KPZ Intervals of Decrease None (`, ) (`, ) (, `) (`, ) None None 39(k 3), 9(k ) KPZ Location of None None 5 None None 5 None Discontinuities and 5 Asmptotes Zeros (, ) (, ) None (, ) (, ) None k KPZ -Intercepts (, ) (, ) None (, ) (, ) (, ) (, ) Smmetr Odd Even Odd Even Neither Neither Odd End Behaviours S `, S ` S `, S ` S `, S S `, S ` S `, S ` S `, S ` Oscillating S `, S ` S `, S ` S `, S S `, S ` S `, S 3 Answers Answers 5

23 3. a) D 5 5PR, R 5 5 f ()PR; This if f () 5 sin translated down ; 5. a) f () 5, translated left function continuous 3 D 5 5PR 3 # # 3, R 5 5PR 3 # # 3; not a function c) D 5 5PR # 5, 3 3 R 5 5PR $ ; function d) D 5 5PR, R 5 5PR $; function c) This is f () 5 translated down ; 3. 3,, 3,, 5 continuous 5. a) f () 5, vertical stretch b c) f () 5 sin, horizontal compression 3 of translation up 3, c) 3 d). a) f () 5 f () 5 c) f () 5 " 7. a) even c) neither odd nor even even d) neither odd nor even. a) This is f () 5 translated right and up 3; discontinuous Lesson., pp a) translation unit down horizontal compression b a factor of, translation unit right c) reflection over the -ais, translation units up, translation 3 units right d) reflection over the -ais, vertical stretch b a factor of, horizontal compression b a factor of e) reflection over the -ais, translation 3 units down, reflection over the -ais, translation units left f) vertical compression b a factor of, translation units up, horizontal stretch b a factor of, translation 5 units right. a) a 5, k 5 d 5, c 5 3, a 5 3, k 5 d 5, c 5, 3. (, 3), (, 3), (, ), (, ), (, ), (, ). a) (, ), (, ), (, ), (, ) (5, 3), (7, 7), (, 5), (, ) c) (, 5), (, 9), (, 7), (, ) d) (, ), (3, ), (3, ), (5, 3) e) (, 5), (, ), (, 3), (, 7) f) (, ), (, ), (, ), (, 5) d) f () 5 translation up 3, e) f () 5, horizontal stretch b f) f () 5 ", horizontal compression b translation right, Answers

24 . a) c) d) e) f) 7. a). D 5 5PR,. R 5 5 f ()PR f () $ h() D 5 5PR, R 5 5 f ()PR f () $ g() D 5 5PR, R 5 5 f ()PR # f () # D 5 5PR, R 5 5 f ()PR f () 3 D 5 5PR, R 5 5 f ()PR f (). D 5 5PR $, f() R 5 5 f ()PR f () $ 3. a) a vertical stretch b a factor of a horizontal compression b a factor of c) () 5 5. Answers ma var. For eample: horizontal stretch or compression, based on value of k The domain remains unchanged at D 5 5PR. The range must now be less than : R 5 5 f ()PR f (),. It changes from increasing on (`, `) to decreasing on (`, `). The end behaviour becomes as S `, S, and as S `, S `. c) g() 5( 3() ) 53" 5 9. a) (3, ) d) (.75, ) (.5, ) e) (, ) c) (, 9) f) (, 7). a) D 5 5PR $, R 5 5 g()pr g() $ D 5 5PR $, R 5 5h()PR h() $ c) D 5 5PR #, R 5 5k()PR k() $ d) D 5 5PR $ 5, R 5 5 j()pr j() $3. 5 5( 3) is the same as 5 5 5, not vertical stretch or compression, based on value of a reflection in -ais if a, ; reflection in -ais if k, horizontal translation based on value of d vertical translation based on value of c 5. (, 5). a) horizontal compression b a factor of 3, translation units to the left because the are equivalent epressions: 3( ) 5 3 c) Lesson.5, pp a) (5, ) c) (, ) e) (, 3) (, 5) d) (, ) f) (7, ). a) D 5 5PR, R 5 5PR D 5 5PR, R 5 5PR $ c) D 5 5PR,, R 5 5PR $5 d) D 5 5PR 5,,, R 5 5PR, 3. A and D match; B and F match; C and E match. a) (, 9) (9, ) c) D 5 5PR, R 5 5PR d) D 5 5PR, R 5 5PR e) Yes; it passes the vertical line test. 5. a) (, ) (, ) c) D 5 5PR, R 5 5PR $ d) D 5 5PR $ R 5 5 PR e) No; (, ) and (, ) are both on the inverse relation.. a) Not a function Not a function c) Function p d) Not a function p p p p p p p 7. a) C 5 5 (F 3); this allows ou to 9 convert from Fahrenheit to Celsius. C 5 F. a) r 5 $ p; A this can be used to determine the radius of a circle when its area is known. A 5 5p cm, r 5 5 cm 9.. k 5 a) 3 c) e) 5 d) f) Answers Answers 7

