Geometric Camera Parameters

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Geometric Camera Parameters"

Transcription

1 Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances are measured in the camera s reference frame. (2) the image coordinates have their origin at the principal point. - In general, the world and pixel coordinate systems are related by a set of physical parameters such as: *the focal length of the lens *the size of the pixels *the position of the principal point *the position and orientation of the camera

2 Types of parameters (Trucco 2.4) -2- -Two types of parameters need to be recovered in order for us to reconstruct the 3D structure of a scene from the pixel coordinates of its image points: Extrinsic camera parameters: the parameters that define the location and orientation of the camera reference frame with respect to a known world reference frame. Intrinsic camera parameters: the parameters necessary to link the pixel coordinates of an image point with the corresponding coordinates in the camera reference frame. Object Coordinates (3D) World Coordinates (3D) Camera Coordinates (3D) extrinsic camera parameters Image Plane Coordinates (2D) intrinsic camera parameters Pixel Coordinates (2D, int)

3 -3- Extrinsic camera parameters -These are the parameters that identify uniquely the transformation between the unknown camera reference frame and the known world reference frame. -Typically, determining these parameters means: () finding the translation vector between the relative positions of the origins of the two reference frames. (2) finding the rotation matrix that brings the corresponding axes of the two frames into alignment (i.e., onto each other)

4 -4- - Using the extrinsic camera parameters, we can find the relation between the coordinates of a point P in world (P w )and camera (P c )coordinates: P c = R(P w T )where R = r r 2 r 3 r 2 r 22 r 32 r 3 r 23 r 33 -If P c = X c Y c Z c and P w = Y w,then X c Y c Z c = r r 2 r 3 r 2 r 22 r 32 r 3 r 23 r 33 T x Y w T y T z or X c = R T (P w T ) Y c = R T 2 (P w T ) Z c = R T 3 (P w T ) where R T i corresponds to the i-th row ofthe rotation matrix

5 -5- Intrinsic camera parameters - These are the parameters that characterize the optical, geometric, and digital characteristics of the camera: () the perspective projection (focal length f ). (2) the transformation between image plane coordinates and pixel coordinates. (3) the geometric distortion introduced by the optics. From Camera Coordinates to Image Plane Coordinates -Apply perspective projection: x = f X c = f RT (P w T ) Z c R T 3 (P w T ), y = f Y c Z c = f RT 2 (P w T ) R T 3 (P w T ) From Image Plane Coordinates to Pixel coordinates x im pixel frame P y im Camera Frame Yc Xc Z c center of perspective projection optical axis y o x,oy image plane frame x principal point World Frame Yw x = (x im o x )s x or x im = x/s x + o x y = (y im o y )s y or y im = y/s y + o y where (o x, o y )are the coordinates of the principal point (in pixels, e.g., o x = N/2, o y = M/2 if the principal point is the center of the image) and s x, s y correspond to the effective size of the pixels in the horizontal and vertical directions (in millimeters).

6 -6- -Using matrix notation: x im y im = /s x /s y o x o y x y Relating pixel coordinates to wor ld coordinates or (x im o x )s x = f RT (P w T ) R T 3 (P w T ), (y im o y )s y = f RT 2 (P w T ) R T 3 (P w T ) x im = fs x R T (P w T ) R T 3 (P w T ) + o x, y im = fs y R T 2 (P w T ) R T 3 (P w T ) + o y Image distortions due to optics Assuming radial distortion: x = x d ( + k r 2 + k 2 r 4 ) y = y d ( + k r 2 + k 2 r 4 ) where (x d, y d )are the coordinates of the distorted points (r 2 = x 2 d + y 2 d) k and k 2 are intrinsic parameters too but will not be considered here...

