Complex Numbers. w = f(z) z. Examples


 Patrick Brown
 2 years ago
 Views:
Transcription
1 omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If we have functions of a comple variable given b equations such as w sin z or w z 2 +2 we cannot use a cartesian graph, since z cannot be represented on an ordered ais. Indeed z ma range over the whole of the two dimensional comple plane, so that if w is also comple we would need a 4dimensional space to plot a graph such as w z Most of us cannot visualise this, and what we usuall do is to have two copies of the comple plane, and we look at points in the zplane and see how the are transformed into points in the wplane. We also look at sets of points, curves or regions in the zplane and their images in the wplane. w w f(z z Eamples 1 w f(z z + 2. This simpl shifts ever point two units in the direction of the real ais  it is a translation. z z + 2 1
2 2 w z + 2 i, again a translation z z + 2 i 3 w z + 2, this is not a translation. z z w 2z Now w 2 z arg w arg 2 + arg z arg z So this is an enlargement about the origin with scale factor 2. z 2z 2
3 5 w iz w z arg w arg i + arg z π 2 + arg z So this is a rotation through π 2 anticlockwise about O. z iz In general if α is an comple number and we write α re iθ then w αz is an enlargement b scale factor r together with a rotation about O through the angle θ anticlockwise. If we write then w αz becomes u + iv (a + ib( + i and so α a + ib z + i w u + iv u a b v b + a u a b We write this in the form v b a The right hand side can be interpreted as a multiplication, but at the moment it seems( a rather odd kind of multiplication. We call a column vector. a b We call a matri. b a If we now have another transformation ξ βw where β c + id then if we write ξ s + it we shall have ( s t ( c d d c ( c d d c u v ( a b b a ( 3
4 If we now do the substitutions s cu dv t du + cv in the first pair of equations we get s (ca db (cb + da t ((ad + bc + (ac bd s (ca bd (cb + da t (ad + bc (ac bd This ( suggests ( that we should ( define c d a b (ca bd (cb + da d c b a (ad + bc (ac bd Finall if we go back to the original equation w αz v βw we obtain ξ βαz and βα (c + id(a + ib (ac bd + i(ad + bc If we write α and β in polar form, taking r 1 for both, so that the both correspond to rotations, we then have α cos θ + i sin θ β cos φ + i sin φ The ( corresponding ( matrices are cos θ sin θ cos φ sin φ sin θ cos θ sin φ cos φ cos θ cos φ sin θ sin φ (cos θ sin φ + sin θ cos φ sin θ cos φ + cos θ sin φ cos θ cos φ sin θ sin φ cos(θ + φ sin(θ + φ sin(θ + φ cos(θ + φ which is in accordance with what we found previousl. Notice that although ( each comple number can be represented b a matri, 1 1 matrices such as do not correspond to comple numbers. We can 0 1 ( nevertheless ( use them ( to transform the plane This corresponds to a shearing transformation. 4
5 In considering matrices used as transformations we have so far considered the ( problem ( of finding the image of given points. X Y X i.e. given what is? Y We now ( consider the reverse problem: X given what is? Y a b X c d Y so a + b X (1 c + d Y (2 (1 d and (2 b ad + bd dx bc + bd by subtracting gives (ad bc dx by (3 (1 c and (2 a ac + bc cx ac + ad ay subtracting gives (ad bc ay cx (4 (3 and (4 can be solved for and iff ad bc 0. If ad bc 0 we then have d ad bc X b ad bc Y c ad bc X + a ad bc Y so 5
6 ( ( d b ad bc ad bc X c a Y ad bc ( ad bc 1 d b X ad bc c a Y d b 1 The matri ( d c b a c a a b is called the inverse of written c d s a transformation this matri does nothing at all. ll points are fied. It is called the identit matri. ad bc is called the determinant of. So has an inverse iff its determinant is nonzero. For a( comple number matri a b a α 2 + b 2 α 2 b a 0 iff a b 0 i.e. α 0 and its ( inverse is 1 a b α α 2 b a α 1 α 0 2 α In widening the sstem to include all possible 2 2 matrices we have included man matrices which do not have inverses. We have also sacrificed commutativit of multiplication, as does not alwas equal. However we can deal with man different transformations, and matrices turn out to have man and varied applications. Other transformations There are man transformations not represented b 2 2 matrices as above. s an eample we consider a few properties of the transformation w z 2. It is convenient to use polar coordinates, we use (r, θ in the zplane and (p, φ in the wplane. 6
7 zplane wplane E z re iθ z 2 r 2 e 2iθ so p r 2 φ 2θ E (1, 0 (1, 0 ( 2, π 4 (2, π 2 (1, pi (1, π 2 (1, π (1, 2π (1, 0 E(1, 3π E (1, 3π (1, π 2 IGRM so z e iθ π θ π corresponds to a circle traced twice in the wplane. IGRM zplane wplane so z re iθ 0 < θ < π w r 2 e 2iθ 0 < 2θ < 2π pe iθ 0 < φ < 2π upper half plane > 0 plane without +ve real ais Reverting to cartesians now let z + i w ξ + iη ξ + iη i so ξ 2 2 η 2 Now if 1, ξ 1 2 η 2 so ξ 1 η2 4 IGRM If 1 ξ 2 1 η 2 so ξ η2 4 1 IGRMS 7
Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2015
