# What's the Spin? - Discover Properties of Geometric Rotations

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 What's the Spin? - Discover Properties of Geometric Rotations Geometry Major Topics: Rotations and their relation to reflections NCTM Principles and Standards: Content Standards Geometry Apply transformations and use symmetry to analyze mathematical situations. Understand and represent translations, reflections, rotations, and dilations of objects in the plane by using sketches, coordinates, vectors, function notation, and matrices. Use various representations to help understand the effects of simple transformations and their compositions. Objectives: This lesson has students discover properties of rotations. Using the CABRI Geometry II Application for the TI-89 calculator, students rotate a triangle around a point and through a specified angle. The students further discover that a rotation is the composition of two reflections over intersecting lines. The relationship between these intersecting lines, the center of rotation, and the angle of rotation is also discovered. This lesson can be used as a teacher directed activity or can be given to the students as a discovery activity. If the students are familiar with the CABRI Geometry II application, this activity should take one 50- minute class period. Materials: TI-89 Graphing Calculator, CABRI Geometry II Application Prerequisites:Students should have a working knowledge of the CABRI Geometry II application and should have previously studied reflections. Procedure: Activity 1: Open the CABRI Geometry II application on the TI-89 by pressing the APPS button and choosing Cabri Geometry. Open a NEW file and choose an appropriate variable name, such as rotation. Press F3 and choose 3:Triangle. Construct an acute scalene triangle on the right side of the screen. Press F2 and choose 1:Point. Construct a point near the middle of the screen. Press F7 and choose 6:Numerical Edit. Move the cursor to a location in the upper right corner of the screen and press ENTER. This creates a numerical edit box. Type in the number 60. Press F5 and choose 2:Rotation. Move the cursor to the triangle; when the message "rotate this triangle" appears, press ENTER. This establishes the triangle as the object to be rotated. Move the cursor to the point in the middle of the screen; when the message "around this point" appears, press ENTER. This establishes the point as the

2 center of rotation. Move the cursor to the number; when the message "using this angle" appears, press ENTER. The original triangle has been rotated around the center by an angle of 60 degrees. It is possible that the entire image triangle does not appear on the screen. Try dragging the center of rotation point until both triangles appear. Observe that the rotation has been in a counterclockwise direction. Press F1 and choose 1:Pointer. Drag one of the vertices of the original triangle. Observe what happens to the image triangle. It has been determined that the image triangle can be altered by altering the original triangle and that the position of the image triangle can be changed by dragging the center of rotation point to various locations. Now experiment with trying to change the position of the image triangle by changing the rotational angle. Press F7 and choose 6:Numerical Edit. Move the cursor to the number; when the message "this number" appears, press ENTER. This will create an edit box around the number, allowing you to change the number. Delete the number 60 and type in the number 100. Observe the new position of the image triangle. Experiment with different numbers including 180, numbers larger than 180, 360, numbers larger than 360, and negative numbers. Make conjectures about the results of rotating the triangle through these various angles. Teacher Note: The conjecture should be that a rotation by a positive angle rotates in a counterclockwise direction. A rotation by a negative angle rotates in a clockwise direction. A rotation by 180 degrees accomplishes a half-turn around the point. A rotation by 0 degrees or 360 degrees produces equivalent results, a rotation back onto the original triangle. Numbers larger than 360 revert back to their equivalents modulo 360. Switch the number back to 60. The triangle has been rotated 60 degrees counterclockwise around the center of rotation point. Determine the location of the 60 degree angle. Teacher Note: The angle can be located by constructing a segment from the center of rotation point to a vertex of the original triangle and a segment from the center of rotation point to the corresponding vertex of the image triangle. This forms an angle whose measure corresponds to the number in the numerical edit box.

