Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes:
|
|
|
- Kerry Oliver
- 9 years ago
- Views:
Transcription
1 D Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes: 1. Change coordinate frames (world, window, viewport, device, etc). 2. Compose objects of simple parts with local scale/position/orientation of one part defined with regard to other parts. For example, for articulated objects. 3. Use deformation to create new shapes. 4. Useful for animation. There are three basic classes of transformations: 1. Rigid body - Preserves distance and angles. Examples: translation and rotation. 2. Conformal - Preserves angles. Examples: translation, rotation, and uniform scaling. 3. Affine - Preserves parallelism. Lines remain lines. Examples: translation, rotation, scaling, shear, and reflection. Examples of transformations: Translation by vector t: p 1 = p 0 + t. [ cos(θ) sin(θ) Rotation counterclockwise by θ: p 1 = sin(θ) cos(θ) Copyright c 2005 David Fleet and Aaron Hertzmann 10
2 Uniform scaling by scalar a: p 1 = [ a 0 0 a Nonuniform scaling by a and b: p 1 = [ a 0 0 b Shear by scalar h: p 1 = [ 1 h 0 1 Reflection about the y-axis: p 1 = [ Affine An affine transformation takes a point p to q according to q = F( p) = A p + t, a linear transformation followed by a translation. You should understand the following proofs. Copyright c 2005 David Fleet and Aaron Hertzmann 11
3 The inverse of an affine transformation is also affine, assuming it exists. Proof: Let q = A p + t and assume A 1 exists, i.e. det(a) 0. Then A p = q t, so p = A 1 q A 1 t. This can be rewritten as p = B q + d, where B = A 1 and d = A 1 t. Note: The inverse of a 2D linear transformation is [ 1 [ a b A 1 1 = = c d ad bc d b c a. Lines and parallelism are preserved under affine transformations. Proof: To prove lines are preserved, we must show that q(λ) = F( l(λ)) is a line, where F( p) = A p + t and l(λ) = p 0 + λ d. q(λ) = A l(λ) + t = A( p 0 + λ d) + t = (A p 0 + t) + λa d This is a parametric form of a line through A p 0 + t with direction A d. Given a closed region, the area under an affine transformation A p + t is scaled by det(a). Note: Rotations and translations have det(a) = 1. [ a 0 Scaling A = has det(a) = ab. 0 b Singularities have det(a) = 0. Example: [ 1 0 The matrix A = maps all points to the x-axis, so the area of any closed 0 0 region will become zero. We have det(a) = 0, which verifies that any closed region s area will be scaled by zero. Copyright c 2005 David Fleet and Aaron Hertzmann 12
4 A composition of affine transformations is still affine. Proof: Let F 1 ( p) = A 1 p + t 1 and F 2 ( p) = A 2 p + t 2. Then, F( p) = F 2 (F 1 ( p)) = A 2 (A 1 p + t 1 ) + t 2 = A 2 A 1 p + (A 2 t 1 + t 2 ). Letting A = A 2 A 1 and t = A 2 t 1 + t 2, we have F( p) = A p + t, and this is an affine transformation. 3.3 Homogeneous Coordinates Homogeneous coordinates are another way to represent points to simplify the way in which we express affine transformations. Normally, bookkeeping would become tedious when affine transformations of the form A p + t are composed. With homogeneous coordinates, affine transformations become matrices, and composition of transformations is as simple as matrix multiplication. In future sections of the course we exploit this in much more powerful ways. With homogeneous coordinates, a point p is augmented with a 1, to form ˆp = All points (α p,α) represent the same point p for real α 0. Given ˆp in homogeneous coordinates, to get p, we divide ˆp by its last component and discard the last component. Example: The homogeneous points (2, 4, 2) and (1, 2, 1) both represent the Cartesian point (1, 2). It s the orientation of ˆp that matters, not its length. [ p 1. Many transformations become linear in homogeneous coordinates, including affine transformations: [ [ [ [ qx a b px tx = + q y c d p y t y [ p a b x tx = p c d t y y 1 = [ A t ˆp Copyright c 2005 David Fleet and Aaron Hertzmann 13
5 To produce ˆq rather than q, we can add a row to the matrix: [ a b t A t x ˆq = 0 T ˆp = c d t y This is linear! Bookkeeping becomes simple under composition. Example: F [ 3 (F 2 (F 1 ( p))), where F i ( p) = A i ( p) + t i becomes M 3 M 2 M 1 p, where M i = Ai t i 0 T. 1 ˆp. With homogeneous coordinates, the following properties of affine transformations become apparent: Affine transformations are associative. For affine transformations F 1, F 2, and F 3, Affine transformations are not commutative. For affine transformations F 1 and F 2, (F 3 F 2 ) F 1 = F 3 (F 2 F 1 ). F 2 F 1 F 1 F Uses and Abuses of Homogeneous Coordinates Homogeneous coordinates provide a different representation for Cartesian coordinates, and cannot be treated in quite the same way. For example, consider the midpoint between two points p 1 = (1, 1) and p 2 = (5, 5). The midpoint is ( p 1 + p 2 )/2 = (3, 3). We can represent these points in homogeneous coordinates as ˆp 1 = (1, 1, 1) and ˆp 2 = (5, 5, 1). Directly applying the same computation as above gives the same resulting point: (3, 3, 1). However, we can also represent these points as ˆp 1 = (2, 2, 2) and ˆp 2 = (5, 5, 1). We then have (ˆp 1 + ˆp 2)/2 = (7/2, 7/2, 3/2), which cooresponds to the Cartesian point (7/3, 7/3). This is a different point, and illustrates that we cannot blindly apply geometric operations to homogeneous coordinates. The simplest solution is to always convert homogeneous coordinates to Cartesian coordinates. That said, there are several important operations that can be performed correctly in terms of homogeneous coordinates, as follows. Copyright c 2005 David Fleet and Aaron Hertzmann 14
