# REG Design Of Goncrete Structures (Reka Bentuk Struktur Konkrit)

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

Download "REG 367 - Design Of Goncrete Structures (Reka Bentuk Struktur Konkrit)"

## Transcription

1 UNVERST SANS MALAYSA First Semester Examination Academ ic Session November 2008 REG Design Of Goncrete Structures (Reka Bentuk Struktur Konkrit) Duration: 3 hours (Masa: 3 jam) Please check that this examination paper consists of TWENTY TWO pages of printed material before you begin the examination. Sila pastikan bahawa kertas peperiksaan ini mengandungi DUA PULUH DUA muka surat yang bercetak sebelum anda memulakan peperiksaan ini. Students are allowed to answer all questions either in English OR in Bahasa Malaysia only Pelajar dibenarkan menjawab semua soalan dalam Bahasa lnggeris ATAU Bahasa Malaysia sahaja. Answer FVE question only. Jawab LMA soalan sahaja t-

2 -2- REG (a) n reinforced concrete design, the slabs are designed either one way slab or two way slab depending on the span/depth ratio. How do you differentiate between one way slab and two way slab' You may give sketches to illustrate the difference in terms of load distribution and design criteria. Dalam rekabentuk konkrit, papak lantai direka bentuk sama ada papak satu arah atau papak dua arah dan bergantung pada nisbah rentang/tebat. Bagaimanakah anda membezakan di antara 2 ienis papak tantai ini. Anda boleh gunakan lakaran untuk menerangkan 'perbezaan ini, khususnya agihan beban dan criteria reka bentuk. 2. (b) (a) (6 marks/markah) A reinforced concrete floor slab measuring 3 m x 5 m is simply supported at the four edges. The slab is assumed to be 175 mm thick with a total dead load of 5.0 kn/m2 and imposed load of 3'0 kn/m2. Design the reinforced concrete slab using grade 25 concrete and steel reinforcement using grade 250. Sebuah lantai konkrit tetutang berukuran 3 m x 5 m disokong mudah oleh empat penjuru. Papak tantai ini dianggarkan setebal 175 mm dan memikul beban mati sebesar 5.0 kn/m2 a-a-n OeOan kenaan 3.0 kn/mz. Lakukan reka bentuk papak tantai ini dengan menggunakan konkrit dari gred 25 dan tetulang keluli gred 250- Define or illustrate the difference between following columns:- (i) a short column and a slender column (ii) a braced column and an unbraced column (14 markslmarkah) (i) Tiang pendek dan tiang langsing (ii) Tiang rembat dan tiang tak rembat (6 marks/markah) 74 Takrifkan atau terangkan perbezaan antara tiang-tang berikut:

3 REG 3671 (b) A short braced axially loaded reinforced concrete column of size 300 mm x 300 mm is designed to carry an ultimate axial load of 1500 kn. Find the total steel area required for the longitudinal reinforcement and the suitable size of the bars to be used. The column material is made from grade 30 concrete, the main steel reinforcement is of grade 460 and the links is made of steel of grade 250. sebuah tiang konkrit tetulang yang dirembat berukuran 300 mm x 300 mm telah direkabentuk untuk memikul bebanan paksian muktamad sebesar 1500 kn. Tentukan jumlah tetulang keluli utama dan saiz bar yang sesuai digunakan. Bahan tiang ini dibuat daripada konkrit gred 30, tetulang utama daripada keluli gred 4G0 dan pengikat tetulang iatah daripada keluli gred 250. (14 markslmarkah) 3. (a) Explain the difference between design moment (M6) and ultimate moment resistance (Mr). Terangkan perbezaan di antara momen rekabentuk (Ma) dan momen muktamad (M,). (5 marks/markah) (b) Calculate the bending moment of the simply supported beam as shown in the following Figure 1.0. (i) Load Factor method with a load factor = 1.8 (ii) Ultimate Limit State Kira momen rekabentuk untuk rasuk mudah seperti ditunjukkan dalam Rajah 1.0 berikut. (i) (i i) Kaedah Faktor Beban dengan faktor beban = 1.8 Keadaan Had muktamad (15 markslmarkah) t-

4 REG 3671 [5 kn/m (dead load /beban mati ) & 2 kn/m (imposed load / beban kenaan)l '. 8t Rajah 1.0 (Figure 1.0) rl 4. (a) (b) What is the effect of bearing capacity of soil on the size of pad footing. Apakah kesan keupayaan galas tanah terhadap saiz asas pad. (5 marks/markah) Design a square pad footing to resist a dead load of 800 kn and imposed load of 550 kn. Assume the characteristic strength of concrete and steel is 30 N/mm2 and 460 N/mm2, respectively. The soil bearing capacity of the foundation is 160 kn/m'. Rekabentuk asas segiempat asas pad untuk menanggung beban mati 800 kn dan beban kenaan 550 kn. Anggap kekuatan ciri konkrit dan keluli adalah masing-masing 30 N/mm' dan 460 N/mm'. Keupayaan galas tanah untuk asas adalah 160 kn/m' (15 markslmarkah) 5. (a) Discuss and explain the characteristics of reinforced concrete. Provide sketches to support your discussion. Bincang dan huraikan ciri-ciri konkrit beftetulang. Sertakan lakaran bagi menyokong perbincangan anda. (10 markslmarkah) ?6

5 REG 3671 (b) Describe Five (5) causes of failures in concrete structure. Huraikan Lima (5) faktor yang mengakibatkan berlakunya kegagalan dalam struktur konkrit. (5 marks/markah) (c) Explain the factors influencing the durability of reinforced concrete. 6. (a) Jelaskan faktor-faktor yang mempengaruhi ketahanlasakan konkrit bertetulang. Explain what is meant by limit state design. (5 marks/markah) Jelaskan apakah yang dimaksudkan dengan rekabentuk keadaan had. (10 marks/markah) (b) A simply supported rectangular beam of 6 meter span carries a- characieristic uniformly distributed dead load (including self weight of beam) of 8 kn/m and an imposed load of 6 kn/m. The breadth of the beam is 225 mm and the effective depth is 425 mm. Find the reinforcement area required. Use grade 30 concrete and high yield steel reinforcement. Calculate the shear reinforcement required for the beam if yield strength of shear reinforcement is 250 N/mm"' Sebuah rasuk disokong mudah dengan rentang 6 meter menanggung beban mati teragih seragam (termasuk berat sendiri rasuk) sebanyak 8 kn/m dan beban hidup teragih seragam sebanyak 6 kn/m. Lebar rasuk adatah 225 mm dan kedalaman berkesan adalah 425 mm. Dapatkan keluasan tetutang yang diperlukan. Gunakan konkit gred 30 dan keluli ketegangan tinggi. Kira tetulang ricih^ yang diperlukan iika kekuatan alah tetulang ricih adalah 250 N/mm' (10 marks/markah)

6 -6- [nec aof Table 1. Design ultimate bending moments and shear forces At outer support Near middle of end span At first interior support At middle of interior spans At interior supports Moment F/ -0.11Fl 0.07FL -0.08fl Shear 0.45F 0.6F 0.55F NOTE. id the ffictive span; F is the total design uhimate load (1.4G,*+ 1.60Q0. No redistribution of the moments colculated from this table should be made Table 2. Sectional areas of groups of bars (mt') Bar size (mm) Number of bars ' Table 3. Perimeters and weights of bars Bar size (mm) Perimeter (mm) Weight (kg/m) R7o Bar weights based on density of 7850 kg/mo....7 t-?8

7 grc eof -7 - Table 4. Sectional areas per metre width for various bar spacings (mm') Bar size (mm) Spacing of bars s Shear reinforcement Table 5. Asu/Sv for varying stirrup diameter and spacing Stirrup diameter (mm) Stirrup spacing (mm) ' 't e,/-

8 BSB'110:Part3:1985 rfl o cn H,9 zrxur/n ntj 'W, l.- x --l a tfl ol! Or o r ọ q o tfl cd Cl N o ct u] r{ N ln o -l otn n tl E 6ui -{E (o () '.o "l o o Q,l c-) (* a r+; c.r-f (u L ttl { 80- zrxtx/n zp q/hl * E.f* Lri Chart No:.;