25 . No; several students could have the same grade point average.. a) f () 5 ( ) 3 h () 5 c) g () 5 " 3 d) m () a) 5 ( 3) c) 5 Å d) (., 3.55), (.,.), (3.55,.), (3., 3.) e) $ 3 because a negative square root is undefined. f) g() 5 5, but g (5) 5 or ; the inverse is not a function if this is the domain of g.. For 5", D 5 5PR $ and R 5 5PR #. For 5, D 5 5PR and R 5 5PR $. The student would be correct if the domain of 5 is restricted to D 5 5PR #. 5. Yes; the inverse of 5 " is 5 so long as the domain of this second function is restricted to D 5 5PR $.. John is correct. Algebraic: ; ; ( ) 5 3 ; 5 " 3 ( ). Numeric: Let Graphical: 3 5 " 3 () 5 " ; 5 " 3 ( ) 5 " 3 ( ) The graphs are reflections over the line f () 5 k works for all kpr. 5 k Switch variables and solve for : 5 k 5 k So the function is its own inverse.. If a horizontal line hits the function in two locations, that means there are two points with equal -values and different -values. When the function is reflected over the line 5 to find the inverse relation, those two points become points with equal -values and different -values, thus violating the definition of a function. Lesson., pp a) c) d) e) f). a) Discontinuous at 5 Discontinuous at 5 c) Discontinuous at 5 d) Continuous e) Discontinuous at 5 f) Discontinuous at 5 and 5 3. a) 3 f() 5 e, if #, if., if, f () 5 e!, if $. a) D 5 5PR; the function is discontinuous at 5. D 5 5PR; the function is continuous. 5. a) The function is discontinuous at 5. D 5 5PR R 5 5, 3 The function is continuous. D 5 5PR R 5 5f ()PR f () $ Answers

26 c). Answers ma var. For eample: Plot the function for the left interval. Plot the function for the right interval.. Answers ma var. For eample: 3, if, a) f () 5, if # #!, if. 5 The function is continuous. D 5 5PR R 5 5f ()PR f () $ d) The function is continuous. D 5 5PR R 5 5 f ()PR # f () # 5 5, if # # 5. f () 5 e 5., if $ 5 7. f () 5.35, if # #.5, if, # 5.55, if. 5. Determine if the plots for the left and right intervals meet at the -value that serves as the common end point for the intervals; if so, the function is continuous at this point. Determine continuit for the two intervals using standard methods. 3, if $3 f () e 3, if,3. discontinuous at p 5 and p 5 5; continuous at, p, 5 and p c) The function is not continuous. The last two pieces do not have the same value for 5. 3, if, d) f () 5, if # #!, if. Lesson.7, pp a) 5(, ), (, 5), (, 5), (, ) 5(, ), (, 3), (, ), (, ) c) 5(, ), (, 3), (, ), (, ) d) 5(, ), (, ), (, ), (, ). a). k 5 9. a) The function is discontinuous at 5. c) 3 fish d) 5 ; 5 5; 5 e) Answers ma var. For eample, three possible events are environmental changes, introduction of a new predator, and increased fishing. 3., if #,, if #, f () 5 f, if #, 3 3, if 3 #,, if #, It is often referred to as a step function because the graph looks like steps.. To make the first two pieces continuous, 5() 5 k, so k 5. But if k 5, the graph is discontinuous at a) Answers Answers 9

27 c) 5. a) a) 5. a) 5 d) 5 3. a) Answers ma var. For eample, properties of the original graphs such as intercepts and sign at various values of the independent variable figure prominentl in the shape of the new function. 7. a) c) f() g() h() 5 f() 3 g() d) h() 5 ( )( ) 5 ; degree is e) D 5 5PR f() g() h() 5 f() 3 g() c) d) h() 5 ( 3)( 5) ; degree is 3 e) D 5 5PR; this is the same as the domain of both f and g. Chapter Review, pp.. a) function; D 5 5PR; R 5 5 PR function; D 5 5PR; R 5 5 PR # 3 c) not a function; D 5 5PR # # ; R 5 5 PR d) function; D 5 5PR. ; R 5 5 PR. a) C(t) 5 3.t D 5 5tPR t $, R 5 5C(t)PR C(t) $ 3 3. D 5 5PR, R 5 5 f ()PR f () $ Answers