7 -7- Combine extrinsic with intrinsic camera parameters -The matrix containing the intrinsic camera parameters: f /s x M in = f /s y o x o y -The matrix containing the extrinsic camera parameters: M ex = r r 2 r 3 r 2 r 22 r 32 r 3 r 23 r 33 R T T R T 2 T R T 3 T -Using homogeneous coordinates: x h y h w = M in M ex Y w = M Y w = m m 2 m 3 m 2 m 22 m 32 m 3 m 23 m 33 m 4 m 24 m 34 Y w -Homogenization is needed to obtain the pixel coordinates: x im = x h w = m + m 2 Y w + m 3 + m 4 m 3 + m 32 Y w + m 33 + m 34 y im = y h w = m 2 + m 22 Y w + m 23 + m 24 m 3 + m 32 Y w + m 33 + m 34 - M is called the projection matrix (it is a 3 x 4 matrix). Note: the relation of 3D points and their 2D projections can be seen as a linear transformation from the projective space (, Y w,,) T to the projective plane (x h, y h, w) T.

8 -8- The perspective camera model (using matrix notation) -Assuming o x = o y = and s x = s y = fr M p = fr 2 r 3 fr 2 fr 22 r 32 fr 3 fr 23 r 33 fr T T fr T 2 T R T 3 T -Let s verify the correctness of the above matrix: fr T p = M p P w = fr T 2 R T 3 fr T T fr T 2 T R T 3 T P w fr T (P w T ) = fr T 2 (P w T ) R T 3 (P w T ) -After homogenization (we get the same equations as in page 23): x = f RT (P w T ) R T 3 (P w T ) y = f RT 2 (P w T ) R T 3 (P w T ) The weak perspective camera model (using matrix notation) fr M wp = fr 2 fr 2 fr 22 fr 3 fr 23 fr T T fr T 2 T R T 3 (P T ) where P is the centroid of the object (i.e., object s average distance from the camera) -Wecan verify the correctness of the above matrix: fr T p = M wp P w = fr T 2 fr T T fr T 2 T R T 3 (P T ) P w fr T (P w T ) = fr T 2 (P w T ) R T 3 (P T ) -After homogenization: x = f RT (P w T ) R T 3 (P T ) y = f RT 2 (P w T ) R T 3 (P T )

9 -9- The affine camera model -The entries of the projection matrix are totally unconstrained: M a = a a 2 a 2 a 22 a 3 a 23 a 4 a 24 a 34 -The affine model does not appear to correspond to any physical camera. -Leads to simple equations and appealing geometric properties. -Does not preserve angles but does preserve parallelism.

Module 6: Pinhole camera model Lecture 30: Intrinsic camera parameters, Perspective projection using homogeneous coordinates

Module 6: Pinhole camera model Lecture 30: Intrinsic camera parameters, Perspective projection using homogeneous coordinates The Lecture Contains: Pinhole camera model 6.1 Intrinsic camera parameters A. Perspective projection using homogeneous coordinates B. Principal-point offset C. Image-sensor characteristics file:///d /...0(Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2030/30_1.htm[12/31/2015

More information

Lecture 19 Camera Matrices and Calibration

Lecture 19 Camera Matrices and Calibration Lecture 19 Camera Matrices and Calibration Project Suggestions Texture Synthesis for In-Painting Section 10.5.1 in Szeliski Text Project Suggestions Image Stitching (Chapter 9) Face Recognition Chapter

More information

IMAGE FORMATION. Antonino Furnari

IMAGE FORMATION. Antonino Furnari IPLab - Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli Studi di Catania http://iplab.dmi.unict.it IMAGE FORMATION Antonino Furnari furnari@dmi.unict.it http://dmi.unict.it/~furnari

More information

Image Formation and Camera Calibration

Image Formation and Camera Calibration EECS 432-Advanced Computer Vision Notes Series 2 Image Formation and Camera Calibration Ying Wu Electrical Engineering & Computer Science Northwestern University Evanston, IL 60208 yingwu@ecenorthwesternedu

More information

The Geometry of Perspective Projection

The Geometry of Perspective Projection The Geometry o Perspective Projection Pinhole camera and perspective projection - This is the simplest imaging device which, however, captures accurately the geometry o perspective projection. -Rays o

More information

The calibration problem was discussed in details during lecture 3.

The calibration problem was discussed in details during lecture 3. 1 2 The calibration problem was discussed in details during lecture 3. 3 Once the camera is calibrated (intrinsics are known) and the transformation from the world reference system to the camera reference

More information

Image Projection. Goal: Introduce the basic concepts and mathematics for image projection.