6 Affine transformations. An important case in the previous section is applying an affine transformation to a point in homogeneous coordinates: q = F( p) = A p + t (1) ˆq = ˆp = (x,y, 1) T (2) It is easy to see that this operation is correct, since rescaling ˆp does not change the result: which is the same geometric point as ˆq = (x,y, 1) T Â(αˆp) = α(âˆp) = αˆq = (αx,αy,α) T (3) Vectors. We can represent a vector v = (x, y) in homogeneous coordinates by setting the last element of the vector to be zero: ˆv = (x,y, 0). However, when adding a vector to a point, the point must have the third component be 1. ˆq = ˆp + ˆv (4) (x,y, 1) T = (x p,y p, 1) + (x,y, 0) (5) The result is clearly incorrect if the third component of the vector is not 0. Aside: Homogeneous coordinates are a representation of points in projective geometry. 3.5 Hierarchical It is often convenient to model objects as hierarchically connected parts. For example, a robot arm might be made up of an upper arm, forearm, palm, and fingers. Rotating at the shoulder on the upper arm would affect all of the rest of the arm, but rotating the forearm at the elbow would affect the palm and fingers, but not the upper arm. A reasonable hierarchy, then, would have the upper arm at the root, with the forearm as its only child, which in turn connects only to the palm, and the palm would be the parent to all of the fingers. Each part in the hierarchy can be modeled in its own local coordinates, independent of the other parts. For a robot, a simple square might be used to model each of the upper arm, forearm, and so on. Rigid body transformations are then applied to each part relative to its parent to achieve the proper alignment and pose of the object. For example, the fingers are positioned to be in the appropriate places in the palm coordinates, the fingers and palm together are positioned in forearm coordinates, and the process continues up the hierarchy. Then a transformation applied to upper arm coordinates is also applied to all parts down the hierarchy. Copyright c 2005 David Fleet and Aaron Hertzmann 15
7 3.6 in OpenGL OpenGL manages two 4 4 transformation matrices: the modelview matrix, and the projection matrix. Whenever you specify geometry (using glvertex), the vertices are transformed by the current modelview matrix and then the current projection matrix. Hence, you don t have to perform these transformations yourself. You can modify the entries of these matrices at any time. OpenGL provides several utilities for modifying these matrices. The modelview matrix is normally used to represent geometric transformations of objects; the projection matrix is normally used to store the camera transformation. For now, we ll focus just on the modelview matrix, and discuss the camera transformation later. To modify the current matrix, first specify which matrix is going to be manipulated: use glmatrixmode(gl MODE to modify the modelview matrix. The modelview matrix can then be initialized to the identity with glloadidentity(). The matrix can be manipulated by directly filling its values, multiplying it by an arbitrary matrix, or using the functions OpenGL provides to multiply the matrix by specific transformation matrices (glrotate, gltranslate, and glscale). Note that these transformations right-multiply the current matrix; this can be confusing since it means that you specify transformations in the reverse of the obvious order. Exercise: why does OpenGL right-multiply the current matrix? OpenGL provides a stacks to assist with hierarchical transformations. There is one stack for the modelview matrix and one for the projection matrix. OpenGL provides routines for pushing and popping matrices on the stack. The following example draws an upper arm and forearm with shoulder and elbow joints. The current modelview matrix is pushed onto the stack and popped at the end of the rendering, so, for example, another arm could be rendered without the transformations from rendering this arm affecting its modelview matrix. Since each OpenGL transformation is applied by multiplying a matrix on the right-hand side of the modelview matrix, the transformations occur in reverse order. Here, the upper arm is translated so that its shoulder position is at the origin, then it is rotated, and finally it is translated so that the shoulder is in its appropriate world-space position. Similarly, the forearm is translated to rotate about its elbow position, then it is translated so that the elbow matches its position in upper arm coordinates. glpushmatrix(); gltranslatef(worldshoulderx, worldshouldery, 0.0f); drawshoulderjoint(); glrotatef(shoulderrotation, 0.0f, 0.0f, 1.0f); gltranslatef(-upperarmshoulderx, -upperarmshouldery, 0.0f); drawupperarmshape(); gltranslatef(upperarmelbowx, upperarmelbowy, 0.0f); Copyright c 2005 David Fleet and Aaron Hertzmann 16