Some linear transformations on R 2 Math 3 Linear Algebra D Joce, Fall 25 Let s look at some some linear transformations on the plane R 2. We ll look at several kinds of operators on R 2 including reflections,
More information2D Geometrical Transformations. Foley & Van Dam, Chapter 5
2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations
More informationLinear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
More informationMAT188H1S Lec0101 Burbulla
Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u
More informationθ = 45 θ = 135 θ = 225 θ = 675 θ = 45 θ = 135 θ = 225 θ = 675 Trigonometry (A): Trigonometry Ratios You will learn:
Trigonometr (A): Trigonometr Ratios You will learn: () Concept of Basic Angles () how to form simple trigonometr ratios in all 4 quadrants () how to find the eact values of trigonometr ratios for special
More informationIntroduction to Matrices for Engineers
Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 08 4 01 1 0 11
More informationChapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis
Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >
More informationExample 1. Example 1 Plot the points whose polar coordinates are given by
Polar Coordinates A polar coordinate system, gives the coordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points
More informationDouble Integrals in Polar Coordinates
Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter
More informationSection 5: The Jacobian matrix and applications. S1: Motivation S2: Jacobian matrix + differentiability S3: The chain rule S4: Inverse functions
Section 5: The Jacobian matri and applications. S1: Motivation S2: Jacobian matri + differentiabilit S3: The chain rule S4: Inverse functions Images from Thomas calculus b Thomas, Wier, Hass & Giordano,
More informationPhysics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus
Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations
More informationChapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
More informationGraphing Quadratic Equations
.4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph firstdegree equations. Similar methods will allow ou to graph quadratic equations
More informationCross product and determinants (Sect. 12.4) Two main ways to introduce the cross product
Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.
More informationDr. Fritz Wilhelm, DVC,8/30/2004;4:25 PM E:\Excel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM
E:\Ecel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM Vector calculations 1 of 6 Vectors are ordered sequences of numbers. In three dimensions we write vectors in an of the following
More informationLecture L3  Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3  Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
More informationCore Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
More informationMATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3
MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................
More informationArea and Arc Length in Polar Coordinates
Area and Arc Length in Polar Coordinates The Cartesian Coordinate System (rectangular coordinates) is not always the most convenient way to describe points, or relations in the plane. There are certainly
More information2.1 Three Dimensional Curves and Surfaces
. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two or threedimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The
More informationAffine Transformations
A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates
More informationParametric Curves. EXAMPLE: Sketch and identify the curve defined by the parametric equations
Section 9. Parametric Curves 00 Kiryl Tsishchanka Parametric Curves Suppose that x and y are both given as functions of a third variable t (called a parameter) by the equations x = f(t), y = g(t) (called
More information5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1
5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in
More informationArea in Polar Coordinates
Area in Polar Coordinates If we have a circle of radius r, and select a sector of angle θ, then the area of that sector can be shown to be 1. r θ Area = (1/)r θ As a check, we see that if θ =, then the
More informationCHAPTER 10 SYSTEMS, MATRICES, AND DETERMINANTS
CHAPTER 0 SYSTEMS, MATRICES, AND DETERMINANTS PRECALCULUS: A TEACHING TEXTBOOK Lesson 64 Solving Sstems In this chapter, we re going to focus on sstems of equations. As ou ma remember from algebra, sstems
More informationPhysics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal
Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3D We have defined the velocit and acceleration of a particle as the first and second
More informationSolutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
More informationC. Complex Numbers. 1. Complex arithmetic.
C. Complex Numbers. Complex arithmetic. Most people think that complex numbers arose from attempts to solve quadratic equations, but actually it was in connection with cubic equations they first appeared.