9 8S8110:Part3: l9b5 cl t.et.ql ofl eujut/n otna s cfl crt n3j lf) C' l*- x{ E -a OU' -l o qul -lf b (o (u g E o CJ L cl t{- c.r{ 0) L 'q 81- atxru/n _ epqlhl n crl c.r't u

10 Bs Buo ' p"r, r\$tge3s6/ \$eution r.hree -10- t ;L lrlr H 5O * rxpold Onr ls rrporrd 82.i,

11 g ia't 1ll. 92?1' l ; 'l (ra ra Section three -11- ''.:.:.. trsc 354 Table 3.4 NominEi cover to all reinlorcsment {inctuding linkr} to mcet durability requiremantr (see notel Co nditioris ot 0xposuta 'rce Mild Moderate Severe Vely severc Extrerne -n;;;;;,: mrn 20' t 60t mm 20* "?\$ Maximum free water/ cemerlt ratio t!1lnimum cement content (kg/mr).'!',., Lowest grade ol concrete.the:e covcri m6y h! roduced to t5 mrn provided thgt the nomintt maximum qae of aggregetc does nol cxseed l5 mm. twhe.e concrero it subloct to ireering whilstwet, air.cntrainment rhoutd be rrsed (set 3.3.{.e}' NOTE l. Thir tablc tclltet to norrnlhitcight rggrsgari of 29.mrn nomiarl m'trirnum r;'e' NOTE 2. For concrcte urcd in: foondl-ti9nr tq lor{v tite gontttlttiqn. tae 6'2'{'l}'.':' ".' Tablc 3.5 Nominal corcr to rll rcinforcrmcnt (including linkrl to mcet cpccificd pgrids of firc rorirtene. (sce notas and 2l : \$g5.ttrr.1 :..':r;. ;i'' Fldoti ';:'i"...' ftlbr j';;i. '.':' '\$ilumnrr Continso\$g' i,-.,:. i.. Cositinsosr mm. '',r:...?0t r]. 20r; '20t,30 : :r' 4A i' mm?0r?0 26 :'i'.35 nrm 20t 2A 20 'i- /5.i mm i:.' ' : 2Sl rir ir ;,.'}b '-:-T-,. r'iii.t...i:.i!.,.r.rii1 rhe n";pi;siji';t assersing a irgrninat cctvdi tor beamr lr{d col.rmni'. t61 c<rve. to',irain harc'i/i,hicn would hlobeen,,!rl,,rerr ito,jn iatlres l.2 ano-4,3 ot BS8l l0 : Parr 2 : lgss have becn rcduqed bv a nptional allowincc for stirrugt of ';.;;i;#;;;;;;.;mmto12mrn{seearsoa.r.it' ''r'r::'' '. 'r'' ' "'.' 'i. T hcre.iover s.mqy.tle:,.oduced to 15,mm Frovrct e<l t hnl t he n orh rnal m axrmrrln!{zg o aggregate doei not e rcaqd l5 nrn ' ':rre3.3,1.31 '...:. : ": "':" : - ' ;":"': liote l.thenonrroal coverlgivenrelatctpeci{rcattytothcmintmurnmumbtrdimen5iocggivenrntigure3'?'''gurdance.j,1 ncreasec! covgri.neceltary.if :rnatler memberg a.e usod is givan rn rection four of SS SllO : ircrt t ' 'rggs ' " r{ote 2. Cases rher iie betow rhe bold..t;.4g.(squ-i{c.at,lqntlon,torh.sddrtroar!.nrearu!'+sfia.cetsa,r.v.tp re<jvce rhgrile.i qt i,tt:rllrng (seo reciron lou,r ol BS 8l l0 : Patt 2 ' 1985) E /- 2A iti mffl 20t 20t 20' 35,..'

12 -12- frec 36, 8S glli] : tti"t i it,ii.',i Sectirrn ihrea Tablc 3.8 Forrn rnd rrts uf rhclt reiaformmcnl in bcrmr Vrlut of Y {N.rnrmr} Furm of shrnr rtinforcrmint lo btt pi*vidltl " Ar+r ct shear reioforcomant tq lre pvovidcd Lesc than 0.5 rr" throughout the bearn See note 1 05v"(v<t/c+0.4) Minimum links for whole length of Eeam Arv > 0.4 A"s"/0-87 fr" (iee hote 2) {r"+0.4}(u(o.ev/c; or 6 N/mmt Links or links combined with bent'up bars. Not more than 50 i6 of ihe shear rori6t6ncc provided by the steel.nay be in'thg form of bcnt-up bars (sae'hote Ql'.r{hEre links only Provided: Ar, ) b"s, (r- rr.li0.87 ttru Whdn links and bent'uq barb provided: sec ffiksrhou rjbcprovidrdinr1 bramlo rtrucluratimfortlncc..ilwit b+eriltac.torylo.oinit in m.rrrblrt of mincr. structcral importsncc wch!r lintllr vihlrr the msximut4 df\$gn'lhlqr nrqtr ir lcsr lhan hell vt' NpJE. Minlnum liniir nrovirlo a.feign l rglt iltlttqfg 9f 0'4 N/mmt. NdE 3.Scq 3.f.6.8 for luhlnec on tpffing.ol!in!t md b.ttt'up brrr' them l0o4r b"d < 0.r : r.oo..r, > 3.00 Effra'tha d+th lin minl t2!i AE * > 4{t0 N/mm: : ?7' 0.84 o.e7', N/mrnr ' 0, ' '16 l,vmmt r ? N/mrtrl " o:95 1.gB N/mmtl 0, e q.s3 i0.e Nlmml :02 N/mrnl { 0.6?. 0.6e NOTE t. Allowance has bcen m*jo in rhese f igurer (or. a');. o{ '?51' ' :' " ruofe.t. ittu va1,!'! in the rable are darived irom rtto crbrbssion:.' ' 0.19(tOO,,4r/tbyalll/3{+Ociall,''lf i.'.. ; i : "'. :'" whero. toga. :. J.llJ 3h611;6 not be tak!n or Ertalar than 3; b;d --.--=' ' ibo '. i"'..+ 'ili6old.not.be tektri ts lsrs than 1...'.'.. ' i : :- d N/rnmr 0.3f ,63. A.72" 0.s0 'r;, ;-rr"ir"iiiirti. ioi,cliii'ii,onstii sruara;,. ri ii ie'rulmrn:,.rni uetuer.,n rtrblc.3.9 m6l i;.;;il.":;;1i";ait t1: tni ;:c1; of r.., slidirlc!'nor uc iardn ii Ereatsr tnah 4o' ' B4...13/_