Image Projection. Goal: Introduce the basic concepts and mathematics for image projection. Image Projection Goal: Introduce the basic concepts and mathematics for image projection. Motivation: The mathematics of image projection allow us to answer two questions: Given a 3D scene, how does it

More information

3D Scanner using Line Laser. 1. Introduction. 2. Theory

3D Scanner using Line Laser. 1. Introduction. 2. Theory . Introduction 3D Scanner using Line Laser Di Lu Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute The goal of 3D reconstruction is to recover the 3D properties of a geometric

More information

C4 Computer Vision. 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman. fundamental matrix, recovering ego-motion, applications.

C4 Computer Vision. 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman. fundamental matrix, recovering ego-motion, applications. C4 Computer Vision 4 Lectures Michaelmas Term 2004 1 Tutorial Sheet Prof A. Zisserman Overview Lecture 1: Stereo Reconstruction I: epipolar geometry, fundamental matrix. Lecture 2: Stereo Reconstruction

More information

2D Geometric Transformations. COMP 770 Fall 2011

2D Geometric Transformations. COMP 770 Fall 2011 2D Geometric Transformations COMP 770 Fall 2011 1 A little quick math background Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector multiplication Matrix-matrix multiplication

More information

521493S Computer Graphics. Exercise 2 & course schedule change

521493S Computer Graphics. Exercise 2 & course schedule change 521493S Computer Graphics Exercise 2 & course schedule change Course Schedule Change Lecture from Wednesday 31th of March is moved to Tuesday 30th of March at 16-18 in TS128 Question 2.1 Given two nonparallel,

More information

Notes on the Use of Multiple Image Sizes at OpenCV stereo

Notes on the Use of Multiple Image Sizes at OpenCV stereo Notes on the Use of Multiple Image Sizes at OpenCV stereo Antonio Albiol April 5, 2012 Abstract This paper explains how to use different image sizes at different tasks done when using OpenCV for stereo

More information

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A. 1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

More information

Epipolar Geometry Prof. D. Stricker

Epipolar Geometry Prof. D. Stricker Outline 1. Short introduction: points and lines Epipolar Geometry Prof. D. Stricker 2. Two views geometry: Epipolar geometry Relation point/line in two views The geometry of two cameras Definition of the

More information

Homography. Dr. Gerhard Roth

Homography. Dr. Gerhard Roth Homography Dr. Gerhard Roth Epipolar Geometry P P l P r Epipolar Plane p l Epipolar Lines p r O l e l e r O r Epipoles P r = R(P l T) Homography Consider a point x = (u,v,1) in one image and x =(u,v,1)

More information

Lecture 2: Homogeneous Coordinates, Lines and Conics

Lecture 2: Homogeneous Coordinates, Lines and Conics Lecture 2: Homogeneous Coordinates, Lines and Conics 1 Homogeneous Coordinates In Lecture 1 we derived the camera equations λx = P X, (1) where x = (x 1, x 2, 1), X = (X 1, X 2, X 3, 1) and P is a 3 4

More information

Image Formation. The two parts of the image formation process. Asimple model

Image Formation. The two parts of the image formation process. Asimple model Image Formation The two parts of the image formation process The geometry of image formation which determines where in the image plane the projection of a point in the scene will be located. The physics

More information

Geometric Transformations and Image Warping: Mosaicing

Geometric Transformations and Image Warping: Mosaicing Geometric Transformations and Image Warping: Mosaicing CS 6640 Ross Whitaker, Guido Gerig SCI Institute, School of Computing University of Utah (with slides from: Jinxiang Chai, TAMU) faculty.cs.tamu.edu/jchai/cpsc641_spring10/lectures/lecture8.ppt

More information

Math 54. Selected Solutions for Week Is u in the plane in R 3 spanned by the columns

Math 54. Selected Solutions for Week Is u in the plane in R 3 spanned by the columns Math 5. Selected Solutions for Week 2 Section. (Page 2). Let u = and A = 5 2 6. Is u in the plane in R spanned by the columns of A? (See the figure omitted].) Why or why not? First of all, the plane in

More information

2D Geometric Transformations

2D Geometric Transformations 2D Geometric Transformations (Chapter 5 in FVD) 2D Geometric Transformations Question: How do we represent a geometric object in the plane? Answer: For now, assume that objects consist of points and lines.

