2D Geometric Transformations


 David Blankenship
 2 years ago
 Views:
Transcription
1 2D Geometric Transformations (Chapter 5 in FVD) 2D Geometric Transformations Question: How do we represent a geometric object in the plane? Answer: For now, assume that objects consist of points and lines. A point is represented b its Cartesian coordinates: (x,). Question: How do we transform a geometric object in the plane? Answer: Let (A,B) be a straight line segment and T a general 2D transformation: T transforms (A,B) into another straight line segment (A,B ), where A =TA and B =TB. 2
2 Translation Translate (a,b): (x,) (x+a,+b) Translate(2,4) 3 Scale Scale (a,b): (x,) (ax,b) Scale (2,3) Scale (2,3) 4
3 How can we scale an object without moving its origin (lower left corner)? Translate(,) Translate(,) Scale(2,3) 5 Reflection Scale(,) Scale(,) 6
4 Rotate(θ): Rotation (x,) (x cos(θ)+ sin(θ), x sin(θ)+ cos(θ)) Rotate(9) Rotate(9) 7 How can we rotate an object without moving its origin (lower left corner)? Translate(,) Translate(,) Rotate(9) 8
5 Shear Shear (a,b): (x,) (x+a,+bx) Shear(,) Shear(,2) 9 Composition of Transformations Rigid transformation: Translation + Rotation (distance preserving). Similarit transformation: Translation + Rotation + uniform Scale (angle preserving). Affine transformation: Translation + Rotation + Scale + Shear (parallelism preserving). All above transformations are groups where Rigid Similarit Affine.
6 Matrix Notation Let s treat a point (x,) as a 2x matrix (a column vector): x What happens when this vector is multiplied b a 2x2 matrix? a c bx ax + b = d cx + d 2D Transformations 2D object is represented b points and lines that join them. Transformations can be applied onl to the the points defining the lines. A point (x,) is represented b a 2x column vector, and we can represent 2D transformations using 2x2 matrices: x' a = ' bx d 2
7 3 Scale Scale(a,b): (x,) (ax,b) If a or b are negative, we get reflection. = b ax x b a 4 Reflection Reflection through the axis: Reflection through the x axis: Reflection through =x: Reflection through =x:
8 Shear, Rotation Shear(a,b): (x,) (x+a,+bx) b ax x + a = + bx Rotate(θ): (x,) (xcosθ+sinθ, xsinθ + cosθ) cosθ sinθ sinθ x x cosθ + sinθ = cosθ xsinθ + cosθ 5 Composition of Transformations A sequence of transformations can be collapsed into a single matrix: x x [ A][ B][ C] = [ D] Note: order of transformations is important! (otherwise  commutative groups) translate rotate rotate translate 6
9 Translation x x + a Translation(a,b): + b Problem: Cannot represent translation using 2x2 matrices. Solution: Homogeneous Coordinates 7 Homogeneous Coordinates Homogeneous Coordinates is a mapping from R n to R n+ : ( x, ) ( X, Y, W) = ( tx, t, t) Note: (tx,t,t) all correspond to the same nonhomogeneous point (x,). E.g. (2,3,) (6,9,3). Inverse mapping: X ( X, Y, W ), W Y W 8
10 9 Translation Translate(a,b): Affine transformation now have the following form: + + = b a x x b a f d c e b a 2 (X,Y,W) x X Y W (X,Y,) Geometric Interpretation A 2D point is mapped to a line (ra) in 3D. The nonhomogeneous points are obtained b projecting the ras onto the plane Z=.