3 Press F6 and choose 1:Distance & Length. Measure the distance between two vertices of the original triangle and then measure the distance between the corresponding vertices of the image triangle. Press F6 and choose 3:Angle. Measure one of the angles of the original triangle and then measure the corresponding angle of the image triangle. Press F1 and choose 1:Pointer. Drag each of the vertices of the original triangle. Make a conjecture about the lengths of rotated segments and the measures of rotated angles. Teacher Note: The conjecture should be "rotations preserve distances and angle measures." Activity 2: Press F8 and choose 8:Clear All. Press ENTER to clear the screen for the next construction. Press F3 and choose 3:Triangle. Construct an acute scalene triangle on the right side of the screen. Press F2 and choose 4:Line. Construct two intersecting lines that do not intersect the triangle. Press F5 and choose 4:Reflection. Move the cursor to the the triangle; when the message "reflect this triangle" appears, press ENTER. This establishes the triangle as the object to be reflected. Move the cursor to the line closest to the triangle; when the message "with respect to this line" appears, press ENTER. This will reflect the triangle over this line. Drag the original triangle or the intersecting lines so that the image triangle is between the two lines. In a similar manner, reflect the image triangle over the second of the intersecting lines. Your figure should be similar to the screen at the right. Observe the original triangle and the second of the image triangles. Could this image have been accomplished by one transformation instead of reflecting twice over intersecting lines? Make a conjecture as to how this could be accomplished. Teacher Note: The same effect could have been achieved with a rotation. Confirm this conjecture by finding the center of rotation and the angle of rotation that accomplishes this rotation. Teacher Note: The center of rotation is the intersection point of the two lines. The angle of rotation can be established by constructing a segment that connects the point of intersection of the two lines to a vertex of the original triangle and a segment that connects the point of intersection to the corresponding vertex of the second image triangle. Measure this angle.

4 Confirm this is the correct rotation by rotating the original triangle around the point of intersection of the two lines using the measured angle. Teacher Note: Although the screen appears not to have changed, a rotation has occurred. To confirm the image of the rotation is the same as the second image of the composition of the two reflections, press F1 and choose 1:Pointer. Move the cursor to the second image triangle and press ENTER. A message will appear asking if you wish to choose the triangle created by the two reflections or the triangle created by the rotation. Activity 3: The figure from Activity 2 will be used for this activity. Drag any of the vertices of the original triangle to various locations on the screen. Next drag the entire triangle. Finally, drag either of the reflecting lines. While performing these activities, observe the angle between the reflecting lines and the rotational angle. Make a conjecture as to their relationship. Teacher Note: The conjecture should be "the two reflecting lines form an angle that is one-half the measure of the rotation angle". Confirm this conjecture by pressing F6 and choosing 3:Angle. Measure the angle between the intersecting lines. The displayed measure of the angle between the intersecting lines may not be exactly one-half the measure of the rotation angle. This discrepancy is due to the precision of our measurement. To confirm the conjecture, press F6 and choose 6:Calculate. Calculating the ratio of the two angle measurements will confirm the conjecture. Based on your knowledge of reflections, explain why the conjecture must be true. Teacher Note: Constructing a third segment from the intersection point of the lines to the corresponding vertex of the first image triangle will explain the conjecture. Since reflections preserve angle measures, two pairs of congruent angles are formed. The angle between the lines is the union of two angles, one angle from each pair; the rotational angle is the union of all four angles. Extension: Determine if the composition of two reflections is commutative. In other words, will the reflection image remain the same if the triangle is first reflected over the farther line and then that image triangle is reflected over the closer line?

5 Teacher Note: The composition of two reflections over intersecting lines is not a commutative geometric operation. This can be observed by doing the reflections in the opposite order. The images are not the same. The "new" angle of rotation will still have twice the measure of the angle between the two intersecting lines; but one rotation will be clockwise, while the other is counterclockwise. The composition will be commutative in only one case. This occurs if the two intersecting lines are perpendicular. The angle between the lines is 90 degrees and the angle of rotation is 180 degrees. The image will remain the same whether the rotation is in a clockwise or counterclockwise direction. Ray Klein Glenbard West High School Glen Ellyn, IL Ilene Hamilton Adlai Stevenson High School Lincolnshire, IL

### The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations

The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations Dynamic geometry technology should be used to maximize student learning in geometry. Such technology

### Transformational Geometry in the Coordinate Plane Rotations and Reflections

Concepts Patterns Coordinate geometry Rotation and reflection transformations of the plane Materials Student activity sheet Transformational Geometry in the Coordinate Plane Rotations and Reflections Construction

### Grade 4 - Module 4: Angle Measure and Plane Figures

Grade 4 - Module 4: Angle Measure and Plane Figures Acute angle (angle with a measure of less than 90 degrees) Angle (union of two different rays sharing a common vertex) Complementary angles (two angles

### 2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?

MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of

### Georgia Standards of Excellence Curriculum Frameworks. Mathematics. GSE Geometry. Unit 1: Transformations in the Coordinate Plane

Georgia Standards of Excellence Curriculum Frameworks GSE Geometry Mathematics Unit 1: Transformations in the Coordinate Plane Unit 1 Transformations in the Coordinate Plane Table of Contents OVERVIEW...