13 :..i:t j : i::.j'j:-t r-.: :?j;i lai:itr j: i1i r'..'i.,1:::. _:,i{. :" 'REG'3671 L-'. ''' tt 3.t.6.4 Lang Wens. For splnr. exceeding 10 m, table 3.10 *hould be ussd only il it i\$ not nice:saty to limit the iocfea.se in tleflacticn sftef tle\$ conrtrugtion of partitions arrtj finishel, linritetisn is necvsrafv. the wiuas ifi rarrle 3.10 should "{hsre bo multiptied by 1O/span oxcept for cantilevsrs '"'h8re th* detign sltoultt be iustif icd by crlculation. S fitt ul i f icat ia n o f *a* i4e pth. ret i e s. f a r t en aia ftintorcement Oeflectibn is iirfluericed by ttie amodht bf rension reinforcement an<t its stiehg. The span/effective deprh ratio strould.therefota fg,r.ng{ified according to ttn :rr.u of rein{#ceinent providlii sirld its.3arvic! streli at ihs csntre of thli sptn tor at the ilppcrt in ths cbe bf a ' 'ir"tirru"t. laiqer gt prnigtfuctiya poptrr iltiq outiineu.. frorn table'3.to shoulct be multiplisd hy thd ippropilato lactor obtained trom tahle Madification of \$enldapth fttias for cawresid'on 'ffi i n f o rcetn enf ; Comprscsion rei nfgresrngfi t eho.i nf luencer'' def lection and tbt vtltir of tho ipnn/bif?ctive{s\$h ratio ' slrtained from toble 3.10 madiflsd by thc foctor obtained' ' from uble 3.1 msy bc rnultiplied by s furthcr fsctor.'.. o.brained from uble Daflection dut to cru*, and {zrink4c, Fsrrni*ible i rpanleffectiw dcpdr ntht obulncd frcm trbtcl 3't to 3.1\$ take acxount of normalcrcep'rnd rhrinkpga dafl.stion. t ir is expectd ttrrt cr.rcp or shrinkrga of the concretg msy be particulrrly high (e.g. if tho frsc rhrinkagc \$rein is.. expected io bo grertcr thcn or thr crcep coofficient tt.. "-'Toble 3.ie Moctificaiion frctor for csmprs*iort rclnf orssm*nt lilssu 4d q.lq ''....0rFO '.: '. 0:75 t'trt.1'.0' :'' > 3.0 Faotor r.08 1.r0 i[ 1.14 t. Trble 3.tl frf,qdifltttlcn fsetor for trnrbn r,cinferormrrt ' \$qrvicrttrtr M/N7 9SO 6.16 r:s t.f0 2;OS t}'.6.q0 ' G.00': 100. t60 (/, t5\$ (/v ?.00 2.OO 2.m? e0 2.0s ,00 t, L ?.00 r.98 r.96 1; ?1? S E r.20 : 1.09 {.0\$ r.36 1r25r t.4 r s5, 0.s3 l.; l.o2 0.s r.08 t'ot ql 0.t lBB t l NOTE l. T he valucs in thc tabte tleriw frorlt the *que!ir)6: {41? - f.l tr,lodificationtactor-0.s5+ - fv nere '--:- < 2.0 /o.s - -g ' i 'ro brt'l...'-.:.:. ttf irthedtisignuitirnatcf,lo(ncntat!hec6ntrtof thcsptnor;loracantiiover,3rthc!up-por.t'i.::i j j.l:.' equetion? NOTE 2. ThC d\$ign servic \$tr sr in the tensibn ruinf orceirrcilt in ii riiember may ba estimatxl {rb,in the e(ustian:,.st"n:rt:s*j r ga.- oro" Fo NOTE 3. For o coniinuoor bearn. it rhe porcantil\$g of redistribrrtion i: not known but the dalign ultimale mom3nt at micl-rpan ir obvioully thr samg rs or grcttrr th[n rhc tlgrtic ulrimnt6!?rod1cnt, the ttrett. f!. iri thit t8bla rnay bg rakon rs 9/Ufv, B5 ' oguoti'on,:ii:,it iri ; ltf{ i : i*ei il+ r' --.tinn tl'l!^6 Jvw'' L4/-

14 ,.'ri'.-!1, '.. i :lt\$,\$1ifj l"ari 't : 1{}itt1,.r Scctionthroo [nne sel i tb) The ratio of the characterirtic imposed toid ro thd d'raracteristic dend toad does not exceed 1.25' (c) 'the charscteristic imposed load does not cxcaed 6 kn/nr? excluding Partitions' tlhcrc analysis is carried out fsr the singte lcad crsb of all sanr loaded, thb resultlng support moments exc tlt thocc rt the supports of cantilevers should be rerluced by?0,q6. rith a consequential increase in the rpon mcmenis. thc resulting bonding moment envelope chould \$atisfy the trovision of 3.2,2.1. No furtherredistribution shoclld be trrried out. llrere a spari ni: illnol is ntlincrr.rrl lo n cnrrtilovar of lanllth ecrrding ono.ttrirrl ctl tho lpnn rrf tho lltrll. lfrn pon[tlllily dror.rld be consirlctorl ol llro cnlo ol.rlrh unlogtlo<llcrnlilovor lorded Ona'wiy sltaturirtp slults ttl upprttxhttrttcly' ctlttt[ rin Whoro lllo honttilirrtrr ttl trt tnot. 1fi ittttt rrd chrlrr'in crilrtinttout otro'wty rplrrtring rlaltt mtv lto crlculatcd uring rhe cocl(iciontr givsn in trblo 3,13. Allowsncc har been mldg in thesq coclficicntl tor the t0 96 rrdistribution.mentioned abova. lhr curtailme ni of re inlorc-c mb n t' dssi gned in rccordrnci *fth trblc 3.i 4 mry be carritd out in accordancs with thc' ilovlrloni of ,.,. tj.3 Sotld rtrbl rprnnirt'l ln.twq dl;rctlont rt dght nt hll niformly diqtributtd l9fd1 -.,.. ' 1t3.f Gcneral, Subclaurer 3.5'3.3 to ? may bc urod ' for rhe design of slabs spanning :.n lwo diractigm et right eqlos and supporr;ng unifo.rmly dictributcd loads' ll32 Symbots. For the purposet of 3.8'3. thc following rvmbols applyi t, l3 fr., arv length of shotter cide length.of longer side maximum design ultimate moments either. over tupports or at mid'span on ltrips of ' unit width and span l.. maximum design ultimate momsntl eith i over supports or et mid'span on rtripr of unit width and span l" n rotal derign ultimate load per unit arsa tl.4n* + 1,6o*l Atd number of discontinuour odgcs t0 ( /V { 4} vt" v.., design end thuar on strips of unit widttr ancl sf,an lx atld considered to act ovor the middle threo'quartcrs ol thc edge detign end sheer on strips of unit width rnd " rpon " and considcrtd to rct over the middlo 6o {lu tt)cs'quarters of the edge cagging morirtnl in tho lpsn. pcr" unit width' in tho dirsction of the rhortor rptn. lr. divhtorl by rtl.t tagging mt?mtnt lrr tho t1utr. ;nr urril witlllr' n tha dlrcctlon ol tha tongof tpln. lr, tlivitlxl lry alrl [1 nrrd B; hoqqing momitrlt, 1xr unlt-wldtlt, ovlr lho rlrarlot ilrl\$rr sltvlttxl hy nl.' flj rntf Jfa ltoggirrg rlomilltt. lxtr ynlt wkllh,.,vl't thr longir cdglr dlvldrd lt'i nl"' ol, rn{ fi,rv momrnt cooflicionr shown in tlbl.a 3'11 pr. end p' rnomcnt coeflicicnts'ihown in trble 3'15 p", rnd Fvy shmr forcc coetficicnl3 shown in trbh 3' ,3 Si ilw y -et pp o rt ed tt abs. Whcn si mpl y'tupportd' rtrbt do not hrvf rdrqultt provirion to ruilt torlion tt lhl cottilrt, rtl(l l0 pnvlnt thl cornlit from llf ting, thc mrxiniiiin'totnntt pcr'unit width rg iiivcn by thc tollowing Gqurtions: m.. - cr* dlr?,. rrttv -'drv fl rl ' NoTE. vllucr fsr n* lnd c* ric iiwn in t\$ltr"l1' cquation l0 tqultion, The vrlues in table 3.14 arc derivtd from thr following equrtionr: llrlt*'f E= *rr g (l + {Yl*}f } (ru/t* )2 arv * 5fr1f]-fliri cqwtion l2 oqu.tion l Restnined sla0s. n slabt where the Gornori trs prevented trom lifting, and provition lor torlion is {flade, t Trblo 3.13 Ulrimrte bcnding mqmcnt rnd rhtrr ftrc6 in om'wsy rfrnnlne rfubt Al oula? rufpor! : Hur mijdh of rnd rprn At firrt lntffbt tt pfort rliddh cf intarlot lprnl ntdor rudponr llomcnt Shcar 0,'. 0.4F c.0g6f, Ft 0.6F 0.063F1 t_ F, 0.54 NOTE. F is ths tolal desien ultim!(! load t1.461 ir thc cftective spen, l.60rl: B6 -L4-...r)/-