11 Example: Rotation about an arbitrar point: Actions: θ (x, ) Translate the coordinates so that the origin is at (x, ). Rotate b θ. Translate back. x cosθ sinθ sinθ cosθ x x = cosθ = sinθ sinθ cosθ x ( cosθ ) + 2 ( cosθ ) x sinθ x sin θ Another example: Reflection about an Arbitrar Line: p 2 p L=p +t (p 2 p )=t p 2 +(t) p Actions: Translate the coordinates so that P is at the origin. Rotate so that L aligns with the x axis. Reflect about the xaxis. Rotate back. Translate back. 22
12 Viewing in 2D (Chapter 6 in FVD) Device Coordinate Viewport World Coordinate Window Object in World 2D:2D mapping 3D:2D mapping Device Coordinates World Coordinates Objects are given in world coordinates. The world is viewed through a worldcoordinate window. The WC window is mapped onto a device coordinate viewport. 23 Viewing in 2D (cont.) Window Viewport Maximum range of screen coordinates World Coordinates Screen Coordinates (Device Coordinates) Window to Viewport Transformation 24
13 Window to Viewport Transformation (x max, max ) (u max,v max ) (x min, min ) (u min,v min ) Window in World Coordinates Window translated to origin Window scaled to viewport size. Translated to viewport position in screen coordinates. u M wv = T(u min,v min ) S( max u min v, max v min x ) T(x min, min ) max x min max  min = u min v min u max u min x max x min vmax v min max  min x min  min = u max u min u max u min x max x min x max x (x min ) + u min min vmax v min v max v min max  min max  ( min ) + v min min 25
2D Geometrical Transformations. Foley & Van Dam, Chapter 5
2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations
More information2D Geometric Transformations. COMP 770 Fall 2011
2D Geometric Transformations COMP 770 Fall 2011 1 A little quick math background Notation for sets, functions, mappings Linear transformations Matrices Matrixvector multiplication Matrixmatrix multiplication
More informationTWODIMENSIONAL TRANSFORMATION
CHAPTER 2 TWODIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization
More informationComputer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2D
Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2D Welcome everybody. We continue the discussion on 2D
More informationGiven a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes:
3 3.1 2D Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes: 1. Change coordinate frames (world, window, viewport, device, etc). 2. Compose objects
More informationRotation Matrices and Homogeneous Transformations
Rotation Matrices and Homogeneous Transformations A coordinate frame in an ndimensional space is defined by n mutually orthogonal unit vectors. In particular, for a twodimensional (2D) space, i.e., n
More informationVector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.
1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called
More informationGeometric Transformations
CS3 INTRODUCTION TO COMPUTER GRAPHICS Geometric Transformations D and 3D CS3 INTRODUCTION TO COMPUTER GRAPHICS Grading Plan to be out Wednesdas one week after the due date CS3 INTRODUCTION TO COMPUTER
More informationA vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
More informationLinear transformations Affine transformations Transformations in 3D. Graphics 2011/2012, 4th quarter. Lecture 5: linear and affine transformations
Lecture 5 Linear and affine transformations Vector transformation: basic idea Definition Examples Finding matrices Compositions of transformations Transposing normal vectors Multiplication of an n n matrix
More informationConnecting Transformational Geometry and Transformations of Functions
Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.
More informationGeometric Transformation CS 211A
Geometric Transformation CS 211A What is transformation? Moving points (x,y) moves to (x+t, y+t) Can be in any dimension 2D Image warps 3D 3D Graphics and Vision Can also be considered as a movement to
More informationgeometric transforms
geometric transforms 1 linear algebra review 2 matrices matrix and vector notation use column for vectors m 11 =[ ] M = [ m ij ] m 21 m 12 m 22 =[ ] v v 1 v = [ ] T v 1 v 2 2 3 matrix operations addition
More informationGeometric Transformations
Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted
More informationComputer Graphics Labs
Computer Graphics Labs Abel J. P. Gomes LAB. 2 Department of Computer Science and Engineering University of Beira Interior Portugal 2011 Copyright 20092011 All rights reserved. LAB. 2 1. Learning goals
More informationPhysics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus
Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations
More informationMATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3
MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................
More informationCS 4204 Computer Graphics
CS 4204 Computer Graphics 2D and 3D Transformations Doug Bowman Adapted from notes by Yong Cao Virginia Tech 1 Transformations What are they? changing something to something else via rules mathematics:
More informationSection 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 35 odd, 237 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
More informationGeometric Camera Parameters
Geometric Camera Parameters What assumptions have we made so far? All equations we have derived for far are written in the camera reference frames. These equations are valid only when: () all distances
More informationModern Geometry Homework.