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More informationx y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are
Solving Sstems of Linear Equations in Matri Form with rref Learning Goals Determine the solution of a sstem of equations from the augmented matri Determine the reduced row echelon form of the augmented
More informationDot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product
Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot
More informationGeometric Transformation CS 211A
Geometric Transformation CS 211A What is transformation? Moving points (x,y) moves to (x+t, y+t) Can be in any dimension 2D Image warps 3D 3D Graphics and Vision Can also be considered as a movement to
More informationThe Inverse of a Matrix
The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a ( 0) has a reciprocal b written as a or such that a ba = ab =. Some, but not all, square matrices have inverses. If a square
More informationAddition and Subtraction of Vectors
ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b
More informationwww.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
More informationSECTION 2.2. Distance and Midpoint Formulas; Circles
SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation
More informationTWODIMENSIONAL TRANSFORMATION
CHAPTER 2 TWODIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization
More informationSECTION 74 Algebraic Vectors
74 lgebraic Vectors 531 SECTIN 74 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors
More informationSection 2.6 Cylindrical and Spherical Coordinates A) Review on the Polar Coordinates
Section.6 Cylindrical and Spherical Coordinates A) Review on the Polar Coordinates The polar coordinate system consists of the origin O,the rotating ray or half line from O with unit tick. A point P in
More informationCIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
More informationParametric Surfaces. Solution. There are several ways to parameterize this. Here are a few.
Parametric Surfaces 1. (a) Parameterie the elliptic paraboloid = 2 + 2 + 1. Sketch the grid curves defined b our parameteriation. Solution. There are several was to parameterie this. Here are a few. i.
More informationVector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.
1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called
More informationCalculus with Parametric Curves
Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function
More informationTranslating Points. Subtract 2 from the ycoordinates
CONDENSED L E S S O N 9. Translating Points In this lesson ou will translate figures on the coordinate plane define a translation b describing how it affects a general point (, ) A mathematical rule that
More informationCore Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
More informationCOMPLEX NUMBERS AND SERIES. Contents
COMPLEX NUMBERS AND SERIES MIKE BOYLE Contents 1. Complex Numbers Definition 1.1. A complex number is a number z of the form z = x + iy, where x and y are real numbers, and i is another number such that
More informationMathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)
( : Focus on free Education) Miscellaneous Exercise on chapter 5 Question 1: Evaluate: Answer 1: 1 ( : Focus on free Education) Question 2: For any two complex numbers z1 and z2, prove that Re (z1z2) =
More informationMath, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.
Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical
More informationSolutions for Math 311 Assignment #1
Solutions for Math 311 Assignment #1 (1) Show that (a) Re(iz) Im(z); (b) Im(iz) Re(z). Proof. Let z x + yi with x Re(z) and y Im(z). Then Re(iz) Re( y + xi) y Im(z) and Im(iz) Im( y + xi) x Re(z). () Verify
More informationMethod of Green s Functions
Method of Green s Functions 8.303 Linear Partial ifferential Equations Matthew J. Hancock Fall 006 We introduce another powerful method of solving PEs. First, we need to consider some preliminary definitions
More informationMATH 2030: MATRICES. Av = 3
MATH 030: MATRICES Introduction to Linear Transformations We have seen that we ma describe matrices as smbol with simple algebraic properties like matri multiplication, addition and scalar addition In
More informationCross Products and Moments of Force
4 Cross Products and Moments of Force Ref: Hibbeler 4.24.3, edford & Fowler: Statics 2.6, 4.3 In geometric terms, the cross product of two vectors, A and, produces a new vector, C, with a direction perpendicular
More informationUnified Lecture # 4 Vectors
Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,
More informationLINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL
Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables
More information6.3 Polar Coordinates
6 Polar Coordinates Section 6 Notes Page 1 In this section we will learn a new coordinate sstem In this sstem we plot a point in the form r, As shown in the picture below ou first draw angle in standard
More informationIntegrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 15.7) Integration in clindrical coordinates. eview: Polar coordinates in a plane. Clindrical coordinates in space. Triple integral in clindrical coordinates.
More informationChapter 4. Linear Second Order Equations. ay + by + cy = 0, (1) where a, b, c are constants. The associated auxiliary equation is., r 2 = b b 2 4ac 2a
Chapter 4. Linear Second Order Equations ay + by + cy = 0, (1) where a, b, c are constants. ar 2 + br + c = 0. (2) Consequently, y = e rx is a solution to (1) if an only if r satisfies (2). So, the equation
More informationThe Vector or Cross Product
The Vector or ross Product 1 ppendix The Vector or ross Product We saw in ppendix that the dot product of two vectors is a scalar quantity that is a maximum when the two vectors are parallel and is zero
More informationVectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.
Vectors 2 The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Launch Mathematica. Type
More informationANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME  TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
More informationsin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj
Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models
More informationLecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length...
CONTENTS i Contents Lecture Introduction. Rectangular Coordinate Sstems..................... Vectors.................................. 3 Lecture Length, Dot Product, Cross Product 5. Length...................................