### Date: Period: Symmetry

Name: Date: Period: Symmetry 1) Line Symmetry: A line of symmetry not only cuts a figure in, it creates a mirror image. In order to determine if a figure has line symmetry, a figure can be divided into

### A translation can be defined in terms of reflections:

Geometry Week 26 sec. 12.2 to 12.6 Translation: section 12.2 translation can be defined in terms of reflections: ' '' ' ' '' '' orientation reversed orientation reversed orientation preserved in double

### Vocabulary List Geometry Altitude- the perpendicular distance from the vertex to the opposite side of the figure (base)

GEOMETRY Vocabulary List Geometry Altitude- the perpendicular distance from the vertex to the opposite side of the figure (base) Face- one of the polygons of a solid figure Diagonal- a line segment that

### Dilation Teacher Notes

Dilation Teacher Notes Teacher demonstrations using GeoGebra are essential at the beginning of this unit. 1. Dilation The definition of a dilation is more complicated than the definitions of the isometries.

### Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

### Geometry. Unit 1. Transforming and Congruence. Suggested Time Frame 1 st Six Weeks 22 Days

Geometry Unit 1 Transforming and Congruence Title Suggested Time Frame 1 st Six Weeks 22 Days Big Ideas/Enduring Understandings Module 1 Tools of geometry can be used to solve real-world problems. Variety

### Transformations: Rotations

Math Objectives Students will identify a rotation as an isometry, also called a congruence transformation. Students will identify which properties (side length, angle measure, perimeter, area, and orientation)

### Cabri Geometry Application User Guide

Cabri Geometry Application User Guide Preview of Geometry... 2 Learning the Basics... 3 Managing File Operations... 12 Setting Application Preferences... 14 Selecting and Moving Objects... 17 Deleting

### The Inscribed Angle Alternate A Tangent Angle

Student Outcomes Students use the inscribed angle theorem to prove other theorems in its family (different angle and arc configurations and an arc intercepted by an angle at least one of whose rays is

### The Mathematics of Symmetry

Info Finite Shapes Patterns Reflections Rotations Translations Glides Classifying The Mathematics of Beth Kirby and Carl Lee University of Kentucky MA 111 Fall 2009 Info Finite Shapes Patterns Reflections

### Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University

Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University Overview The GeoGebra documents allow exploration of four geometric transformations taught

### Interactive Math Glossary Terms and Definitions

Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Additive Property of Area the process of finding an the area of a shape by totaling the areas

### Objectives. Cabri Jr. Tools

^Åíáîáíó=NU Objectives To investigate the special properties of an altitude, a median, and an angle bisector To reinforce the differences between an altitude, a median, and an angle bisector Cabri Jr.

### Chapter 1: Essentials of Geometry

Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

### Module 3 Congruency can be used to solve real-world problems. What happens when you apply more than one transformation to

Transforming and Congruence *CISD Safety Net Standards: G.3C, G.4C Title Big Ideas/Enduring Understandings Module 1 Tools of geometry can be used to solve real-world problems. Variety of representations

### Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image.

Teacher Page Geometr / Da # 10 oordinate Geometr (5 min.) 9-.G.3.1 9-.G.3.2 9-.G.3.3 9-.G.3. Use rigid motions (compositions of reflections, translations and rotations) to determine whether two geometric

### Name Geometry Exam Review #1: Constructions and Vocab

Name Geometry Exam Review #1: Constructions and Vocab Copy an angle: 1. Place your compass on A, make any arc. Label the intersections of the arc and the sides of the angle B and C. 2. Compass on A, make

### Investigating Relationships of Area and Perimeter in Similar Polygons

Investigating Relationships of Area and Perimeter in Similar Polygons Lesson Summary: This lesson investigates the relationships between the area and perimeter of similar polygons using geometry software.

### Centroid: The point of intersection of the three medians of a triangle. Centroid

Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

### TIgeometry.com. Geometry. Angle Bisectors in a Triangle

Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.