15 n,, :r., ja:j::,:f.r1'.''..,:,..'-..'. i':.?.:-.1iri:!r:. :.j.. t *r*ri*.;rrl+ry,384 [r'*uticn ii ;' va Toblc 3.i4.tlending nl,rnreflt coalficienlr f\$r slabr rpanning in nvo directions at right-angler, rimpiy-supported on four :idel f tl ryf,lr t.l '1.? t,3?.4 1,5 t.?5 1,0 at* 0ry 0.0s2 0.06? 0i : ;.,': 0,084. b.oe\$" -. :.'.r 0.Gs3 ci,0ss..:.. :: ? :029 ':.: i;.lr-.: i i:-.;r!.:.i:...; the maximum.design moments per.'qfiit widlh.'are given by equations 14 and''l5i i :'!, 'i'j" ii'.'r' 1:'r".,'i :'i' :'. frt^, -:...;;:i.., bquatlon 14 'Qquation mri" 15' '.'.,,:'il.:: +frfv +'0r) ) l'' '\$ t5)tiirsi6ii iiinfiirceniih. thould be'providid it anv ' ' corner where the stab is simply supported on.both edge" meeting.et'th8t,corfier- lt should gongist al top and' :.'" :' ' bottom-reinforssment,'eech wirh layers of 'bars placid.,'," :r' parrllcl to the:iidei of the set{ tnd extonding from thct " " edges a minimsni diitancg of tna'iitttr af ihc ihurtcr j "': r ipii. irti a,ita bt reihiorceiiientlirliath o{ ificra fdu'r'!":'''r liyers should be three-que*cllbf the'alta requireo fdi ' -':" the.m9sir.nr1.q1 qid'sp-an \$esigp ngpgn! in.ttre,.qt.q r.1.':. '.,. (61'forsion r.einf,srcemeit cgual'to half that dc\$ribsd:. ' in the preceding paragr.aph should be prgvi{ed1t'!';.. ;i.,i.r.r ccrner contained by edges ovar only onc of which the slab is continuour. ilf toiri;t'irlhu'#;ii'l'fu Jo'ni'i\$ir'nip-vrc.edii.?,tt':;l;: corner contained bv edges over boiiibfriiiiiih'thi Slah ismntinuoug.:'.,. ;.;.. '.{ i...; ,' ::.'.,'..'" '.;:.:: i r.s.3.i''bdr,;raa.;iqg wlth u 7eq!.aliq"gliilpi gi i,ii1ri,'',.' - panels, tn *oine casis thtr stippori morlfnts calculated lr0' i,if in;;#'ircteristic dead and imposei'loads on aciaceni penetg ers *pproxirnotely the same as on the panel.being donsicjerad; conslosrb(j trr ltl'rt r'lrrsurrurr' supports (neglecting signsl".. :...., ",.. (bl Treat [l+e:valuer frpqt table at.{ixed end rnoments..{fem},:rir.,.. i..... {cl Distribute the FEfuls across the suppofts accordrng to the.relative slif{ness of adiacent spans" glving ner+ 'r.' ".' 'i.'- suppor:t msrments.-...,, '. t : 'r'. i. ', '. {rl} Adiust midspan momenl:'this shoutd',be such tliat when it is adcled to the iuppcrt monrgnts'from {c} The rulos to be observed when the equations are opplied. tq. (neglecting signs).the total.should egual that {rorn (al. restrained slabs (contirruous or disconiinuous) are as follows nisrabsarecorrsitreredeqdividecrjn**r,oi,irt;o;l;i;:''ii:fir'ii'i-;'ie.iiig!.f19;i';iiiii'n'!'s;rdbil#6mentsbie''''.. LqW iigiiiticanilv iiiaier tl?l..tfg,value from tdbie 3'15' middte strips and edse rrri\$ ag rhown in figurq,i.\$, rhe rniddte srrip being rhree.quarters of the *i[t5,"a eact, eoge sgfpone-e:,gti,h of the it/idth. fhe..liiuion i*4 g.itet th* iu.,pno.t:,'t t'll neiq,io.iie exre"'t bey'ontl ihe provisions of 3'11'10'3' The procedure shrrur' (21 Tlre max,irni.rm design momerts calculated ag above - i:..t-t fu!'*t': ". '- :' *i,,r.,. *io.ii* strips and no redistribiition. r-r ':;;:'ib'l!thd spsfifrfonen'. is toreii::ui:barabolic between'' ' shculd ".ir; be nrorje. supports: value ts as tbund f rorn (dl. i5l.maxrrnum (3) Reinforceinent l1 lhe mrcldlc tirips should t;'t '. ifi Tire poiits'il.c,intratiexure of the new si.r'bpqrt deraitecr in accordsnce;;1;; i.ii.i0 ' ie.prir,ijjiutes'ior *o'_.i?li, (lioryr iiil l.ilh,!l'':.np:" fr:lji"i (rrorn ia!'.. curtailment of bart'i are cletdrmined' '' o Fr EZ 14! Reinforcbment.[n,sh bdge 'strip, psr'allel't6 the.edge' :" need not exceed the minimum given in (minimur " :' area\$.of. tensioh reinfqrcelnerrl),.logethsr \$Jith the..". 'i1- recoinmendationsfor torsiongiverl in (\$1, {6) snd [71.; '::' ' -15-.: ' e.5.s.5' Resrra''aed s{gq.9,rgf e4.e th.1c1rllf dre preyintert from tifting and tdequatb provigiqn is nlde for toftion: table'3i15, Jor adiacent panels, rnaydit'fer eignificantlf.." ".' cond itictnd bid rt,les fii i't he'b'ii'af eqiratia ns' 4 aitd't 5. " To adiust them the following Procedures may be u:ed. ' 1' " ' The conditions in which the eguotiqns may b uied for i'- (a) Caleulate the sum of the qoments at midspan and conlinuous slabs only ere as followe'..rc/-

16 ,:ili :, :. '-:r-, ii;*i -, Section three : - i r.r\$,!, iai:i+ 3.i5 Eandiag mcrncnl cctlficirntr for rectanguiar panetr cupforted ot'l ioqlr ridsr with pra.visicn fi;r tcrciq.ln tr i cdtf l'i?r5.vp6 ot pdn63 tnd mr:mlntt : Shorr tpln coe{f icirntr, u* LoPl rfjqn cocflicirntr, ilr* for ull Yrluos of lvilx rr*r:galive inoment at csntinrjour td\$e grasitive momont at rrid.span 0.03r , ?B.l 0.04? 0.03? s.04e o,\$ \$ il 0.05s \$ lo.r=t Qtre short edge <iiscgntinuous Nr:gative ftoment at con'rinuous dge Positive moment'at mid-span : C s 0.0s C ? o37 0.0'18 One long edge discontinuoiti' Negative moment at continuous edge Positive moment at 'mid-span Two adjacent edgcs discon.tinaous Negative mornent st ' i continuous edge Positive moment rt mid-span - Two shirt edw disiantinuous Negative momsnt al continuous edge Positive morncilt dt rnid.tpan ,0\$0 -' t' s Gl s ,04,2, ? o.otr _ s o.dss s.062 s.0d :06? iC65 0.ss o.dee o Tu.to long edges discontlnuaug lrlegative mcrnent at csntinuo\$f edge Positivi nroment st Three edges dieondnuous iane long edgo continuobs) o, ',j 0.0s ' f'legative momefit at continuous edge Positive momeftt at rnid-span... s fj G\$2 0.o6s 0.s9s 0,074 c.044 ilr 7ss s 6gt s bisconi inu aus iorie'short cdgq ' cantinuolts) '! ;l il ll Negative moment at continuous edge Positive. mornent at. nrid.span F our edge! ciisontinuous l:ositive moment at mig.sprn ' c s xn Lt r', , ? 0,C\$a 0.105, o56...Ll/-