More information

RESEARCHES ON HAZARD AVOIDANCE CAMERAS CALIBRATION OF LUNAR ROVER

RESEARCHES ON HAZARD AVOIDANCE CAMERAS CALIBRATION OF LUNAR ROVER ICSO International Conference on Space Optics 4-8 October RESERCHES ON HZRD VOIDNCE CMERS CLIBRTION OF LUNR ROVER Li Chunyan,,Wang Li,,LU Xin,,Chen Jihua 3,Fan Shenghong 3. Beijing Institute of Control

More information

Camera calibration and epipolar geometry. Odilon Redon, Cyclops, 1914

Camera calibration and epipolar geometry. Odilon Redon, Cyclops, 1914 Camera calibration and epipolar geometry Odilon Redon, Cyclops, 94 Review: Alignment What is the geometric relationship between pictures taken by cameras that share the same center? How many points do

More information

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007 Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total

More information

geometric transforms

geometric transforms geometric transforms 1 linear algebra review 2 matrices matrix and vector notation use column for vectors m 11 =[ ] M = [ m ij ] m 21 m 12 m 22 =[ ] v v 1 v = [ ] T v 1 v 2 2 3 matrix operations addition

More information

Geometric Transformation CS 211A

Geometric Transformation CS 211A Geometric Transformation CS 211A What is transformation? Moving points (x,y) moves to (x+t, y+t) Can be in any dimension 2D Image warps 3D 3D Graphics and Vision Can also be considered as a movement to

More information

Advanced Techniques for Mobile Robotics Camera Calibration. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz

Advanced Techniques for Mobile Robotics Camera Calibration. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Advanced Techniques for Mobile Robotics Camera Calibration Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz What is Camera Calibration? A camera projects 3D world points onto the 2D image

More information

Image Formation. Introduce the elements of camera models, optics, and image

Image Formation. Introduce the elements of camera models, optics, and image Image Formation Goal: formation. Introduce the elements of camera models, optics, and image Motivation: Camera models, together with radiometry and reflectance models, allow us to formulate the dependence

More information

Image formation. Image formation. Pinhole camera. Pinhole camera. Image formation. Matlab tutorial. Physical parameters of image formation

Image formation. Image formation. Pinhole camera. Pinhole camera. Image formation. Matlab tutorial. Physical parameters of image formation Image formation Image formation Matlab tutorial How are objects in the world captured in an image? Tuesday, Sept 2 Physical parameters of image formation Geometric Type of projection Camera pose Optical

More information

Geometric Image Transformations

Geometric Image Transformations Geometric Image Transformations Part One 2D Transformations Spatial Coordinates (x,y) are mapped to new coords (u,v) pixels of source image -> pixels of destination image Types of 2D Transformations Affine

More information

B4 Computational Geometry

B4 Computational Geometry 3CG 2006 / B4 Computational Geometry David Murray david.murray@eng.o.ac.uk www.robots.o.ac.uk/ dwm/courses/3cg Michaelmas 2006 3CG 2006 2 / Overview Computational geometry is concerned with the derivation

More information

8.1 Lens Equation. 8.2 Image Resolution (8.1) z' z r

8.1 Lens Equation. 8.2 Image Resolution (8.1) z' z r Chapter 8 Optics This chapter covers the essentials of geometrical optics. Radiometry is covered in Chapter 9. Machine vision relies on the pinhole camera model which models the geometry of perspective

More information

Epipolar Geometry and Stereo Vision

Epipolar Geometry and Stereo Vision 04/12/11 Epipolar Geometry and Stereo Vision Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adapted from Lana Lazebnik, Silvio Saverese, Steve Seitz, many figures from

More information

Section 1.7 22 Continued

Section 1.7 22 Continued Section 1.5 23 A homogeneous equation is always consistent. TRUE - The trivial solution is always a solution. The equation Ax = 0 gives an explicit descriptions of its solution set. FALSE - The equation

More information

Orthogonal Projections

Orthogonal Projections Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

More information

Lecture 2: Geometric Image Transformations

Lecture 2: Geometric Image Transformations Lecture 2: Geometric Image Transformations Harvey Rhody Chester F. Carlson Center for Imaging Science Rochester Institute of Technology rhody@cis.rit.edu September 8, 2005 Abstract Geometric transformations