28 ., 5. a) Both functions have a domain of all real numbers, but the ranges differ. Both functions are odd but have different domains. c) Both functions have the same domain and range, but is smooth and has a sharp corner at (, ). d) Both functions are increasing on the entire real line, but has a horizontal asmptote while does not.. a) Increasing on (`, `); odd; D 5 5PR; R 5 5 f ()PR Decreasing on (`, ); increasing on (, `); even; D 5 5PR; R 5 5 f ()PR f () $ c) Increasing on (`, `); neither even nor odd; D 5 5PR; R 5 5 f ()PR f (). 7. a) Parent: 5 ; translated left c) Parent: 5 sin ; reflected across the -ais, epanded verticall b a factor of, compressed horizontall b a factor of translated up b 3, 7 Parent: 5!; compressed verticall b a factor of.5, reflected across the -ais, compressed horizontall b a factor of and translated left 7 3, d) Parent: 5 ; reflected across the -ais, compressed horizontall b a factor of and translated down b 3, 5Q 3 R 9. a) (, ) (, ) c) (, 3) d) a 7 5,.3b e) f) (, ) (9, ). a) (, ) (9, ) c) (7, ) d) (7, 5) e) (3, ) f) (, ). a) D 5 5PR,,, R 5 5PR D 5 5PR,, R 5 5PR $ 7. a) The inverse relation is not a function. 3. a) f () 5 g () 5 " 3. The function is continuous; D 5 5PR, R 5 5PR 3, if # 5. f () 5 e, if. ; the function is discontinuous at 5.. In order for f () to be continuous at 5, the two pieces must have the same value when 5. When 5, 5 and The two pieces are not equal when 5, so the function is not continuous at 5. 3, if # 7. a) f () 5 e.3, if. $3.5 c) $3. a) 5(, 7), (, 5) 5(, ), (, ) c) 5(, ), (, 5) 9. a) Answers The inverse relation is a function. c) 3 Answers

29 d) e). a) D C c) A d) B. a) c) d) 3 e) Answers ma var. For eample, (, ) belongs to f, (, ) belongs to g and (, ) belongs to f g. Also, (, 3) belongs to f, (, 5) belongs to g and (, ) belongs to f g. Chapter Self-Test, p.. a) Yes. It passes the vertical line test. D 5 5PR; R 5 5PR $. a) f () 5 or f () f() 9 3 g() (f g)() 3 3 or PR. c) The graph was translated units down. 3. f () 5 3() () f (). has a horizontal asmptote while does not. The range of is while the range of is 5PR $. is increasing on the whole real line and has an interval of decrease and an interval of increase. 5. reflection over the -ais, translation down 5 units, translation left 3 units. horizontal stretch b a factor of, translation unit up; f () 5 if 7. a) (, 7) (5, 3). 9. f () 5 a) $9.5, if # 5 f () 5 e., if. 5. a) f () is discontinuous at 5 because the two pieces do not have the same value when 5. When 5, 5 and " c) Intervals of increase: (`, ), (, `); no intervals of decrease d) D 5 5PR, R 5 5PR,, or $ 3 Chapter Getting Started, p.. a) 3 7. a) Each successive first difference is times the previous first difference. The function is eponential. The second differences are all. The function is quadratic. 3. a) 3 c) 5, 5, d) 7, 9. a) vertical compression b a factor of vertical stretch b a factor of, horizontal translation units to the right c) vertical stretch b a factor of 3, reflection across -ais, vertical translation 7 units up d) vertical stretch b a factor of 5, horizontal translation 3 units to the right, vertical translation units down, 5. a) A 5 (.) t $59.7 c) No, since the interest is compounded each ear, each ear ou earn more interest than the previous ear.. a) 5 m; m s c) 5 m 7. Linear relations constant; same as slope of line; Lesson., pp a) 9 c) 3 e). 5 d) f).. a) i) 5 m> s ii) 5 ms > Nonlinear relations variable; can be positive, positive for negative, or Rates of Change lines that for slope up from left to different parts of the right; negative for same relation lines that slope down from left to right; for horizontal lines. Answers

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model 1. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

More information

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model 1.6 Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described by piecewise functions. LEARN ABOUT the Math A city parking lot

More information

Rational Functions. 7.1 A Rational Existence. 7.2 A Rational Shift in Behavior. 7.3 A Rational Approach. 7.4 There s a Hole In My Function, Dear Liza

Rational Functions. 7.1 A Rational Existence. 7.2 A Rational Shift in Behavior. 7.3 A Rational Approach. 7.4 There s a Hole In My Function, Dear Liza Rational Functions 7 The ozone laer protects Earth from harmful ultraviolet radiation. Each ear, this laer thins dramaticall over the poles, creating ozone holes which have stretched as far as Australia

More information

Translating Points. Subtract 2 from the y-coordinates

Translating Points. Subtract 2 from the y-coordinates CONDENSED L E S S O N 9. Translating Points In this lesson ou will translate figures on the coordinate plane define a translation b describing how it affects a general point (, ) A mathematical rule that

More information

5.3 Graphing Cubic Functions

5.3 Graphing Cubic Functions Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

More information

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

More information

135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin.