Modern Geometry Homework. 1. Rigid motions of the line. Let R be the real numbers. We define the distance between x, y R by where is the usual absolute value. distance between x and y = x y z = { z, z
More informationv 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)
0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3space. This time the outcome will be a vector in 3space. Definition
More informationLecture 3: Coordinate Systems and Transformations
Lecture 3: Coordinate Systems and Transformations Topics: 1. Coordinate systems and frames 2. Change of frames 3. Affine transformations 4. Rotation, translation, scaling, and shear 5. Rotation about an
More informationOrthogonal Matrices. u v = u v cos(θ) T (u) + T (v) = T (u + v). It s even easier to. If u and v are nonzero vectors then
Part 2. 1 Part 2. Orthogonal Matrices If u and v are nonzero vectors then u v = u v cos(θ) is 0 if and only if cos(θ) = 0, i.e., θ = 90. Hence, we say that two vectors u and v are perpendicular or orthogonal
More informationAffine Transformations
Affine Transformations Reading Foley et al., Chapter 5.6 and Chapter 6 Supplemental David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, Second edition 2D geometry Pipeline 3D
More informationChapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis
Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >
More informationGeometric Image Transformations
Geometric Image Transformations Part One 2D Transformations Spatial Coordinates (x,y) are mapped to new coords (u,v) pixels of source image > pixels of destination image Types of 2D Transformations Affine
More informationAffine Transformations. University of Texas at Austin CS384G  Computer Graphics Fall 2010 Don Fussell
Affine Transformations University of Texas at Austin CS384G  Computer Graphics Fall 2010 Don Fussell Logistics Required reading: Watt, Section 1.1. Further reading: Foley, et al, Chapter 5.15.5. David
More informationChapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation
Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7 In this section, we discuss linear transformations 89 9 CHAPTER
More information[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
More informationThe Force Table Introduction: Theory:
1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is
More informationLecture L3  Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3  Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
More informationGCE Mathematics (6360) Further Pure unit 4 (MFP4) Textbook
Version 36 klm GCE Mathematics (636) Further Pure unit 4 (MFP4) Textbook The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 364473 and a
More informationEssential Mathematics for Computer Graphics fast
John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made
More informationLectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n realvalued matrix A is said to be an orthogonal
More informationGeometry for Computer Graphics
Computer Graphics and Visualisation Geometry for Computer Graphics Student Notes Developed by F Lin K Wyrwas J Irwin C Lilley W T Hewitt T L J Howard Computer Graphics Unit Manchester Computing Centre
More informationSection 9.1 Vectors in Two Dimensions
Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an
More informationCross product and determinants (Sect. 12.4) Two main ways to introduce the cross product
Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.
More informationPlane transformations and isometries
Plane transformations and isometries We have observed that Euclid developed the notion of congruence in the plane by moving one figure on top of the other so that corresponding parts coincided. This notion
More information6 Systems of Linear Equations
6 Systems of Linear Equations A system of equations of the form or is called a linear system of equations. x + y = 7 x y = 5p 6q + r = p + q 5r = 7 6p q + r = Definition. An equation involving certain
More informationMATH 304 Linear Algebra Lecture 24: Scalar product.
MATH 304 Linear Algebra Lecture 24: Scalar product. Vectors: geometric approach B A B A A vector is represented by a directed segment. Directed segment is drawn as an arrow. Different arrows represent
More informationFunctions and Equations
Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c
More information9 MATRICES AND TRANSFORMATIONS
9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the
More informationGeometric Transformations
Geometric Transformations Moving objects relative to a stationary coordinate system Common transformations: Translation Rotation Scaling Implemented using vectors and matrices Quick Review of Matrix Algebra
More information0.1 Linear Transformations
.1 Linear Transformations A function is a rule that assigns a value from a set B for each element in a set A. Notation: f : A B If the value b B is assigned to value a A, then write f(a) = b, b is called
More informationLinear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
More informationAffine Transformations
A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates
More information521493S Computer Graphics. Exercise 2 & course schedule change
521493S Computer Graphics Exercise 2 & course schedule change Course Schedule Change Lecture from Wednesday 31th of March is moved to Tuesday 30th of March at 1618 in TS128 Question 2.1 Given two nonparallel,
More information7  Linear Transformations
7  Linear Transformations Mathematics has as its objects of study sets with various structures. These sets include sets of numbers (such as the integers, rationals, reals, and complexes) whose structure
More informationSome linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2015
Some linear transformations on R 2 Math 3 Linear Algebra D Joce, Fall 25 Let s look at some some linear transformations on the plane R 2. We ll look at several kinds of operators on R 2 including reflections,
More informationBasic Problem: Map a 3D object to a 2D display surface. Analogy  Taking a snapshot with a camera
3D Viewing Basic Problem: Map a 3D object to a 2D display surface Analogy  Taking a snapshot with a camera Synthetic camera virtual camera we can move to any location & orient in any way then create a
More information2D Geometrical Transformations
2D Geometrical Transformations Translation Moves points to new locations by adding translation amounts to the coordinates of the points T P(,y) P (,y ) = + d, =y + dy or = y P =P + T + d dy Totranslate
More informationSection 12.1 Translations and Rotations
Section 12.1 Translations and Rotations Any rigid motion that preserves length or distance is an isometry (meaning equal measure ). In this section, we will investigate two types of isometries: translations
More information9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes
The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is socalled because when the scalar product of
More informationEquations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
More informationComplex Numbers. w = f(z) z. Examples
omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If
More informationRealtime 3D Computer Graphics Virtual Reality
Realtime 3D Computer Graphics Virtual Realit Viewing and projection Classical and General Viewing Transformation Pipeline CPU Pol. DL Pixel Per Vertex Texture Raster Frag FB object ee clip normalized device
More informationAdding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
More informationTeacher Page. 1. Reflect a figure with vertices across the xaxis. Find the coordinates of the new image.