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: *Define object in local coordinates *Place object in world coordinates (modeling transformation)

More information

Structured light systems

Structured light systems Structured light systems Tutorial 1: 9:00 to 12:00 Monday May 16 2011 Hiroshi Kawasaki & Ryusuke Sagawa Today Structured light systems Part I (Kawasaki@Kagoshima Univ.) Calibration of Structured light

More information

2D Geometrical Transformations. Foley & Van Dam, Chapter 5

2D Geometrical Transformations. Foley & Van Dam, Chapter 5 2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations

More information

A System for Capturing High Resolution Images

A System for Capturing High Resolution Images A System for Capturing High Resolution Images G.Voyatzis, G.Angelopoulos, A.Bors and I.Pitas Department of Informatics University of Thessaloniki BOX 451, 54006 Thessaloniki GREECE e-mail: pitas@zeus.csd.auth.gr

More information

Rotation Matrices and Homogeneous Transformations

Rotation Matrices and Homogeneous Transformations Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n

More information

226-332 Basic CAD/CAM. CHAPTER 5: Geometric Transformation

226-332 Basic CAD/CAM. CHAPTER 5: Geometric Transformation 226-332 Basic CAD/CAM CHAPTER 5: Geometric Transformation 1 Geometric transformation is a change in geometric characteristics such as position, orientation, and size of a geometric entity (point, line,

More information

COMP 558 Exercises 1 Oct 2, 2010

COMP 558 Exercises 1 Oct 2, 2010 Questions 1. When a face is photographed from the front and from a small distance, the nose appears much larger than it should in comparison to the other parts of the face. Why? 2. Below are sketches of

More information

DICOM Correction Item

DICOM Correction Item Correction Number DICOM Correction Item CP-626 Log Summary: Type of Modification Clarification Rationale for Correction Name of Standard PS 3.3 2004 + Sup 83 The description of pixel spacing related attributes

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

Lecture 3: Coordinate Systems and Transformations

Lecture 3: Coordinate Systems and Transformations Lecture 3: Coordinate Systems and Transformations Topics: 1. Coordinate systems and frames 2. Change of frames 3. Affine transformations 4. Rotation, translation, scaling, and shear 5. Rotation about an

More information

8. Linear least-squares

8. Linear least-squares 8. Linear least-squares EE13 (Fall 211-12) definition examples and applications solution of a least-squares problem, normal equations 8-1 Definition overdetermined linear equations if b range(a), cannot

More information

Affine Transformations

Affine Transformations A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates

More information

4BA6 - Topic 4 Dr. Steven Collins. Chap. 5 3D Viewing and Projections

4BA6 - Topic 4 Dr. Steven Collins. Chap. 5 3D Viewing and Projections 4BA6 - Topic 4 Dr. Steven Collins Chap. 5 3D Viewing and Projections References Computer graphics: principles & practice, Fole, vandam, Feiner, Hughes, S-LEN 5.644 M23*;-6 (has a good appendix on linear

More information

Linear transformations Affine transformations Transformations in 3D. Graphics 2011/2012, 4th quarter. Lecture 5: linear and affine transformations

Linear transformations Affine transformations Transformations in 3D. Graphics 2011/2012, 4th quarter. Lecture 5: linear and affine transformations Lecture 5 Linear and affine transformations Vector transformation: basic idea Definition Examples Finding matrices Compositions of transformations Transposing normal vectors Multiplication of an n n matrix

More information

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the

More information

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

More information

3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala)

3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala) 3D Tranformations CS 4620 Lecture 6 1 Translation 2 Translation 2 Translation 2 Translation 2 Scaling 3 Scaling 3 Scaling 3 Scaling 3 Rotation about z axis 4 Rotation about z axis 4 Rotation about x axis

More information

Using Spatially Distributed Patterns for Multiple View Camera Calibration

Using Spatially Distributed Patterns for Multiple View Camera Calibration Using Spatially Distributed Patterns for Multiple View Camera Calibration Martin Grochulla, Thorsten Thormählen, and Hans-Peter Seidel Max-Planc-Institut Informati, Saarbrücen, Germany {mgrochul, thormae}@mpi-inf.mpg.de