135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin. 13 Final Review Find the distance d(p1, P2) between the points P1 and P2. 1) P1 = (, -6); P2 = (7, -2) 2 12 2 12 3 Determine whether the graph is smmetric with respect to the -ais, the -ais, and/or the

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions:

6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions: Precalculus Worksheet 1. Da 1 1. The relation described b the set of points {(-, 5 ),( 0, 5 ),(,8 ),(, 9) } is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph

More information

Graphing and transforming functions

Graphing and transforming functions Chapter 5 Graphing and transforming functions Contents: A B C D Families of functions Transformations of graphs Simple rational functions Further graphical transformations Review set 5A Review set 5B 6

More information

Lesson 6: Linear Functions and their Slope

Lesson 6: Linear Functions and their Slope Lesson 6: Linear Functions and their Slope A linear function is represented b a line when graph, and represented in an where the variables have no whole number eponent higher than. Forms of a Linear Equation

More information

2.4 Inequalities with Absolute Value and Quadratic Functions

2.4 Inequalities with Absolute Value and Quadratic Functions 08 Linear and Quadratic Functions. Inequalities with Absolute Value and Quadratic Functions In this section, not onl do we develop techniques for solving various classes of inequalities analticall, we

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Chapter Section.1 Quadratic Functions Polnomial and Rational Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Course Number Instructor Date Important

More information

Identify a pattern and find the next three numbers in the pattern. 5. 5(2s 2 1) 2 3(s 1 2); s 5 4

Identify a pattern and find the next three numbers in the pattern. 5. 5(2s 2 1) 2 3(s 1 2); s 5 4 Chapter 1 Test Do ou know HOW? Identif a pattern and find the net three numbers in the pattern. 1. 5, 1, 3, 7, c. 6, 3, 16, 8, c Each term is more than the previous Each term is half of the previous term;

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 3 Eponential and Logarithmic Functions Section 3.1 Eponential Functions and Their Graphs Objective: In this lesson ou learned how to recognize, evaluate, and graph eponential functions. Course

More information

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

More information

M122 College Algebra Review for Final Exam

M122 College Algebra Review for Final Exam M1 College Algebra Review for Final Eam Revised Fall 015 for College Algebra Beecher All answers should include our work (this could be a written eplanation of the result, a graph with the relevant feature

More information

HI-RES STILL TO BE SUPPLIED

HI-RES STILL TO BE SUPPLIED 1 MRE GRAPHS AND EQUATINS HI-RES STILL T BE SUPPLIED Different-shaped curves are seen in man areas of mathematics, science, engineering and the social sciences. For eample, Galileo showed that if an object

More information

Reteaching Masters. To jump to a location in this book. 1. Click a bookmark on the left. To print a part of the book. 1. Click the Print button.

Reteaching Masters. To jump to a location in this book. 1. Click a bookmark on the left. To print a part of the book. 1. Click the Print button. Reteaching Masters To jump to a location in this book. Click a bookmark on the left. To print a part of the book. Click the Print button.. When the Print window opens, tpe in a range of pages to print.

More information

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.

More information

Graphing Nonlinear Systems

Graphing Nonlinear Systems 10.4 Graphing Nonlinear Sstems 10.4 OBJECTIVES 1. Graph a sstem of nonlinear equations 2. Find ordered pairs associated with the solution set of a nonlinear sstem 3. Graph a sstem of nonlinear inequalities

More information

Graph each function. Compare to the parent graph. State the domain and range. 1. SOLUTION:

Graph each function. Compare to the parent graph. State the domain and range. 1. SOLUTION: - Root Functions Graph each function. Compare to the parent graph. State the domain and range...5.. 5. 6 is multiplied b a value greater than, so the graph is a vertical stretch of. Another wa to identif

More information

The Graph of a Linear Equation

The Graph of a Linear Equation 4.1 The Graph of a Linear Equation 4.1 OBJECTIVES 1. Find three ordered pairs for an equation in two variables 2. Graph a line from three points 3. Graph a line b the intercept method 4. Graph a line that

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

2 Analysis of Graphs of

2 Analysis of Graphs of ch.pgs1-16 1/3/1 1:4 AM Page 1 Analsis of Graphs of Functions A FIGURE HAS rotational smmetr around an ais I if it coincides with itself b all rotations about I. Because of their complete rotational smmetr,