Teacher Page Geometr / Da # 10 oordinate Geometr (5 min.) 9.G.3.1 9.G.3.2 9.G.3.3 9.G.3. Use rigid motions (compositions of reflections, translations and rotations) to determine whether two geometric
More informationTHREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
More informationRobot Manipulators. Position, Orientation and Coordinate Transformations. Fig. 1: Programmable Universal Manipulator Arm (PUMA)
Robot Manipulators Position, Orientation and Coordinate Transformations Fig. 1: Programmable Universal Manipulator Arm (PUMA) A robot manipulator is an electronically controlled mechanism, consisting of
More informationFigure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
More information3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala)
3D Tranformations CS 4620 Lecture 6 1 Translation 2 Translation 2 Translation 2 Translation 2 Scaling 3 Scaling 3 Scaling 3 Scaling 3 Rotation about z axis 4 Rotation about z axis 4 Rotation about x axis
More information0017 Understanding and Using Vector and Transformational Geometries
Tom Coleman INTD 301 Final Project Dr. Johannes Vector geometry: 0017 Understanding and Using Vector and Transformational Geometries 3D Cartesian coordinate representation:  A vector v is written as
More informationHigher Geometry Problems
Higher Geometry Problems ( Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement
More informationVector Math Computer Graphics Scott D. Anderson
Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about
More informationwww.sakshieducation.com
LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c
More informationSTRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2
STRAIGHT LINES Chapter 10 10.1 Overview 10.1.1 Slope of a line If θ is the angle made by a line with positive direction of xaxis in anticlockwise direction, then the value of tan θ is called the slope
More informationMohr s Circle. Academic Resource Center
Mohr s Circle Academic Resource Center Introduction The transformation equations for plane stress can be represented in graphical form by a plot known as Mohr s Circle. This graphical representation is
More information13 Groups of Isometries
13 Groups of Isometries For any nonempty set X, the set S X of all onetoone mappings from X onto X is a group under the composition of mappings (Example 71(d)) In particular, if X happens to be the Euclidean
More informationMatrices Summary. To add or subtract matrices they must be the same dimensions. Just add or subtract the corresponding numbers.
Matrices Summary To transpose a matrix write the rows as columns. Academic Skills Advice For example: 2 1 A = [ 1 2 1 0 0 9] A T = 4 2 2 1 2 1 1 0 4 0 9 2 To add or subtract matrices they must be the same
More informationSolving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
More informationDot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product
Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot
More informationMath, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.
Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical
More informationGeometric Objects and Transformations
Geometric Objects and ransformations How to represent basic geometric types, such as points and vectors? How to convert between various represenations? (through a linear transformation!) How to establish
More informationTeacher Notes. Exploration: The Determinant of a Matrix. Learning outcomes addressed. Lesson Context. Lesson Launch.
Exploration Teacher Notes Exploration: The Determinant of a Matrix Learning outcomes addressed 3.7 Calculate the determinant of a matrix. 3.8 Evaluate a determinant to calculate the area of a triangle
More information1.7 Cylindrical and Spherical Coordinates
56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a twodimensional coordinate system in which the
More informationIMAGE FORMATION. Antonino Furnari
IPLab  Image Processing Laboratory Dipartimento di Matematica e Informatica Università degli Studi di Catania http://iplab.dmi.unict.it IMAGE FORMATION Antonino Furnari furnari@dmi.unict.it http://dmi.unict.it/~furnari
More informationThe calibration problem was discussed in details during lecture 3.