More information

2D Geometrical Transformations

2D Geometrical Transformations 2D Geometrical Transformations Translation -Moves points to new locations by adding translation amounts to the coordinates of the points T P(,y) P (,y ) = + d, =y + dy or = y P =P + T + d dy -Totranslate

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

Computational Photography and Video: More on Camera, Sensors & Color. Prof. Marc Pollefeys

Computational Photography and Video: More on Camera, Sensors & Color. Prof. Marc Pollefeys Computational Photography and Video: More on Camera, Sensors & Color Prof. Marc Pollefeys Today s schedule Last week s recap & administrivia Metering Aberrations Sensors Color sensing Today s schedule

More information

INTRODUCTION TO RENDERING TECHNIQUES

INTRODUCTION TO RENDERING TECHNIQUES INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature

More information

Orthogonal Matrices. u v = u v cos(θ) T (u) + T (v) = T (u + v). It s even easier to. If u and v are nonzero vectors then

Orthogonal Matrices. u v = u v cos(θ) T (u) + T (v) = T (u + v). It s even easier to. If u and v are nonzero vectors then Part 2. 1 Part 2. Orthogonal Matrices If u and v are nonzero vectors then u v = u v cos(θ) is 0 if and only if cos(θ) = 0, i.e., θ = 90. Hence, we say that two vectors u and v are perpendicular or orthogonal

More information

Relating Vanishing Points to Catadioptric Camera Calibration

Relating Vanishing Points to Catadioptric Camera Calibration Relating Vanishing Points to Catadioptric Camera Calibration Wenting Duan* a, Hui Zhang b, Nigel M. Allinson a a Laboratory of Vision Engineering, University of Lincoln, Brayford Pool, Lincoln, U.K. LN6

More information

Polygonal Approximation of Closed Curves across Multiple Views

Polygonal Approximation of Closed Curves across Multiple Views Polygonal Approximation of Closed Curves across Multiple Views M. Pawan Kumar Saurabh Goyal C. V. Jawahar P. J. Narayanan Centre for Visual Information Technology International Institute of Information

More information

Solution Guide III-C. 3D Vision. Building Vision for Business. MVTec Software GmbH

Solution Guide III-C. 3D Vision. Building Vision for Business. MVTec Software GmbH Solution Guide III-C 3D Vision MVTec Software GmbH Building Vision for Business Machine vision in 3D world coordinates, Version 10.0.4 All rights reserved. No part of this publication may be reproduced,

More information

CS 534: Computer Vision 3D Model-based recognition

CS 534: Computer Vision 3D Model-based recognition CS 534: Computer Vision 3D Model-based recognition Ahmed Elgammal Dept of Computer Science CS 534 3D Model-based Vision - 1 High Level Vision Object Recognition: What it means? Two main recognition tasks:!

More information

Epipolar Geometry. Readings: See Sections 10.1 and 15.6 of Forsyth and Ponce. Right Image. Left Image. e(p ) Epipolar Lines. e(q ) q R.

Epipolar Geometry. Readings: See Sections 10.1 and 15.6 of Forsyth and Ponce. Right Image. Left Image. e(p ) Epipolar Lines. e(q ) q R. Epipolar Geometry We consider two perspective images of a scene as taken from a stereo pair of cameras (or equivalently, assume the scene is rigid and imaged with a single camera from two different locations).

More information

2. Norm, distance, angle

2. Norm, distance, angle L. Vandenberghe EE133A (Spring 2016) 2. Norm, distance, angle norm distance angle hyperplanes complex vectors 2-1 Euclidean norm (Euclidean) norm of vector a R n : a = a 2 1 + a2 2 + + a2 n = a T a if

More information

LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK

LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK vii LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK LIST OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF NOTATIONS LIST OF ABBREVIATIONS LIST OF APPENDICES

More information

Intersection of Objects with Linear and Angular Velocities using Oriented Bounding Boxes

Intersection of Objects with Linear and Angular Velocities using Oriented Bounding Boxes Intersection of Objects with Linear and Angular Velocities using Oriented Bounding Boxes David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created:

More information

Photogrammetry Metadata Set for Digital Motion Imagery

Photogrammetry Metadata Set for Digital Motion Imagery MISB ST 0801.5 STANDARD Photogrammetry Metadata Set for Digital Motion Imagery 7 February 014 1 Scope This Standard presents the Key-Length-Value (KLV) metadata necessary for the dissemination of data

More information

OpenStax-CNX module: m Angular velocity. Sunil Kumar Singh. 1 General interpretation of angular quantities

OpenStax-CNX module: m Angular velocity. Sunil Kumar Singh. 1 General interpretation of angular quantities OpenStax-CNX module: m14314 1 Angular velocity Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 Abstract Angular quantities are not

More information

Face detection is a process of localizing and extracting the face region from the

Face detection is a process of localizing and extracting the face region from the Chapter 4 FACE NORMALIZATION 4.1 INTRODUCTION Face detection is a process of localizing and extracting the face region from the background. The detected face varies in rotation, brightness, size, etc.

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Realit Viewing and projection Classical and General Viewing Transformation Pipeline CPU Pol. DL Pixel Per Vertex Texture Raster Frag FB object ee clip normalized device

More information

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are

More information

Essential Mathematics for Computer Graphics fast

Essential Mathematics for Computer Graphics fast John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

More information

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

View Camera Movements and Techniques

View Camera Movements and Techniques View Camera Movements and Techniques View Camera Movements A view camera s movements, front and rear standards, provide for the ability to change and control an image, including image placement, planes

More information

The Image Deblurring Problem

The Image Deblurring Problem page 1 Chapter 1 The Image Deblurring Problem You cannot depend on your eyes when your imagination is out of focus. Mark Twain When we use a camera, we want the recorded image to be a faithful representation

More information

Geometric Transformations

Geometric Transformations CS3 INTRODUCTION TO COMPUTER GRAPHICS Geometric Transformations D and 3D CS3 INTRODUCTION TO COMPUTER GRAPHICS Grading Plan to be out Wednesdas one week after the due date CS3 INTRODUCTION TO COMPUTER

More information

2-View Geometry. Mark Fiala Ryerson University Mark.fiala@ryerson.ca

2-View Geometry. Mark Fiala Ryerson University Mark.fiala@ryerson.ca CRV 2010 Tutorial Day 2-View Geometry Mark Fiala Ryerson University Mark.fiala@ryerson.ca 3-Vectors for image points and lines Mark Fiala 2010 2D Homogeneous Points Add 3 rd number to a 2D point on image

More information

TWO-DIMENSIONAL TRANSFORMATION

TWO-DIMENSIONAL TRANSFORMATION CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization

More information

Symmetry-Based Photo Editing

Symmetry-Based Photo Editing Symmetry-Based Photo Editing Kun Huang Wei Hong Yi Ma Department of Electrical and Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana-Champaign kunhuang, weihong, yima

More information

Sensor Fusion of a CCD Camera and an. Acceleration-Gyro Sensor for the Recovery of. Three-Dimensional Shape and Scale

Sensor Fusion of a CCD Camera and an. Acceleration-Gyro Sensor for the Recovery of. Three-Dimensional Shape and Scale Sensor Fusion of a CCD Camera and an Acceleration-Gyro Sensor for the Recovery of Three-Dimensional Shape and Scale Toshiharu Mukai Bio-Mimetic Control Research Center The Institute of Physical and Chemical

More information

PHYSIOLOGICALLY-BASED DETECTION OF COMPUTER GENERATED FACES IN VIDEO

PHYSIOLOGICALLY-BASED DETECTION OF COMPUTER GENERATED FACES IN VIDEO PHYSIOLOGICALLY-BASED DETECTION OF COMPUTER GENERATED FACES IN VIDEO V. Conotter, E. Bodnari, G. Boato H. Farid Department of Information Engineering and Computer Science University of Trento, Trento (ITALY)

More information

A translation can be defined in terms of reflections:

A translation can be defined in terms of reflections: Geometry Week 26 sec. 12.2 to 12.6 Translation: section 12.2 translation can be defined in terms of reflections: ' '' ' ' '' '' orientation reversed orientation reversed orientation preserved in double

More information

Affine Transformations. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Affine Transformations. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Affine Transformations University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Logistics Required reading: Watt, Section 1.1. Further reading: Foley, et al, Chapter 5.1-5.5. David