More information

Rationale/Lesson Abstract: Students will graph exponential functions, identify key features and learn how the variables a, h and k in f x a b

Rationale/Lesson Abstract: Students will graph exponential functions, identify key features and learn how the variables a, h and k in f x a b Grade Level/Course: Algebra Lesson/Unit Plan Name: Graphing Eponential Functions Rationale/Lesson Abstract: Students will graph eponential functions, identif ke features h and learn how the variables a,

More information

STRETCHING, SHRINKING, AND REFLECTING GRAPHS Vertical Stretching Vertical Shrinking Reflecting Across an Axis Combining Transformations of Graphs

STRETCHING, SHRINKING, AND REFLECTING GRAPHS Vertical Stretching Vertical Shrinking Reflecting Across an Axis Combining Transformations of Graphs 6 CHAPTER Analsis of Graphs of Functions. STRETCHING, SHRINKING, AND REFLECTING GRAPHS Vertical Stretching Vertical Shrinking Reflecting Across an Ais Combining Transformations of Graphs In the previous

More information

SECTION 2-5 Combining Functions

SECTION 2-5 Combining Functions 2- Combining Functions 16 91. Phsics. A stunt driver is planning to jump a motorccle from one ramp to another as illustrated in the figure. The ramps are 10 feet high, and the distance between the ramps

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

More information

1.2 GRAPHS OF EQUATIONS

1.2 GRAPHS OF EQUATIONS 000_00.qd /5/05 : AM Page SECTION. Graphs of Equations. GRAPHS OF EQUATIONS Sketch graphs of equations b hand. Find the - and -intercepts of graphs of equations. Write the standard forms of equations of

More information

Math 152, Intermediate Algebra Practice Problems #1

Math 152, Intermediate Algebra Practice Problems #1 Math 152, Intermediate Algebra Practice Problems 1 Instructions: These problems are intended to give ou practice with the tpes Joseph Krause and level of problems that I epect ou to be able to do. Work

More information

Quadratic Functions. MathsStart. Topic 3

Quadratic Functions. MathsStart. Topic 3 MathsStart (NOTE Feb 2013: This is the old version of MathsStart. New books will be created during 2013 and 2014) Topic 3 Quadratic Functions 8 = 3 2 6 8 ( 2)( 4) ( 3) 2 1 2 4 0 (3, 1) MATHS LEARNING CENTRE

More information

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study

Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic

More information

M122 College Algebra Review for Final Exam

M122 College Algebra Review for Final Exam M122 College Algebra Review for Final Eam Revised Fall 2007 for College Algebra in Contet All answers should include our work (this could be a written eplanation of the result, a graph with the relevant

More information

2.5 Library of Functions; Piecewise-defined Functions

2.5 Library of Functions; Piecewise-defined Functions SECTION.5 Librar of Functions; Piecewise-defined Functions 07.5 Librar of Functions; Piecewise-defined Functions PREPARING FOR THIS SECTION Before getting started, review the following: Intercepts (Section.,

More information

13 Graphs, Equations and Inequalities

13 Graphs, Equations and Inequalities 13 Graphs, Equations and Inequalities 13.1 Linear Inequalities In this section we look at how to solve linear inequalities and illustrate their solutions using a number line. When using a number line,

More information

Transformations of Function Graphs

Transformations of Function Graphs - - - 0 - - - - - - - Locker LESSON.3 Transformations of Function Graphs Teas Math Standards The student is epected to: A..C Analze the effect on the graphs of f () = when f () is replaced b af (), f (b),

More information

Practice for Final Disclaimer: The actual exam is not a mirror of this. These questions are merely an aid to help you practice 1 2)

Practice for Final Disclaimer: The actual exam is not a mirror of this. These questions are merely an aid to help you practice 1 2) Practice for Final Disclaimer: The actual eam is not a mirror of this. These questions are merel an aid to help ou practice Solve the problem. 1) If m varies directl as p, and m = 7 when p = 9, find m

More information

Florida Algebra I EOC Online Practice Test

Florida Algebra I EOC Online Practice Test Florida Algebra I EOC Online Practice Test 1 Directions: This practice test contains 65 multiple-choice questions. Choose the best answer for each question. Detailed answer eplanations appear at the end

More information

Section C Non Linear Graphs

Section C Non Linear Graphs 1 of 8 Section C Non Linear Graphs Graphic Calculators will be useful for this topic of 8 Cop into our notes Some words to learn Plot a graph: Draw graph b plotting points Sketch/Draw a graph: Do not plot,

More information

4 Non-Linear relationships

4 Non-Linear relationships NUMBER AND ALGEBRA Non-Linear relationships A Solving quadratic equations B Plotting quadratic relationships C Parabolas and transformations D Sketching parabolas using transformations E Sketching parabolas