8 drawelbowjoint(); glrotatef(elbowrotation, 0.0f, 0.0f, 1.0f); gltranslatef(-forearmelbowx, -forearmelbowy, 0.0f); drawforearmshape(); glpopmatrix(); Copyright c 2005 David Fleet and Aaron Hertzmann 17
TWO-DIMENSIONAL TRANSFORMATION
CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization
CS 4204 Computer Graphics
CS 4204 Computer Graphics 2D and 3D Transformations Doug Bowman Adapted from notes by Yong Cao Virginia Tech 1 Transformations What are they? changing something to something else via rules mathematics:
2D Geometric Transformations
2D Geometric Transformations (Chapter 5 in FVD) 2D Geometric Transformations Question: How do we represent a geometric object in the plane? Answer: For now, assume that objects consist of points and lines.
Rotation Matrices and Homogeneous Transformations
Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n
Lecture 3: Coordinate Systems and Transformations
Lecture 3: Coordinate Systems and Transformations Topics: 1. Coordinate systems and frames 2. Change of frames 3. Affine transformations 4. Rotation, translation, scaling, and shear 5. Rotation about an
9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes
The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of
Computer Graphics Lecture Notes
Computer Graphics Lecture Notes CSC418 / CSCD18 / CSC2504 Computer Science Department University of Toronto Version: November 24, 2006 Copyright c 2005 David Fleet and Aaron Hertzmann CONTENTS Contents
Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product
Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.
2D Geometrical Transformations. Foley & Van Dam, Chapter 5
2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations
Essential Mathematics for Computer Graphics fast
John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made
Geometric Transformations
Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted
Linear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
Computer Graphics Labs
Computer Graphics Labs Abel J. P. Gomes LAB. 2 Department of Computer Science and Engineering University of Beira Interior Portugal 2011 Copyright 2009-2011 All rights reserved. LAB. 2 1. Learning goals
Vector Math Computer Graphics Scott D. Anderson
Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about
Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi
Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the
Geometric Transformation CS 211A
Geometric Transformation CS 211A What is transformation? Moving points (x,y) moves to (x+t, y+t) Can be in any dimension 2D Image warps 3D 3D Graphics and Vision Can also be considered as a movement to
Affine Transformations
A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates
Lecture L3 - Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
Solving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
GCE Mathematics (6360) Further Pure unit 4 (MFP4) Textbook
Version 36 klm GCE Mathematics (636) Further Pure unit 4 (MFP4) Textbook The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 364473 and a
MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3
MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................
Orthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product
Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot
by the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that
28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z
28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition
Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.
1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal
v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.
3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with
Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
Geometric Camera Parameters
Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances
Section V.3: Dot Product
Section V.3: Dot Product Introduction So far we have looked at operations on a single vector. There are a number of ways to combine two vectors. Vector addition and subtraction will not be covered here,
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. M.Sc. in Advanced Computer Science. Friday 18 th January 2008.