17 -77- S.S.5 Shc*r r*rl*tlnoo o{ sotii* rlabs Sfnrbo/r. Fsr ihs purpotet of the foliowirrg cvmbols epply. Aru arue of shoer tinks in r rons A1* creg of bent-ug: bart in s lsn6 b breedth of dsb under eonsideratian d. e{fectico depth or sversge effectiss depth st a slob fr, charactarirtic strcngth of ths sheer reiftforcoffient which rhouldnot be t*ksn ff greater than 460 N/mmr u norninal do:ign sheor rtresc vc derign uftirnrte ghoar gire* slrtnineel irartr toble 3.10 V rhcrr force due to delign uttimete loads or thc design ultimate vafue of s csncsntrlted load o angle betweon the shcar reinforcement and the. pkne of the slab se. spacing of bent.up bors {sae figure 3.41 sy spacing of linkr 3.5.5,2 \$heer stre\$e\$..thd design shelr srrss, r.. ct sny t cros lectian ehould bq cqlculatsd from equatian 2 : v "..!.' vr - bd squntion?l ln no case should v exceed 0.8 y'fou or 5 N/mmt, whichette r is the lessm, whatover. shesr reinfcrcement is provided Shear rainfercemd,.r?. Fccammendations fcr shear ' rsirr{orcement in solid slabs are giv*n in table 3.1? \$haw in solid slabr undar ceircentrand lescr i The provisicn: of 3.3.? mry be lppli*d. i 3.S.' Orfleetion Oefisctians may be calcufated lnd cornparcd with ti'r -: seuviceability retluirements givcn in section three ot BS 81t0 : Fart 2 i 1\$BE hut, in all normal casas, it will'be sufficisnt to rertrict rhe spran/effecriv depth ritio. i The eppioprints rati* may be obtsined from tabln 3.10 and mojificd by table Only the reinforcement at the i csnlre of the rpan in the width of slcb under conriderrtion: should bc conridered to influence deflectisn, i i Ths retio for a two-way rpenning slab should be basad on i ihe rhorler sfan cnd its ornount of reinfercement in that direction Crrsk coriirbt.ln general the reinforcdrnent rpacing rules given in ; wilt bs the best'means of controlling flexural cracking ln! stabr, but. in cortain casee. advantegc may bo gain6d by i crlculating crack widths (see \$,cction thrce of BS 8110 : Pcrt 2 : 1gg5). Trblc 3,1? Fornr rnd sror of rhecr rcinforctrnsnt in rolid dthr..i V*loo of v Nlmm', i, v(r. v.(r{(r"+0.4} (r.+9.41(v(0'8vf"" or 5 N/mml Fornr of rhorr rolafordment tq b{ Frovldtd ' ' Ncne roquired hlinimurn links in areae where r) v" Linkl andilt benr-.uf bars in ony sombinrtion fbut tho :pacing between linhs or be;rt-up bar\$ need ngt bo lesg thnn dl.: Arm of rhc,sr ruinforcornent?o irc nro,;rlded : blher e in k s anly.providcd : Ar*)bsr(r,- rr"l/o.8?/ru... i, Whctr* bentqp bars cnly provid*d: A*o ) rs6{v - r'r}/(0.s7fr,(*ccc + sins cotpl} {ceu 3.4,F.7}, NOTE 1. tt is dilficult to bend ond lix rhrcr rlinforccrnent *o ther irs effeetiwnegl eac be asiured in stabg lost ticn 300 mm dcsp. t is therrloro n6f adui*btq!o use \$hesr reiqforcemgnt in ruch rlsbr, N0TE 2. The -eihancemerlr ifi degign rhe.r 3lrengrh cloio ro supp6.t! dei4ribod in 3-4.5,9 ond tr,4.\$.lc rnay alro b* rpplied ro rolirt!lsbr, { t i i B9...L8/_

18 1,-,;:--.:.,'i1'p#+:" ' gsatt0 : Fart 'l : '!SBr.'r Section tlttrta :,'. \$lj0',gmign of columns in flgt rlrh gonsttuctiun i*a* *trout* ue ddsigned in accordi#ceivitfi'tho grodi* ns f 3.8. ;.. SS Golurnne &S,t GcnErtl Perirneter t\$tt. Ttrs frrovisionr oi thit claustr r lltc to colilmnc whogl grfifiltr r*"*p grorg'*atiqnal tjirnenrion doer not,sxcoed lour rimcr itl *r* ii*bncion. Whilc. the gloviyione rctot q p rimtrily lo t ictcn' p* i*t; rcctionr. tha principlcs i'nvoltlod mrv ba appliad lo orhtf E*rm.o opprofritlg'.' t&l.t \$frnsah,'for the purposer sf 3'Sthe following renptolr rpfly.,' -' 'ncl area of concie'rt in g a- n t cro3\$'sectlol column lrrs.. t(ea gf verti-cal reinforc rncnt..' :.' al dgf lection.lt ULS for sach column cglculrted from muction 32..,' ;' ' & width ol a colunrn trlimeneion of cross tectisn purp*ndicultt ta hl h. dapth of tht cr*sl tsetioll met\$utcd in the pllnc undat currnldat*l!ori 16 e{fectiue height of a cclurnn in the grlene o{ trencins conridatec /"* elfeciivc haight in rdtpect of the mrior rxil effective huight in tsspoct of the minor exis :;,;' r.a. rwregs daftecliotr at ULS tpplicd to ei! cglu5nnr O,'t rt o given level t-' Lt j;:fiffi1ilj:i?::',::::11,::'-'r'in cor- ' -' -.- 'i,'. i char treigtrt beiween end iestraints i" height of e calumn measured bottt'ssn centrei of restrsints lill cmallsr initiit eno momoftt duo to dliigri ult:rflatc losds A{r '' [ar06r inirial enrt morvrint clua to dmign ultimats losds Mf initirl design ultimato rnoaront in t colu.mn befsre aliowencri.f or adtlitionct dlsign rnbmtnts ariling out'ofsldnderhe\$s'' : " ':' :'' 1' Mn derieh,rrii#rie m,o.qr,rli,.,?"ylillg,,.il ;,;,,,, ;'.. M: sf fcctive uniriirf {epign Hli,.Orti..lpqlPsll!.qg.q1.=. the x rxir At v 0.";" ri,'*ltngla'1t!nt,;[qu.i;tdq i,,*i1, "-,,,,. f,i ; errcctive uriii.liit,o.illp;o *1,tt6!;.,'fr gii'nni tfeut tht Y axis 1...:.;.::,;. M aa -iddiiigqa! des{gn gtlinrotc.son}gft induced bv. ' ddfl,tgii.g!,.,9r..c,qry:r' ].. 1.r:.;+... rv,.q\$i\$n dltimrt?.?xtft losd a!?:ce{q,fn-. /Vr* :durign sxi*t teqdgsp.ccity af.s'bal*nced ttction; ". for symnctrico[y'rbinforcdd rcqtsngulgr tcctione'. t]'!i:jri:iliv]50'iilisii'hr0.25f"u&d': ' :' J. - ": "r l'ii-. rd,,,. ifflsit.ll,i\$iti cir*rcirv o e gestion when ' iiruiactird id'axial lord only ' n numher of cttlumns rnristing ridefi#ryc s,t s.sise'i) - ievol or storey S Ste of calumns. The slre of r column arid ttrli..-'. position of ihe reiirfdriement in it may be affscted by the requircmefits lor durtbility and fire reeistance. and thsss. shsuld be considsred bolore ihe iietign is commenri:d', Sho.'t en<j s/an der cclumns. f* cclum;i *ov Fu.. ' consiclered as shart when both ths rdtic\$.*//! and l.rl& rro less than l5 {bracad) lnd 10 (unbrnced}' lt sholtld oihsn/ise tre considered as slsndtr' Plsin canuqte columng lf r cclumn hal a ltrge.. enough gection io tsiitt tht ultimote lotds without thc ilii;" of reinforgerhont'.th6.n it r-nsy. bo doeignorl sinilsrly to e ptain concrdtt r{nll (E?e 1.3.4)'. 3'8.1.F Eiaced and unbrscad tclumns' A column nlsv bd consideied biaced in s given planc if leterrl si'ebility to ths structurt as r vrhcle is protridcd by walls or bracing or buttresring designod tc rerict oll latsral forcer in thtt plano' ; lt slrould other'*ita be ccnsidered at unbtaced' rrmnt. lt doe! rofr.tocrlsriiy irniflv thnt th{t f 8ifllorc?rnsill witi bt in conrprcslicn. ' ' 'L9/