More information

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether or not the relationship shown in the table is a function. 1) -

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

2.3 Quadratic Functions

2.3 Quadratic Functions . Quadratic Functions 9. Quadratic Functions You ma recall studing quadratic equations in Intermediate Algebra. In this section, we review those equations in the contet of our net famil of functions: the

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

Higher. Functions and Graphs. Functions and Graphs 18

Higher. Functions and Graphs. Functions and Graphs 18 hsn.uk.net Higher Mathematics UNIT UTCME Functions and Graphs Contents Functions and Graphs 8 Sets 8 Functions 9 Composite Functions 4 Inverse Functions 5 Eponential Functions 4 6 Introduction to Logarithms

More information

I think that starting

I think that starting . Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries

More information

5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED

5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED CONDENSED L E S S O N 5.1 A Formula for Slope In this lesson ou will learn how to calculate the slope of a line given two points on the line determine whether a point lies on the same line as two given

More information

Reasoning with Equations and Inequalities

Reasoning with Equations and Inequalities Instruction Goal: To provide opportunities for students to develop concepts and skills related to solving linear sstems of equations b graphing Common Core Standards Algebra: Solve sstems of equations.

More information

5.2 Inverse Functions

5.2 Inverse Functions 78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

More information

Chapter 3. Curve Sketching. By the end of this chapter, you will

Chapter 3. Curve Sketching. By the end of this chapter, you will Chapter 3 Curve Sketching How much metal would be required to make a -ml soup can? What is the least amount of cardboard needed to build a bo that holds 3 cm 3 of cereal? The answers to questions like

More information

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t.

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t. REPASO. The mass m kg of a radio-active substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()

More information

4.4 Logarithmic Functions

4.4 Logarithmic Functions SECTION 4.4 Logarithmic Functions 87 4.4 Logarithmic Functions PREPARING FOR THIS SECTION Before getting started, review the following: Solving Inequalities (Appendi, Section A.8, pp. 04 05) Polnomial

More information

2.1. Radical Functions and Transformations. Investigate a Radical Function

2.1. Radical Functions and Transformations. Investigate a Radical Function .1 Radical Functions and Transformations Focus on... investigating the function = using a table of values and a graph graphing radical functions using transformations identifing the domain and range of

More information

More Equations and Inequalities

More Equations and Inequalities Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities

More information

8.7 Systems of Non-Linear Equations and Inequalities

8.7 Systems of Non-Linear Equations and Inequalities 8.7 Sstems of Non-Linear Equations and Inequalities 67 8.7 Sstems of Non-Linear Equations and Inequalities In this section, we stud sstems of non-linear equations and inequalities. Unlike the sstems of

More information

Trigonometric functions

Trigonometric functions Chapter0 Trigonometric functions Sllabus reference: 3. Contents: A B C D E F Periodic behaviour The sine function Modelling using sine functions The cosine function The tangent function General trigonometric

More information

Anytime plan TalkMore plan

Anytime plan TalkMore plan CONDENSED L E S S O N 6.1 Solving Sstems of Equations In this lesson ou will represent situations with sstems of equations use tables and graphs to solve sstems of linear equations A sstem of equations

More information

Algebra II. Administered May 2013 RELEASED

Algebra II. Administered May 2013 RELEASED STAAR State of Teas Assessments of Academic Readiness Algebra II Administered Ma 0 RELEASED Copright 0, Teas Education Agenc. All rights reserved. Reproduction of all or portions of this work is prohibited

More information

Supplementary Lesson: Log-log and Semilog Graph Paper

Supplementary Lesson: Log-log and Semilog Graph Paper Supplementar Lesson: Log-log and Semilog Graph Paper Chapter 7 looks at some elementar functions of algebra, including linear, quadratic, power, eponential, and logarithmic. The following supplementar

More information

SOLVING SYSTEMS OF EQUATIONS

SOLVING SYSTEMS OF EQUATIONS SOLVING SYSTEMS OF EQUATIONS 4.. 4..4 Students have been solving equations even before Algebra. Now the focus on what a solution means, both algebraicall and graphicall. B understanding the nature of solutions,

More information

Alex and Morgan were asked to graph the equation y = 2x + 1

Alex and Morgan were asked to graph the equation y = 2x + 1 Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and -intercept wa First, I made a table. I chose some -values, then plugged

More information

ALGEBRA. Generate points and plot graphs of functions

ALGEBRA. Generate points and plot graphs of functions ALGEBRA Pupils should be taught to: Generate points and plot graphs of functions As outcomes, Year 7 pupils should, for eample: Use, read and write, spelling correctl: coordinates, coordinate pair/point,

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Chapter 5 Polnomial and Rational Functions Section 5.1 Polnomial Functions Section summaries The general form of a polnomial function is f() = a n n + a n 1 n 1 + +a 1 + a 0. The degree of f() is the largest

More information

Systems of Equations. from Campus to Careers Fashion Designer

Systems of Equations. from Campus to Careers Fashion Designer Sstems of Equations from Campus to Careers Fashion Designer Radius Images/Alam. Solving Sstems of Equations b Graphing. Solving Sstems of Equations Algebraicall. Problem Solving Using Sstems of Two Equations.