1 2 The calibration problem was discussed in details during lecture 3. 3 Once the camera is calibrated (intrinsics are known) and the transformation from the world reference system to the camera reference
More information9 Multiplication of Vectors: The Scalar or Dot Product
Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation
More informationOrthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
More informationθ = 45 θ = 135 θ = 225 θ = 675 θ = 45 θ = 135 θ = 225 θ = 675 Trigonometry (A): Trigonometry Ratios You will learn:
Trigonometr (A): Trigonometr Ratios You will learn: () Concept of Basic Angles () how to form simple trigonometr ratios in all 4 quadrants () how to find the eact values of trigonometr ratios for special
More informationSection 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables
The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,
More information6. ISOMETRIES isometry central isometry translation Theorem 1: Proof:
6. ISOMETRIES 6.1. Isometries Fundamental to the theory of symmetry are the concepts of distance and angle. So we work within R n, considered as an innerproduct space. This is the usual n dimensional
More informationAddition and Subtraction of Vectors
ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b
More informationJUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson
JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3
More informationREVIEW OVER VECTORS. A scalar is a quantity that is defined by its value only. This value can be positive, negative or zero Example.
REVIEW OVER VECTORS I. Scalars & Vectors: A scalar is a quantity that is defined by its value only. This value can be positive, negative or zero Example mass = 5 kg A vector is a quantity that can be described
More informationsin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj
Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models
More informationMATHEMATICS (CLASSES XI XII)
MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)
More information226332 Basic CAD/CAM. CHAPTER 5: Geometric Transformation
226332 Basic CAD/CAM CHAPTER 5: Geometric Transformation 1 Geometric transformation is a change in geometric characteristics such as position, orientation, and size of a geometric entity (point, line,
More informationVectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.
Vectors 2 The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Launch Mathematica. Type
More informationComputing Euler angles from a rotation matrix
Computing Euler angles from a rotation matrix Gregory G. Slabaugh Abstract This document discusses a simple technique to find all possible Euler angles from a rotation matrix. Determination of Euler angles
More informationRotations and Quaternions
Uniersity of British Columbia CPSC 414 Computer Graphics Rotations and Quaternions Week 9, Wed 29 Oct 2003 Tamara Munzner 1 Uniersity of British Columbia CPSC 414 Computer Graphics Clipping recap Tamara
More informationThe Vector or Cross Product
The Vector or ross Product 1 ppendix The Vector or ross Product We saw in ppendix that the dot product of two vectors is a scalar quantity that is a maximum when the two vectors are parallel and is zero
More informationTheorem 5. The composition of any two symmetries in a point is a translation. More precisely, S B S A = T 2
Isometries. Congruence mappings as isometries. The notion of isometry is a general notion commonly accepted in mathematics. It means a mapping which preserves distances. The word metric is a synonym to
More informationTransformations Packet Geometry
Transformations Packet Geometry 1 Name: Geometry Chapter 14: Transformations Date Due Section Topics Assignment 14.1 14.2 14.3 Preimage Image Isometry Mapping Reflections Note: Notation is different in
More informationImage Formation and Camera Calibration
EECS 432Advanced Computer Vision Notes Series 2 Image Formation and Camera Calibration Ying Wu Electrical Engineering & Computer Science Northwestern University Evanston, IL 60208 yingwu@ecenorthwesternedu
More informationClass 11 Maths Chapter 10. Straight Lines
1 P a g e Class 11 Maths Chapter 10. Straight Lines Coordinate Geometry The branch of Mathematics in which geometrical problem are solved through algebra by using the coordinate system, is known as coordinate
More informationA matrix over a field F is a rectangular array of elements from F. The symbol
Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F) denotes the collection of all m n matrices over F Matrices will usually be denoted
More informationComputer Vision & Digital Image Processing. Edge linking and boundary detection
Computer Vision & Digital Image Processing Edge Linking and Boundary Detection Dr. D. J. Jackson Lecture 171 Edge linking and boundary detection Ideally, edge detection techniques yield pixels lying only
More information