### Kaleidoscopes, Hubcaps, and Mirrors Problem 1.1 Notes

Problem 1.1 Notes When part of an object or design is repeated to create a balanced pattern, we say that the object or design has symmetry. You can find examples of symmetry all around you. rtists use

### Basic Understandings

Activity: TEKS: Exploring Transformations Basic understandings. (5) Tools for geometric thinking. Techniques for working with spatial figures and their properties are essential to understanding underlying

### Triangle Sides & Angles

About the Lesson In this activity, students use the Cabri Jr App to create and manipulate dynamic sketches of triangles to explore and conjecture many triangle properties. As a result, students will: Discover

### Duplicating Segments and Angles

CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty

### MA.7.G.4.2 Predict the results of transformations and draw transformed figures with and without the coordinate plane.

MA.7.G.4.2 Predict the results of transformations and draw transformed figures with and without the coordinate plane. Symmetry When you can fold a figure in half, with both sides congruent, the fold line

### Discovering Math: Exploring Geometry Teacher s Guide

Teacher s Guide Grade Level: 6 8 Curriculum Focus: Mathematics Lesson Duration: Three class periods Program Description Discovering Math: Exploring Geometry From methods of geometric construction and threedimensional

### Congruent Triangles, Discovery Day 2

Congruent Triangles, Discovery Day 2 Name: October, 2014 1 Triangles! We ve talked about congruence of segments and angles. Notice that an angle only has one measure, and a segment only has one length.

### Points of Concurrency in Triangles

Grade level: 9-12 Points of Concurrency in Triangles by Marco A. Gonzalez Activity overview In this activity, students will use their Nspire handhelds to discover the different points of concurrencies

### Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid

Quadrilaterals Properties of a parallelogram, a rectangle, a rhombus, a square, and a trapezoid Grade level: 10 Prerequisite knowledge: Students have studied triangle congruences, perpendicular lines,

### Properties of Special Parallelograms

Properties of Special Parallelograms Lab Summary: This lab consists of four activities that lead students through the construction of a parallelogram, a rectangle, a square, and a rhombus. Students then

### Unit 6 Grade 7 Geometry

Unit 6 Grade 7 Geometry Lesson Outline BIG PICTURE Students will: investigate geometric properties of triangles, quadrilaterals, and prisms; develop an understanding of similarity and congruence. Day Lesson

### Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations

Math Buddies -Grade 4 13-1 Lesson #13 Congruence, Symmetry and Transformations: Translations, Reflections, and Rotations Goal: Identify congruent and noncongruent figures Recognize the congruence of plane

Lesson I: Triangles- Exterior Angle Theorem KEY WORDS: Triangles, exterior-angle theorem, and remote interior angles. Grade Level: High School SUMMARY: With this investigation students will discover the

### CK-12 Geometry: Midpoints and Bisectors

CK-12 Geometry: Midpoints and Bisectors Learning Objectives Identify the midpoint of line segments. Identify the bisector of a line segment. Understand and the Angle Bisector Postulate. Review Queue Answer

### Quickstart for Web and Tablet App

Quickstart for Web and Tablet App What is GeoGebra? Dynamic Mathematic Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,

### Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line.

Chapter 1 Vocabulary coordinate - The real number that corresponds to a point on a line. point - Has no dimension. It is usually represented by a small dot. bisect - To divide into two congruent parts.

### GeoGebra. 10 lessons. Gerrit Stols

GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter

### Objective. Cabri Jr. Tools

Objective To measure the interior and exterior angles of a triangle and find their relationships Activity 4 Cabri Jr. Tools Introduction Angles of a Triangle Interior angles of a triangle are the angles

### A geometric construction is a drawing of geometric shapes using a compass and a straightedge.

Geometric Construction Notes A geometric construction is a drawing of geometric shapes using a compass and a straightedge. When performing a geometric construction, only a compass (with a pencil) and a

### 7. 6 Justifying Constructions

31 7. 6 Justifying Constructions A Solidify Understanding Task CC BY THOR https://flic.kr/p/9qkxv Compass and straightedge constructions can be justified using such tools as: the definitions and properties

### Student Name: Teacher: Date: District: Miami-Dade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1

Student Name: Teacher: Date: District: Miami-Dade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the

### The measure of an arc is the measure of the central angle that intercepts it Therefore, the intercepted arc measures

8.1 Name (print first and last) Per Date: 3/24 due 3/25 8.1 Circles: Arcs and Central Angles Geometry Regents 2013-2014 Ms. Lomac SLO: I can use definitions & theorems about points, lines, and planes to