19 tb-i". i r-t SsiJtii:;ii!i:ig.i i Eflrlctive height of a cslumn 3"8,1.9.1 Ganaral. Tlrs e{{eetiva height. J., cf e column in : a given plane may be obtai\$ed frcm thg following equitioi.i: o * \$lo equaiisn 30 Values of'f aie glven ifl rabler 3.21.!nrj 3.?? far briced end ufrbraced cslumns rorpectivuly ar a {ur,gtion sf the rnd conditionc of the column; Forcrulaa that may be use,j rc obtain E more rigorous agssssrllcnt ef the effeetive lcn\$th. i{ derired, are given in 2.5 ct 8S 8t l0 : F*rr 2 f 985, t shautd be notcd thst rhe effectiw heighr 9f a eslslmrr in the hvo plan dirsctions may be different. ln tablat 3Jl and 3.22 tire end conditlonc are defined in tcrms of t scelc lrcm to 4..ncrerse in this scale ccrres. poncjr to o decreasc in end fixity. An approprieie value crn bc asiessed from' ,? nd conditionr. The four end con<jitions are Es follewc. lal Condition t. The end of the cclurnn ir connected monollthiqalty to betmr sn either.sida which aro at lctil al deop rr the ovsralldimengion of the column in thc phne conridered. Wherc the column is ccnneetcd to a foundrtian structure. thir should bt of a form spicilicrlly designed to ciirry moment. (bl Candition?, The end.of ths eolumn ir connectcd monollthically td beams or slrbs'bn'iitt:ersiue *tricfr are rhaliower than thc a'ier'bll dimensidn of the cotumn in the plene icnsidered. bl CaindhiaiS. Thi erid of the cciumn is eonnected to rnembors which, while not :pscilically derigned to providc roctraint to rotftion of the colurnn Will, nevor. thrless. provido some nomlnal re\$trflint. ldl''con'ilition {:'The end of the coiumn ii unrestrained against both latersl movement and rotatisn (e.9. the frec end of r csntiteser. column 'in Nn unbrridrj ttrticturel. Tr.blb 3.?l,Vlluu sf p {er broed coluinnt End condirion rt t6t f.t. End condiiion rt bottfm ' ,sq 0,80 0"Bs \$\$ 1.00 Tsbtr 3.21'Vrlgat bf p for unbracad eolurant '.i i Ehd cs-nditlon..r rop i t.' d t End condltion F( hottilr\$ l? ' ' '!,S i,, 1,3. r.5 1,8 1,6 :' t Slenderne*s limits far caluntns. Generally, :he clq.. d.istance. Jn, betv.'een snd re strairris rl-iouicj. not exceeq,l sixt ' 'iimes the minimum thickness of a columrr. 3.8,1.S.S/snrrbrnfss ci urtbnced colrrnrts. li, in eny giveir pliine. one enrj erf an urrbraccd s&iuttiil is urrrestiek.,ed (e.g. a cantilever cclumn!, itr clecr height, /o, rheuld not excged: 'vhere i"= i!9: {6tj6, S' and b'are respecrively the larg*r and srneller ciirnensirrns ai.the column. equetian J'lie considerations of deflection {see 3.8.5i may introduct f urther l!mitations ltloments a\$d fores in colunrnr Cclunns in manolithic fnmes desigtted tc lesrst loterpl forces.. ln.such eases.the nnbments, sheer forces an{ axial forces should be determined in accordance with 3.2.t1 (see olsc 3.S ! Additionat mon at ts inauiee W aefleciirih at utl ' n rlender coluinns idbitionat moinenteindurled by deflee tiofi at U L\$ *airtd'alsir ne tonsicered. An altowince f or them ir inade in the design'requiremenb for clendei columns {iee 3.8.3}. The basgs or othdr memberr eonnehl to the ends of ;irch iolumnr shiuld also be designeci to rcsist these additionsl momentr at ULS if the average valus of l*/fi f or aii ce'lumns at a.prrticular level.is.greater. then 20. Subclause 3.\$.3.9 gives guidance in the'd'eiigir. lor these mbments. ' tri, l" blumns in calumn.and-bedfl ttnstruction, or in. m o no it h i c braeod str.rci u nt, f ra m e s. The axi al f o rqe in. a. colurnn.firav be calculated on th3 assumption thet bearns and slabi transrnining force into it ire iirnpty suppcrted... When a colurnn is axielly loaded or the axiel force dorninetus, as in the ca:e. of columnr:supporting.5yrnrnair{. ea! arrangemetrts of begns, oniy the Cesign uitimate axisl. force need be consicrered in design aparthorn a ndmina! allqvrance for eccentricity. eque! to that rscornmended in rt. :i. 3,82.4 Minimum eecerltlrcity. At no section,ia a column rhoulc the detign monlent be taken ag lsss than that produced b'/ conriclerin\$ tho deiign ultinete axial toac! as. ".lcting 0t a rninirnurn eccentricity, tr.1;6, eual to 0.05 riri the overcil dimension of the column in tlre plane of bshrjii csnsiderbd but nst more thcn 2S mm. Where biaxial bending is ccirsidered, it ii enly necersaiy to en\$urs that the eccentricir. exceeds the minimum ebcut'one axis at a...fig;'.j 3.S.3 Deflactlon l*ctund fiomenb ln rslitl llandur coluffi Design, ln general.! cr\$ss section may trrr designd by th"itrethods glven {or a short colurnrr {see 3.8.4} but it lltu rhtitrt, u{:(irilnll frrn lri ixl lrrhrrlr nl llrrr rult!tiinrlrrl rnonbnt induei,d in the bbiuinn by irt def lection. -L /-

20 i : i Giiir EFc -20- F14 conditionc of ctrlumn lniti;ll rnontcntr iirofi enaiysisl flrirj i tie nal mdft snls ffcca ncy be ' rdiced h pctportiun to the rttio ol lire stiffntss of ltp ttss stiff to ihe stiffr jbint ' Figurs i1;' " i ' 'i',,ss that the design ultirnats axlal laad dom no.t axcesd Ute LS.4 ocrigrr of cclumn rc.tion fcr ljls ' r,dlue c{ ff Eivrin hy: *:*j31{n:1,ffi:,,",';ffi1-filli:tlfflj:[:;",v * ',4r.u*o ftqment and axiaf force, the samc DssirmFltioris si'louf{i be mlde os when analyrlng a beam (see ]. + '.'s.{rcrv.!'io're,'rhir inciudtl tn slloidlnco for anr' g.s.{.{ Shen hrecd columns suilpafting an spprox!- j sq\$aiio'38 t.b.rl.z Oesignchaftsfarsymmtricatly-rcinforcedcs/umns. netaly symmetricel ar,tlngstncnt a( beimt.-fhe decign. Sctign charti for iymmetricelly.reinforced colurirns ars ultirnuta axiol lo*d fcr short coiilmn of thjs typq mey bs g"on in BS 8l l0': Part 3. Thev sre tasad on figures?,1 calcrrlatsd using the fsltcwin0 quetion; rnd 2.2 of this c'odc and'ths assurnfticns \$t S.4.tt.1. ry = g.3\$fc'ude + 0.6?.4rclv equetion 39 f"8.4.3 ftaminaf eccentricity of shaft columns resi*lng cfrmlnts and axial forces. Short columnr usuallyr T*d. TY u be designed for the maximum design mcment aoout the onc critical cxis. '#irere, due to the nsture of rhe structurc. a columri cannst br lubiected to significant ffiementt, it may Lre where {a} ths begms ars dcsigned for uniformly distributrd imporoo loldr. rnd ce not differ by rnort than 151{ :1t,nt,*il.tprns 't:t'sn:-b 2 Nors. Thic includer an oilc,*enca ior'tm' ZL

### 1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

### B y R us se ll E ri c Wr ig ht, DV M. M as te r of S ci en ce I n V et er in ar y Me di ca l Sc ie nc es. A pp ro ve d:

E ff ec ts o f El ec tr ic al ly -S ti mu la te d Si lv er -C oa te d Im pl an ts a nd B ac te ri al C on ta mi na ti on i n a Ca ni ne R ad iu s Fr ac tu re G ap M od el B y R us se ll E ri c Wr ig ht,

### DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

### STEEL PIPE NIPPLE BLACK AND GALVANIZED

Price Sheet CWN-616 Effective June 06, 2016 Supersedes CWN-414 A Member of The Phoenix Forge Group CapProducts LTD. Phone: 519-482-5000 Fax: 519-482-7728 Toll Free: 800-265-5586 www.capproducts.com www.capitolcamco.com

### DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements

### SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

### H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

### i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ\$Æo

### ň Ú Ú Č

Ú Ú ň Ú Ú Č Ú ň Ú Ž Č Ú Ž Ó Č ň Ž ň Ě Ý Ú Č Ú Č .{ +l ; l i.,i.t :i... (),i{ i,'...,.l l!,!. }, ii,)., i.a t-l.- C,..-'H -Ý':: 4,.J: C'É].,-t";g 5; i l'.i:.l) > t{ > P)O,.J 0" 3i an.ý u- ll c O },:, ll

### Reinforced Concrete Design to BS8110 Structural Design 1 Lesson 5

Lesson 5: Deflection in reinforced concrete beams Content 4.1 Introduction 4. Definitions 4..1 Tension 4.. Compression 4.3 Initial sizing 4.3.1 Worked example 4.4 Reinforcement details 4.5 Anchorage at

### Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

### Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

### Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder

### FedEx Ground Rates. Effective January 7, 2013

FedEx Ground Rates Effective January 7, 2013 Introduction FedEx Ground shipping services provide you with dependable, cost-effective, day-definite delivery for packages that don t require the speed of

### 16. Beam-and-Slab Design

ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

### Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

### Module 5 (Lectures 17 to 19) MAT FOUNDATIONS

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Topics 17.1 INTRODUCTION Rectangular Combined Footing: Trapezoidal Combined Footings: Cantilever Footing: Mat foundation: 17.2 COMMON TYPES OF MAT FOUNDATIONS

### «С e n tra l- A s ia n E le c tric - P o w e r C o rp o ra tio n», JS C

J o in t - s t o c k c o m p C E N T R A L - A S IA N E L E C T R IC P O W a n y E R C O R P O R A T IO N I n t e r n a l A u d i t P O L IC Y o f J o in t - S t o c k C o m p a n y C E N T R A L - A S

### Morningstar Document Research

Morningstar Document Research FORM8-K EMC INSURANCE GROUP INC - EMCI Filed: May 11, 2016 (period: May 11, 2016) Report of unscheduled material events or corporate changes. The information contained herein

### Detailing of Reinforcment in Concrete Structures

Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

Enterprise Data Center A c h itec tu re Consorzio Operativo Gruppo MPS Case S t u d y : P r o g et t o D i sast er R ec o v er y Milano, 7 Febbraio 2006 1 Il G r u p p o M P S L a B a n c a M o n t e d

### EM EA. D is trib u te d D e n ia l O f S e rv ic e

EM EA S e c u rity D e p lo y m e n t F o ru m D e n ia l o f S e rv ic e U p d a te P e te r P ro v a rt C o n s u ltin g S E p p ro v a rt@ c is c o.c o m 1 A g e n d a T h re a t U p d a te IO S Es

### Are We There Yet? IPv6 as Related to GDP per Capita Alain Durand, October 26 th 2016

Are We There Yet? as Related to Alain Durand, October 26 th 2016 Quesons for this Study: I. Where are we across the globe with adoption? a. Is deployed uniformly? b. Is there a rich country/poor country

Application Note: Cisco A S A - Ce r t if ica t e T o S S L V P N Con n e ct ion P r of il e Overview: T h i s a p p l i ca ti o n n o te e x p l a i n s h o w to co n f i g u r e th e A S A to a cco m

### Design of cross-girders and slabs in ladder deck bridges

130 Chris R Hendy Head of Bridge Design and Technology Highways & Transportation Atkins Jessica Sandberg Senior Engineer Highways & Transportation Atkins David Iles Steel Construction Institute Design

### Module 8. Reinforced Concrete Slabs. Version 2 CE IIT, Kharagpur

Module 8 Reinforced Concrete Slabs Lesson 18 One-way Slabs Instructional Objectives: At the end of this lesson, the student should be able to: state the names of different types of slabs used in construction,

### Concrete Design to Eurocode 2

Concrete Design to Eurocode 2 Jenny Burridge MA CEng MICE MIStructE Head of Structural Engineering Introduction to the Eurocodes Eurocode Eurocode 1 Eurocode 2 Materials Cover Flexure Shear Deflection

### Appendix : According to IBC 2003, table , the minimum uniformly distributed live loads and minimum concentrated live loads are as follow:

Appendix Dead and Live Loads International Building Code 2003 (IBC) 1607.1: According to IBC 2003, table 1607.1, the minimum uniformly distributed live loads and minimum concentrated live loads are as

### SIMPLE DESIGN LOAD AND SPAN CHARTS FOR CORCON

CORCON Design, Construction and Technical Information Manual SIMPLE DESIGN CHART & SAMPLE CALCULATIONS INDEX DESIGN CONSIDERATIONS SIMPLE DESIGN LOAD AND SPAN CHARTS FOR CORCON SAMPLE CALCULATION BEAM

### I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y and KB rl iak s iol mi a, hme t a ro cp hm a5 a 2k p0r0o 9f i,e ls hv oa nr t ds eu rmv oedye l o nf dae cr

### 1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1.

1. O b l a s t r o z v o j s p o l k a S U U K 1. 1. Z v y š o v á n í k v a l i f i k a c e Š k o l e n í o S t u d e n t s k á u n i e U n i v e r z i t y K a r l o v y ( d á l e j e n S U U K ) z í

### ta tio n a l s c ie n c e b y s u p p o rtin g th e e m e rg in g G rid p ro to c o ls o n W in d o w s a n d

A p p e a rs in th e P ro c e e d in g s o f th e 2 0 0 5 In te rn a tio n a l C o n fe re n c e o n C o m p u ta tio n a l S c ie n c e (IC C S 2 0 0 5 ), E m o ry U n iv e rs ity, A tla n ta, G A, M

### B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation

### The Design of Reinforced Concrete Slabs

EGN-5439 The Design of Tall Buildings Lecture #14 The Design of Reinforced Concrete Slabs Via the Direct Method as per ACI 318-05 L. A. Prieto-Portar - 2008 Reinforced concrete floor systems provide an

W Cisco Kompetanse eek end 2 0 0 8 SMB = Store Mu ll ii gg hh eter! Nina Gullerud ng ulleru@ c is c o. c o m 1 Vår E n t e r p r i s e e r f a r i n g... 2 S m å o g M e llo m s t o r e B e d r i f t e

### Module 8. Reinforced Concrete Slabs. Version 2 CE IIT, Kharagpur

Module 8 Reinforced Concrete Slabs Lesson 19 Two-way Slabs Instructional Objectives: At the end of this lesson, the student should be able to: determine the shear force of two-way slabs subjected to uniformly

### Put the human back in Human Resources.

Put the human back in Human Resources A Co m p l et e Hu m a n Ca p i t a l Ma n a g em en t So l u t i o n t h a t em p o w er s HR p r o f essi o n a l s t o m eet t h ei r co r p o r a t e o b j ect

### SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

### PERIODIC TABLES: I. Directory, II. Traditional, III. Vertical, IV. Toxicity (LD 50 values), V. Native (elemental form)

PERIODIC TABLES: I. Directory, II. Traditional, III. Vertical, IV. Toxicity (LD 50 values), V. Native (elemental form) Site developed by Steve Murov, Professor Emeritus of Chemistry, Modesto Junior College,

### Designing to Eurocode 2. Introduction. Design procedure. Fire resistance. How to design concrete structures using Eurocode 2 3.

How to design concrete structures using Eurocode 2 3. Slabs R M Moss BSc, PhD, CEng, MICE, MIStructE O Brooker BEng, CEng, MICE, MIStructE Introduction The introduction of European standards to UK construction

### Secondary Support Pack. be introduced to some of the different elements within the periodic table;

Secondary Support Pack INTRODUCTION The periodic table of the elements is central to chemistry as we know it today and the study of it is a key part of every student s chemical education. By playing the

### 11/1/2010 3:57 PM 1 of 11

Masonry Wall 6.0 - MASONRY WALL ANALYSIS AND DESIGN ================================================================================ Job ID : Job Description : Designed By : ================================================================================

### The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase

### Future Trends in Airline Pricing, Yield. March 13, 2013

Future Trends in Airline Pricing, Yield Management, &AncillaryFees March 13, 2013 THE OPPORTUNITY IS NOW FOR CORPORATE TRAVEL MANAGEMENT BUT FIRST: YOU HAVE TO KNOCK DOWN BARRIERS! but it won t hurt much!

2015 2025 YRRTC Business Plan 2015 annual update updated 2015 edocs #5677831 mission Our mission is to design and deliver an exceptional rapid transit system attracting, moving and connecting people to

### Electron Configuration Activity

Electron Configuration Activity Purpose To find the relationship between electron configuration and organization of the periodic table. Materials Paper copy of the periodic table colored pencils or markers

### Tim o th y H ig h le y. tjh ig h le c s.v irg in ia.e d u. U n iv e rs ity o f V irg in ia

Ma rg in a l C o s t-b e n e fit A n a ly s is fo r P re d ic tiv e F ile P re fe tc h in g Tim o th y H ig h le y D e p a rtm e n t o f C o m p u te r S c ie n c e U n iv e rs ity o f V irg in ia tjh

### Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

### C e r t ifie d Se c u r e W e b

C r t ifi d S c u r W b Z r t ifizi r t Sic h r h it im W b 1 D l gat s N ic o las M ay n c o u r t, C EO, D r am lab T c h n o lo gi s A G M ar c -A n d r é B c k, C o n su lt an t, D r am lab T c h n

### B a rn e y W a r f. U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8

U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8 T e le c o m m u n ic a t io n s a n d th e C h a n g in g G e o g r a p h ie s o f K n o w le d g e T r a n s m is s io n in th e L a te

### FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

### Distribution of Forces in Lateral Load Resisting Systems

Distribution of Forces in Lateral Load Resisting Systems Part 2. Horizontal Distribution and Torsion IITGN Short Course Gregory MacRae Many slides from 2009 Myanmar Slides of Profs Jain and Rai 1 Reinforced

### B rn m e d s rlig e b e h o v... 3 k o n o m i... 6. S s k e n d e tils k u d o g k o n o m is k frip la d s... 7 F o r ld re b e ta lin g...