COMP60321 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE M.Sc. in Advanced Computer Science Computer Animation Friday 18 th January 2008 Time: 09:45 11:45 Please answer any THREE Questions
13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms
Using row reduction to calculate the inverse and the determinant of a square matrix
Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible
The Matrix Elements of a 3 3 Orthogonal Matrix Revisited
Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
Section 9.1 Vectors in Two Dimensions
Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an
SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison
SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
Geometry for Computer Graphics
Computer Graphics and Visualisation Geometry for Computer Graphics Student Notes Developed by F Lin K Wyrwas J Irwin C Lilley W T Hewitt T L J Howard Computer Graphics Unit Manchester Computing Centre
Unified Lecture # 4 Vectors
Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,
1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation
Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7- In this section, we discuss linear transformations 89 9 CHAPTER
Aston University. School of Engineering & Applied Science
CS2150 Aston University School of Engineering & Applied Science CS2150: Computer Graphics January Examinations 2010 Date: XXX Time: XXX Instructions to Candidates: 1. Answer Question ONE and any other
Vector Algebra II: Scalar and Vector Products
Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define
9 MATRICES AND TRANSFORMATIONS
9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the
Excel supplement: Chapter 7 Matrix and vector algebra
Excel supplement: Chapter 7 atrix and vector algebra any models in economics lead to large systems of linear equations. These problems are particularly suited for computers. The main purpose of this chapter
Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
Geometric Transformations
Geometric Transformations Moving objects relative to a stationary coordinate system Common transformations: Translation Rotation Scaling Implemented using vectors and matrices Quick Review of Matrix Algebra
AP Physics - Vector Algrebra Tutorial
AP Physics - Vector Algrebra Tutorial Thomas Jefferson High School for Science and Technology AP Physics Team Summer 2013 1 CONTENTS CONTENTS Contents 1 Scalars and Vectors 3 2 Rectangular and Polar Form
Lecture 2: Homogeneous Coordinates, Lines and Conics
Lecture 2: Homogeneous Coordinates, Lines and Conics 1 Homogeneous Coordinates In Lecture 1 we derived the camera equations λx = P X, (1) where x = (x 1, x 2, 1), X = (X 1, X 2, X 3, 1) and P is a 3 4
Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus
Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations
CMSC 425: Lecture 13 Animation for Games: Basics Tuesday, Mar 26, 2013
CMSC 425: Lecture 13 Animation for Games: Basics Tuesday, Mar 26, 2013 Reading: Chapt 11 of Gregory, Game Engine Architecture. Game Animation: Most computer games revolve around characters that move around
Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1
Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse
CS3220 Lecture Notes: QR factorization and orthogonal transformations
CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss
Lecture 2 Matrix Operations
Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or
[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
Linear Algebra: Vectors
A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
B4 Computational Geometry
3CG 2006 / B4 Computational Geometry David Murray [email protected] www.robots.o.ac.uk/ dwm/courses/3cg Michaelmas 2006 3CG 2006 2 / Overview Computational geometry is concerned with the derivation
3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala)
3D Tranformations CS 4620 Lecture 6 1 Translation 2 Translation 2 Translation 2 Translation 2 Scaling 3 Scaling 3 Scaling 3 Scaling 3 Rotation about z axis 4 Rotation about z axis 4 Rotation about x axis
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
The Force Table Introduction: Theory:
1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is
v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)
0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3-space. This time the outcome will be a vector in 3-space. Definition
Name: Section Registered In:
Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are
8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
The elements used in commercial codes can be classified in two basic categories:
CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
Least-Squares Intersection of Lines
Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a
Projective Geometry: A Short Introduction. Lecture Notes Edmond Boyer
Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Contents 1 Introduction 2 11 Objective 2 12 Historical Background 3 13 Bibliography 4 2 Projective Spaces 5 21 Definitions 5 22 Properties
Interactive Computer Graphics
Interactive Computer Graphics Lecture 18 Kinematics and Animation Interactive Graphics Lecture 18: Slide 1 Animation of 3D models In the early days physical models were altered frame by frame to create
discuss how to describe points, lines and planes in 3 space.
Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position
A vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
Review A: Vector Analysis
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A-0 A.1 Vectors A-2 A.1.1 Introduction A-2 A.1.2 Properties of a Vector A-2 A.1.3 Application of Vectors
Parametric Equations and the Parabola (Extension 1)
Parametric Equations and the Parabola (Extension 1) Parametric Equations Parametric equations are a set of equations in terms of a parameter that represent a relation. Each value of the parameter, when
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database
Human-like Arm Motion Generation for Humanoid Robots Using Motion Capture Database Seungsu Kim, ChangHwan Kim and Jong Hyeon Park School of Mechanical Engineering Hanyang University, Seoul, 133-791, Korea.
LS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
Rotation about an arbitrary axis and reflection through an arbitrary plane
Annales Mathematicae et Informaticae 40 (2012) pp. 175 186 http://ami.ektf.hu Rotation about an arbitrary axis and reflection through an arbitrary plane Emőd Kovács Department of Information Technology
Lecture 7. Matthew T. Mason. Mechanics of Manipulation. Lecture 7. Representing Rotation. Kinematic representation: goals, overview
Matthew T. Mason Mechanics of Manipulation Today s outline Readings, etc. We are starting chapter 3 of the text Lots of stuff online on representing rotations Murray, Li, and Sastry for matrix exponential
Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
Linear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
Big Ideas in Mathematics
Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards
One advantage of this algebraic approach is that we can write down
. Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out
www.sakshieducation.com
LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c
Vector has a magnitude and a direction. Scalar has a magnitude
Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude
m i: is the mass of each particle
Center of Mass (CM): The center of mass is a point which locates the resultant mass of a system of particles or body. It can be within the object (like a human standing straight) or outside the object
MODERN APPLICATIONS OF PYTHAGORAS S THEOREM
UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.
Vector and Matrix Norms
Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty
Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts
CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