### Bisections and Reflections: A Geometric Investigation

Bisections and Reflections: A Geometric Investigation Carrie Carden & Jessie Penley Berry College Mount Berry, GA 30149 Email: ccarden@berry.edu, jpenley@berry.edu Abstract In this paper we explore a geometric

### Isosceles triangles. Key Words: Isosceles triangle, midpoint, median, angle bisectors, perpendicular bisectors

Isosceles triangles Lesson Summary: Students will investigate the properties of isosceles triangles. Angle bisectors, perpendicular bisectors, midpoints, and medians are also examined in this lesson. A

### A Different Look at Trapezoid Area Prerequisite Knowledge

Prerequisite Knowledge Conditional statement an if-then statement (If A, then B) Converse the two parts of the conditional statement are reversed (If B, then A) Parallel lines are lines in the same plane

### Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will

Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will discover and prove the relationship between the triangles

### Geometry Unit 1 Geometric Transformations Lesson Plan (10 days)

Geometry Unit 1 Geometric Transformations Lesson Plan (10 days) Stage 1 Desired Results Learning Goal: Students will be able to draw, describe, specify the sequence, develop definitions, and predict the

### Lesson 10.1 Skills Practice

Lesson 0. Skills Practice Name_Date Location, Location, Location! Line Relationships Vocabulary Write the term or terms from the box that best complete each statement. intersecting lines perpendicular

### [G.CO.2, G.CO.4, G.CO.5]

Name: Date: Geometric Transformations Multiple Choice Test Bank 1. A triangle has vertices at A (1, 3), B (4, 2), and C (3, 8). Which transformation would produce an image with vertices A (3, 1), B (2,

### Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

### SHAPE, SPACE AND MEASURES

SHPE, SPCE ND MESURES Pupils should be taught to: Understand and use the language and notation associated with reflections, translations and rotations s outcomes, Year 7 pupils should, for example: Use,

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### Angles that are between parallel lines, but on opposite sides of a transversal.

GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

### Inscribed (Cyclic) Quadrilaterals and Parallelograms

Lesson Summary: This lesson introduces students to the properties and relationships of inscribed quadrilaterals and parallelograms. Inscribed quadrilaterals are also called cyclic quadrilaterals. These

### Week 1 Chapter 1: Fundamentals of Geometry. Week 2 Chapter 1: Fundamentals of Geometry. Week 3 Chapter 1: Fundamentals of Geometry Chapter 1 Test

Thinkwell s Homeschool Geometry Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Geometry! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson plan

### Special Segments in Triangles

About the Lesson In this activity, students will construct and explore medians, altitudes, angle bisectors, and perpendicular bisectors of triangles. They then drag the vertices to see where the intersections

### ARC MEASURMENT BASED ON THE MEASURMENT OF A CENTRAL ANGLE

ARC MEASURMENT BASED ON THE MEASURMENT OF A CENTRAL ANGLE Keywords: Central angle An angle whose vertex is the center of a circle and whose sides contain the radii of the circle Arc Two points on a circle

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### The Area of a Triangle Using Its Semi-perimeter and the Radius of the In-circle: An Algebraic and Geometric Approach

The Area of a Triangle Using Its Semi-perimeter and the Radius of the In-circle: An Algebraic and Geometric Approach Lesson Summary: This lesson is for more advanced geometry students. In this lesson,

### Investigation: Area of a Parallelogram

Investigation: Area of a Parallelogram In this investigation, you will discover properties of the area of a parallelogram. You will make a table that shows the relationships of the segments, angles, and

### Geometer s Sketchpad. Discovering the incenter of a triangle

Geometer s Sketchpad Discovering the incenter of a triangle Name: Date: 1.) Open Geometer s Sketchpad (GSP 4.02) by double clicking the icon in the Start menu. The icon looks like this: 2.) Once the program

### 100 Math Facts 6 th Grade

100 Math Facts 6 th Grade Name 1. SUM: What is the answer to an addition problem called? (N. 2.1) 2. DIFFERENCE: What is the answer to a subtraction problem called? (N. 2.1) 3. PRODUCT: What is the answer

### GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

### 4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem.

14 Perpendicularity and Angle Congruence Definition (acute angle, right angle, obtuse angle, supplementary angles, complementary angles) An acute angle is an angle whose measure is less than 90. A right

### Centers of Triangles Learning Task. Unit 3

Centers of Triangles Learning Task Unit 3 Course Mathematics I: Algebra, Geometry, Statistics Overview This task provides a guided discovery and investigation of the points of concurrency in triangles.