More information

Paddle Juggling by Robot Manipulator with Visual Servo

Paddle Juggling by Robot Manipulator with Visual Servo 23 Paddle Juggling by Robot Manipulator with Visual Servo Akira Nakashima, Yoshiyasu Sugiyama and Yoshikazu Hayakawa Nagoya University Japan 1. Introduction Juggling is a typical example to represent dexterous

More information

MATH1231 Algebra, 2015 Chapter 7: Linear maps

MATH1231 Algebra, 2015 Chapter 7: Linear maps MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

Calibrating pan-tilt cameras in wide-area surveillance networks

Calibrating pan-tilt cameras in wide-area surveillance networks Calibrating pan-tilt cameras in wide-area surveillance networks James Davis Honda Research Institute Mountain View CA USA jedavis@ieee.org Xing Chen NVIDIA Corporation Santa Clara CA USA xcchen@ieee.org

More information

with functions, expressions and equations which follow in units 3 and 4.

with functions, expressions and equations which follow in units 3 and 4. Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

More information

C is a point of concurrency is at distance from End Effector frame & at distance from ref frame.

C is a point of concurrency is at distance from End Effector frame & at distance from ref frame. Module 6 : Robot manipulators kinematics Lecture 21 : Forward & inverse kinematics examples of 2R, 3R & 3P manipulators Objectives In this course you will learn the following Inverse position and orientation

More information

Name: Date: Math in Special Effects: Try Other Challenges. Answer Key

Name: Date: Math in Special Effects: Try Other Challenges. Answer Key Name: Date: Math in Special Effects: Try Other Challenges When filming special effects, a high-speed photographer needs to control the duration and impact of light by adjusting a number of settings, including

More information

Students will understand 1. use numerical bases and the laws of exponents

Students will understand 1. use numerical bases and the laws of exponents Grade 8 Expressions and Equations Essential Questions: 1. How do you use patterns to understand mathematics and model situations? 2. What is algebra? 3. How are the horizontal and vertical axes related?

More information

Pennsylvania System of School Assessment

Pennsylvania System of School Assessment Pennsylvania System of School Assessment The Assessment Anchors, as defined by the Eligible Content, are organized into cohesive blueprints, each structured with a common labeling system that can be read

More information

1 General information

1 General information SGN-1650/SGN-1656 Signal Processing Laboratory Constructing 3D model from stereo image pair 1 General information In this exercise, a 3D model is constructed using stereo image pair. The exercise work

More information

Robot Manipulators. Position, Orientation and Coordinate Transformations. Fig. 1: Programmable Universal Manipulator Arm (PUMA)

Robot Manipulators. Position, Orientation and Coordinate Transformations. Fig. 1: Programmable Universal Manipulator Arm (PUMA) Robot Manipulators Position, Orientation and Coordinate Transformations Fig. 1: Programmable Universal Manipulator Arm (PUMA) A robot manipulator is an electronically controlled mechanism, consisting of

More information

Projection Center Calibration for a Co-located Projector Camera System

Projection Center Calibration for a Co-located Projector Camera System Projection Center Calibration for a Co-located Camera System Toshiyuki Amano Department of Computer and Communication Science Faculty of Systems Engineering, Wakayama University Sakaedani 930, Wakayama,

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

PASSENGER SAFETY is one of the most important. Calibration of an embedded camera for driver-assistant systems

PASSENGER SAFETY is one of the most important. Calibration of an embedded camera for driver-assistant systems 1 Calibration of an embedded camera for driver-assistant systems Mario Bellino, Frédéric Holzmann, Sascha Kolski, Yuri Lopez de Meneses, Jacques Jacot Abstract One of the main technical goals in the actual

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

More information

Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes:

Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes: 3 3.1 2D Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes: 1. Change coordinate frames (world, window, viewport, device, etc). 2. Compose objects

More information

0017- Understanding and Using Vector and Transformational Geometries

0017- Understanding and Using Vector and Transformational Geometries Tom Coleman INTD 301 Final Project Dr. Johannes Vector geometry: 0017- Understanding and Using Vector and Transformational Geometries 3-D Cartesian coordinate representation: - A vector v is written as

More information