More information

When I was 3.1 POLYNOMIAL FUNCTIONS

When I was 3.1 POLYNOMIAL FUNCTIONS 146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we

More information

Simplification of Rational Expressions and Functions

Simplification of Rational Expressions and Functions 7.1 Simplification of Rational Epressions and Functions 7.1 OBJECTIVES 1. Simplif a rational epression 2. Identif a rational function 3. Simplif a rational function 4. Graph a rational function Our work

More information

6.3 Parametric Equations and Motion

6.3 Parametric Equations and Motion SECTION 6.3 Parametric Equations and Motion 475 What ou ll learn about Parametric Equations Parametric Curves Eliminating the Parameter Lines and Line Segments Simulating Motion with a Grapher... and wh

More information

3.1 Quadratic Functions

3.1 Quadratic Functions Section 3.1 Quadratic Functions 1 3.1 Quadratic Functions Functions Let s quickl review again the definition of a function. Definition 1 A relation is a function if and onl if each object in its domain

More information

Analyzing the Graph of a Function

Analyzing the Graph of a Function SECTION A Summar of Curve Sketching 09 0 00 Section 0 0 00 0 Different viewing windows for the graph of f 5 7 0 Figure 5 A Summar of Curve Sketching Analze and sketch the graph of a function Analzing the

More information

Let (x 1, y 1 ) (0, 1) and (x 2, y 2 ) (x, y). x 0. y 1. y 1 2. x x Multiply each side by x. y 1 x. y x 1 Add 1 to each side. Slope-Intercept Form

Let (x 1, y 1 ) (0, 1) and (x 2, y 2 ) (x, y). x 0. y 1. y 1 2. x x Multiply each side by x. y 1 x. y x 1 Add 1 to each side. Slope-Intercept Form 8 (-) Chapter Linear Equations in Two Variables and Their Graphs In this section Slope-Intercept Form Standard Form Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications

More information

a > 0 parabola opens a < 0 parabola opens

a > 0 parabola opens a < 0 parabola opens Objective 8 Quadratic Functions The simplest quadratic function is f() = 2. Objective 8b Quadratic Functions in (h, k) form Appling all of Obj 4 (reflections and translations) to the function. f() = a(

More information

P1. Plot the following points on the real. P2. Determine which of the following are solutions

P1. Plot the following points on the real. P2. Determine which of the following are solutions Section 1.5 Rectangular Coordinates and Graphs of Equations 9 PART II: LINEAR EQUATIONS AND INEQUALITIES IN TWO VARIABLES 1.5 Rectangular Coordinates and Graphs of Equations OBJECTIVES 1 Plot Points in

More information

1.6 Graphs of Functions

1.6 Graphs of Functions .6 Graphs of Functions 9.6 Graphs of Functions In Section. we defined a function as a special tpe of relation; one in which each -coordinate was matched with onl one -coordinate. We spent most of our time

More information

Algebra Module A47. The Parabola. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Algebra Module A47. The Parabola. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved. Algebra Module A7 The Parabola Copright This publication The Northern Alberta Institute of Technolog. All Rights Reserved. LAST REVISED December, The Parabola Statement of Prerequisite Skills Complete

More information

Essential Question How can you describe the graph of the equation Ax + By = C? Number of adult tickets. adult

Essential Question How can you describe the graph of the equation Ax + By = C? Number of adult tickets. adult 3. Graphing Linear Equations in Standard Form Essential Question How can ou describe the graph of the equation A + B = C? Using a Table to Plot Points Work with a partner. You sold a total of $16 worth

More information

C1: Coordinate geometry of straight lines

C1: Coordinate geometry of straight lines B_Chap0_08-05.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the

More information

Q (x 1, y 1 ) m = y 1 y 0

Q (x 1, y 1 ) m = y 1 y 0 . Linear Functions We now begin the stud of families of functions. Our first famil, linear functions, are old friends as we shall soon see. Recall from Geometr that two distinct points in the plane determine

More information

1.6. Determine a Quadratic Equation Given Its Roots. Investigate

1.6. Determine a Quadratic Equation Given Its Roots. Investigate 1.6 Determine a Quadratic Equation Given Its Roots Bridges like the one shown often have supports in the shape of parabolas. If the anchors at either side of the bridge are 4 m apart and the maximum height