### Exploring Geometric Mean

Exploring Geometric Mean Lesson Summary: The students will explore the Geometric Mean through the use of Cabrii II software or TI 92 Calculators and inquiry based activities. Keywords: Geometric Mean,

### Three-Dimensional Figures or Space Figures. Rectangular Prism Cylinder Cone Sphere. Two-Dimensional Figures or Plane Figures

SHAPE NAMES Three-Dimensional Figures or Space Figures Rectangular Prism Cylinder Cone Sphere Two-Dimensional Figures or Plane Figures Square Rectangle Triangle Circle Name each shape. [triangle] [cone]

### A Correlation of Pearson Texas Geometry Digital, 2015

A Correlation of Pearson Texas Geometry Digital, 2015 To the Texas Essential Knowledge and Skills (TEKS) for Geometry, High School, and the Texas English Language Proficiency Standards (ELPS) Correlations

### with functions, expressions and equations which follow in units 3 and 4.

Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

### Polygon Properties and Tiling

! Polygon Properties and Tiling You learned about angles and angle measure in Investigations and 2. What you learned can help you figure out some useful properties of the angles of a polygon. Let s start

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### Tutorial 1: The Freehand Tools

UNC Charlotte Tutorial 1: The Freehand Tools In this tutorial you ll learn how to draw and construct geometric figures using Sketchpad s freehand construction tools. You ll also learn how to undo your

### North Carolina Math 2

Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively 3. Construct viable arguments and critique the reasoning of others 4.

### Tessellating with Regular Polygons

Tessellating with Regular Polygons You ve probably seen a floor tiled with square tiles. Squares make good tiles because they can cover a surface without any gaps or overlapping. This kind of tiling is

Content Strand: Number and Numeration Understand the Meanings, Uses, and Representations of Numbers Understand Equivalent Names for Numbers Understand Common Numerical Relations Place value and notation

### Wentzville School District Curriculum Development Template Stage 1 Desired Results

Wentzville School District Curriculum Development Template Stage 1 Desired Results Integrated Math 8 Unit Four Geometry Unit Title: Geometry Course: Integrated Math 8 Brief Summary of Unit: In this unit

### GeoGebra Transformation Activities

GeoGebra Transformation Activities Move New Point Line Between Two Points Perpendicular Line Circle w/ Center Through Point If needed: Go to www.geogebra.org Click on Download Click on GeoGebra WebStart

### Activities Grades K 2 THE FOUR-SQUARE QUILT. Put triangles together to make patterns.

Activities Grades K 2 www.exploratorium.edu/geometryplayground/activities THE FOUR-SQUARE QUILT Put triangles together to make patterns. [45 minutes] Materials: Four-Square Quilt Template (attached) Triangle

### Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes

Tennessee Mathematics Standards 2009-2010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical

### California Common Core State Standards Comparison- FOURTH GRADE

1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others 4. Model with mathematics. Standards

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### Lesson 10-7 Rotations Textbook Pages: Homework Study notes for open note bellwork quiz on all 4 types of transformations.

Course: 7 th Grade Math DETAIL LESSON PLAN Tuesday, January 10 / Wednesday, January 11 Student Objective (Obj. 3d) TSW learn to identify the following geometric transformation types: 3) Rotations and 4)

### CHAPTER 8: ACUTE TRIANGLE TRIGONOMETRY

CHAPTER 8: ACUTE TRIANGLE TRIGONOMETRY Specific Expectations Addressed in the Chapter Explore the development of the sine law within acute triangles (e.g., use dynamic geometry software to determine that

### Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees

Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in

### 39 Symmetry of Plane Figures

39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

### 2.1. Inductive Reasoning EXAMPLE A

CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

### Chapter 5.1 and 5.2 Triangles

Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three non-collinear points are connected by segments. Each

### 2. Select Point B and rotate it by 15 degrees. A new Point B' appears. 3. Drag each of the three points in turn.

In this activity you will use Sketchpad s Iterate command (on the Transform menu) to produce a spiral design. You ll also learn how to use parameters, and how to create animation action buttons for parameters.

### Area of Parallelograms and Triangles

Context: Grade 7 Mathematics. Area of Parallelograms and Triangles Objective: The student shall derive the formulas for the area of the triangle and the parallelogram and apply these formulas to determine