More informationRotation of Axes 1. Rotation of Axes. At the beginning of Chapter 5 we stated that all equations of the form
Rotation of Axes 1 Rotation of Axes At the beginning of Chapter we stated that all equations of the form Ax + Bx + C + Dx + E + F =0 represented a conic section, which might possibl be degenerate. We saw
More informationLines and Planes 1. x(t) = at + b y(t) = ct + d
1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationMathematics Notes for Class 12 chapter 10. Vector Algebra
1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is nonnegative
More informationIdentifying second degree equations
Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +
More informationAx 2 Cy 2 Dx Ey F 0. Here we show that the general seconddegree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X
Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus
More informationRecall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:
Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1
More informationv 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)
0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3space. This time the outcome will be a vector in 3space. Definition
More informationExponential Functions
Eponential Functions In this chapter we will study the eponential function and its inverse the logarithmic function. These important functions are indispensable in working with problems that involve population
More informationJune 2011 PURDUE UNIVERSITY Study Guide for the Credit Exams in Single Variable Calculus (MA 165, 166)
June PURDUE UNIVERSITY Stud Guide for the Credit Eams in Single Variable Calculus (MA 65, 66) Eam and Eam cover respectivel the material in Purdue s courses MA 65 (MA 6) and MA 66 (MA 6). These are two
More informationExponential and Logarithmic Functions
Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,
More informationReview A: Vector Analysis
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A0 A.1 Vectors A2 A.1.1 Introduction A2 A.1.2 Properties of a Vector A2 A.1.3 Application of Vectors
More informationComplex Algebra. What is the identity, the number such that it times any number leaves that number alone?
Complex Algebra When the idea of negative numbers was broached a couple of thousand years ago, they were considered suspect, in some sense not real. Later, when probably one of the students of Pythagoras
More informationTriple Integrals in Cylindrical or Spherical Coordinates
Triple Integrals in Clindrical or Spherical Coordinates. Find the volume of the solid ball 2 + 2 + 2. Solution. Let be the ball. We know b #a of the worksheet Triple Integrals that the volume of is given
More informationPROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving
More information2D Geometric Transformations
2D Geometric Transformations (Chapter 5 in FVD) 2D Geometric Transformations Question: How do we represent a geometric object in the plane? Answer: For now, assume that objects consist of points and lines.
More informationAdding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
More informationTrigonometry Review Workshop 1
Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions
More informationSolutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
More informationCOMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN
COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More informationPlotting Polar Curves We continue to study the plotting of polar curves. Recall the family of cardioids shown last time.
Plotting Polar Curves We continue to study the plotting of polar curves. Recall the family of cardioids shown last time. r = 1 cos(θ) r = 1 + cos(θ) r = 1 + sin(θ) r = 1 sin(θ) Now let us look at a similar
More informationGraphing Quadratic Functions
A. THE STANDARD PARABOLA Graphing Quadratic Functions The graph of a quadratic function is called a parabola. The most basic graph is of the function =, as shown in Figure, and it is to this graph which
More informationPYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
More informationFactoring Patterns in the Gaussian Plane
Factoring Patterns in the Gaussian Plane Steve Phelps Introduction This paper describes discoveries made at the Park City Mathematics Institute, 00, as well as some proofs. Before the summer I understood
More information1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
More information12.3 Inverse Matrices
2.3 Inverse Matrices Two matrices A A are called inverses if AA I A A I where I denotes the identit matrix of the appropriate size. For example, the matrices A 3 7 2 5 A 5 7 2 3 If we think of the identit
More informationGCE Mathematics (6360) Further Pure unit 4 (MFP4) Textbook
Version 36 klm GCE Mathematics (636) Further Pure unit 4 (MFP4) Textbook The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 364473 and a
More informationG. GRAPHING FUNCTIONS
G. GRAPHING FUNCTIONS To get a quick insight int o how the graph of a function looks, it is very helpful to know how certain simple operations on the graph are related to the way the function epression
More informationExam 1 Sample Question SOLUTIONS. y = 2x
Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can
More informationAlgebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
More informationTHREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
More informationSupporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Algebra and coordinate geometry: Module 2. Coordinate geometry
1 Supporting Australian Mathematics Project 3 4 5 6 7 8 9 1 11 1 A guide for teachers Years 11 and 1 Algebra and coordinate geometr: Module Coordinate geometr Coordinate geometr A guide for teachers (Years
More informationFilling in Coordinate Grid Planes
Filling in Coordinate Grid Planes A coordinate grid is a sstem that can be used to write an address for an point within the grid. The grid is formed b two number lines called and that intersect at the
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More information7.4 Applications of Eigenvalues and Eigenvectors
37 Chapter 7 Eigenvalues and Eigenvectors 7 Applications of Eigenvalues and Eigenvectors Model population growth using an age transition matri and an age distribution vector, and find a stable age distribution
More information2D Geometrical Transformations
2D Geometrical Transformations Translation Moves points to new locations by adding translation amounts to the coordinates of the points T P(,y) P (,y ) = + d, =y + dy or = y P =P + T + d dy Totranslate
More information[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
More information