More information

Solving inequalities. Jackie Nicholas Jacquie Hargreaves Janet Hunter

Solving inequalities. Jackie Nicholas Jacquie Hargreaves Janet Hunter Mathematics Learning Centre Solving inequalities Jackie Nicholas Jacquie Hargreaves Janet Hunter c 6 Universit of Sdne Mathematics Learning Centre, Universit of Sdne Solving inequalities In these nots

More information

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0 LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )

More information

Families of Quadratics

Families of Quadratics Families of Quadratics Objectives To understand the effects of a, b, and c on the graphs of parabolas of the form a 2 b c To use quadratic equations and graphs to analze the motion of projectiles To distinguish

More information

Quadratic Functions. Unit

Quadratic Functions. Unit Quadratic Functions Unit 5 Unit Overview In this unit ou will stud a variet of was to solve quadratic functions and appl our learning to analzing real world problems. Academic Vocabular Add these words

More information

SECTION 5-1 Exponential Functions

SECTION 5-1 Exponential Functions 354 5 Eponential and Logarithmic Functions Most of the functions we have considered so far have been polnomial and rational functions, with a few others involving roots or powers of polnomial or rational

More information

Section 10-5 Parametric Equations

Section 10-5 Parametric Equations 88 0 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY. A hperbola with the following graph: (2, ) (0, 2) 6. A hperbola with the following graph: (, ) (2, 2) C In Problems 7 2, find the coordinates of an foci relative

More information

Solving Absolute Value Equations and Inequalities Graphically

Solving Absolute Value Equations and Inequalities Graphically 4.5 Solving Absolute Value Equations and Inequalities Graphicall 4.5 OBJECTIVES 1. Draw the graph of an absolute value function 2. Solve an absolute value equation graphicall 3. Solve an absolute value

More information

Functions and Their Graphs

Functions and Their Graphs 3 Functions and Their Graphs On a sales rack of clothes at a department store, ou see a shirt ou like. The original price of the shirt was $00, but it has been discounted 30%. As a preferred shopper, ou

More information

A Summary of Curve Sketching. Analyzing the Graph of a Function

A Summary of Curve Sketching. Analyzing the Graph of a Function 0_00.qd //0 :5 PM Page 09 SECTION. A Summar of Curve Sketching 09 0 00 Section. 0 0 00 0 Different viewing windows for the graph of f 5 7 0 Figure. 5 A Summar of Curve Sketching Analze and sketch the graph

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able QUADRATIC FUNCTIONS Completing the Square..95 The Quadratic Formula....99 The Discriminant... 0 Equations in Quadratic Form.. 04 The Standard Form of a Parabola...06 Working with the Standard Form of a

More information

GRAPHS OF RATIONAL FUNCTIONS

GRAPHS OF RATIONAL FUNCTIONS 0 (0-) Chapter 0 Polnomial and Rational Functions. f() ( 0) ( 0). f() ( 0) ( 0). f() ( 0) ( 0). f() ( 0) ( 0) 0. GRAPHS OF RATIONAL FUNCTIONS In this section Domain Horizontal and Vertical Asmptotes Oblique

More information

To Be or Not To Be a Linear Equation: That Is the Question

To Be or Not To Be a Linear Equation: That Is the Question To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not

More information

Solving Systems of Equations

Solving Systems of Equations Solving Sstems of Equations When we have or more equations and or more unknowns, we use a sstem of equations to find the solution. Definition: A solution of a sstem of equations is an ordered pair that

More information

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM . Equations of Lines in Slope-Intercept and Standard Form ( ) 8 In this Slope-Intercept Form Standard Form section Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications (0,

More information

4.1 Piecewise-Defined Functions

4.1 Piecewise-Defined Functions Section 4.1 Piecewise-Defined Functions 335 4.1 Piecewise-Defined Functions In preparation for the definition of the absolute value function, it is etremel important to have a good grasp of the concept

More information

4.9 Graph and Solve Quadratic

4.9 Graph and Solve Quadratic 4.9 Graph and Solve Quadratic Inequalities Goal p Graph and solve quadratic inequalities. Your Notes VOCABULARY Quadratic inequalit in two variables Quadratic inequalit in one variable GRAPHING A QUADRATIC

More information

3.1 Graphically Solving Systems of Two Equations

3.1 Graphically Solving Systems of Two Equations 3.1 Graphicall Solving Sstems of Two Equations (Page 1 of 24) 3.1 Graphicall Solving Sstems of Two Equations Definitions The plot of all points that satisf an equation forms the graph of the equation.

More information