V e lf rd s s e k re ta ria te t S a g s n r. 1 4 3 4 1 5 B re v id. 9 9 3 9 7 4 R e f. S O T H D ir. tlf. 4 6 3 1 4 0 0 9 s o fie t@ ro s k ild e.d k G o d k e n d e ls e s k rite rie r fo r p riv a tin

### SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

### Tulsa County Assessor's Monthly Revolving Fund Report

Tulsa County Assessors Monthly Revolving Fund Report Board of County Commissioners: In compliance with the provisions of Title 19 O.S. 684, this report is submitted for the Assessors Revolving Fund. A

### Reinforced Concrete Design SHEAR IN BEAMS

CHAPTER Reinforced Concrete Design Fifth Edition SHEAR IN BEAMS A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part I Concrete Design and Analysis 4a FALL 2002 By Dr.

### FLAT SLAB DESIGN TO BS8110:PART 1:1997

Consulting Company for App'd by FLAT SLAB DESIGN TO Slab geometry Span of slab in x-direction; Span of slab in y-direction; Column dimension in x-direction; Column dimension in y-direction; External column

### 5-58. The two shafts are made of A-36 steel. Each has a diameter of 1 in., and they are supported by bearings at A,

J. J.'- '-'.1J L.d 1V J L...,V./ 5-58. The two shafts are made of A-36 steel. Each has a diameter of 1 in., and they are supported by bearings at A, L and C, which allow free rotation. If the support at

### Design Manual to BS8110

Design Manual to BS8110 February 2010 195 195 195 280 280 195 195 195 195 195 195 280 280 195 195 195 The specialist team at LinkStudPSR Limited have created this comprehensive Design Manual, to assist

First A S E M R e c to rs C o n f e re n c e : A sia E u ro p e H ig h e r E d u c a tio n L e a d e rsh ip D ia l o g u e Fre ie U n iv e rsitä t, B e rl in O c to b e r 2 7-2 9 2 0 0 8 G p A G e e a

### SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST- TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

### Design and Construction of Cantilevered Reinforced Concrete Structures

Buildings Department Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers APP-68 Design and Construction of Cantilevered Reinforced Concrete Structures

### Module 9. Staircases. Version 2 CE IIT, Kharagpur

Module 9 Staircases Lesson 20 Types and Design of Staircases Instructional Objectives: At the end of this lesson, the student should be able to: classify the different types of staircases based on geometrical

### Code of Practice for Structural Use of Concrete 2013

Code of Practice for Structural Use of Concrete 2013 The Government of the Hong Kong Special Administrative Region Published: February 2013 Prepared by: Buildings Department 12/F-18/F Pioneer Centre 750

### Electronic Stability & Periodic Table

Electronic Stability & Periodic Table Things at higher energy are less stable!! All living things are dependent on their ability to acquire energy from unstable things! The compounds in the food you eat

### METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

### MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

### /* ------------------------------------------------------------------------------------

Pr o g r a m v a r e fo r tr a fik k b e r e g n in g e r b a s e r t p å b a s is k u r v e m e to d e n n M a tr ix * x M a tr ix E s ta lp h a B e ta ; n M a tr ix * z M a tr ix ; g e n M a tr ix X

### W h a t is m e tro e th e rn e t

110 tv c h a n n e ls to 10 0 0 0 0 u s e rs U lf V in n e ra s C is c o S y s te m s 2 0 0 2, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d. 1 W h a t is m e tro e th e rn e t O b je c tiv

### PEPERIKSAAN AKHIR TAHUN TINGKATAN MATEMATIK Kertas 2 Dua jam tiga puluh minit

NAMA : TINGKATAN : Matematik Kertas 2 Okt 2006 2 ½ jam SEKTOR SEKOLAH BERASRAMA PENUH BAHAGIAN SEKOLAH KEMENTERIAN PELAJARAN MALAYSIA PEPERIKSAAN AKHIR TAHUN TINGKATAN 4 2006 MATEMATIK Kertas 2 Dua jam

### Erfa rin g fra b y g g in g a v

Erfa rin g fra b y g g in g a v m u ltim e d ia s y s te m e r Eirik M a u s e irik.m a u s @ n r.n o N R o g Im e d ia N o rs k R e g n e s e n tra l fo rs k n in g s in s titu tt in n e n a n v e n d

### CODES FOR PHARMACY ONLINE CLAIMS PROCESSING

S FOR PHARMACY ONLINE CLAIMS PROCESSING The following is a list of error and warning codes that may appear when processing claims on the online system. The error codes are bolded. CODE AA AB AI AR CB CD

### d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o

P o s t a w y s p o і e c z e t s t w a w o b e c o s у b n i e p e і n o s p r a w n y c h z e s z c z e g у l n y m u w z g lb d n i e n i e m o s у b z z e s p o і e m D o w n a T h e a t t i t uodf

### ACE-1/onearm #show service-policy client-vips

M A C E E x a m Basic Load Balancing Using O ne A r m M ode w it h S ou r ce N A T on t h e C isco A p p licat ion C ont r ol E ngine Goal Configure b a s ic l oa d b a l a nc ing (L a y er 3 ) w h ere

### T e s t e xp re s s i o n B o d y o f i f E xi t F i g u re 1 - F l o w c h art o f th e i f s tate m M u l ti S tate m s i n th e i f B o d y : L ik

MQL4 COURSE By Coders guru w w w. f orex -t sd. c om -6- Loops & Decisions Part 2 ---------------------------- We l c o m e t o t h e s ix t h l e s s o n in m y c o u r s e a b o u t M Q L 4. I h o pe

### CHEM 10113, Quiz 7 December 7, 2011

CHEM 10113, Quiz 7 December 7, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

### Present. and. RFA No79/2OO5

IN TE IG OURT OF KARNATAKA IRUIT BEN AT DARWAD Dted this the Q7th Dy of Mch 211 Pesent TE BLE MRJUSTIE KLMANJUNAT nd TE BLE MRJUSTIE NNAGAMOAN DAS BETWEEN: RFA No7/2OO5 Shi Adiveppgoud S/o MllngoudRyngoud,

### Shear Reinforcements in the Reinforced Concrete Beams

American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-02, Issue-10, pp-191-199 www.ajer.org Research Paper Open Access Shear Reinforcements in the Reinforced Concrete

### Formwork for Concrete

UNIVERSITY OF WASHINGTON DEPARTMENT OF CONSTRUCTION MANAGEMENT CM 420 TEMPORARY STRUCTURES Winter Quarter 2007 Professor Kamran M. Nemati Formwork for Concrete Horizontal Formwork Design and Formwork Design

### Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of

### A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.

Design Step 4 Design Step 4.1 DECK SLAB DESIGN In addition to designing the deck for dead and live loads at the strength limit state, the AASHTO-LRFD specifications require checking the deck for vehicular

### Structural Steel Design Project

Job No: Sheet 1 of 1 Rev Job Title: Eccentrically Loaded Bolt Group Worked Example 1 Checked by Date Design Example 1: Design a bolted connection between a bracket 8 mm thick and the flange of an ISHB

### Scholarship Help for Technology Students

i NOVEMBER 2014 Sli Hl f Tl S S i il ili l j i il i v f \$150000 i li VN l f li Pl Tl N f xl i ii f v Pi Oli i N fi f i f vl i v f f li f i v f Viii Sli f vill f flli j: Pl Tl Mi Alli Hl li A Ifi Tl li

### South Salem Stop MBTA Commuter Rail Station Salem, MA

South Salem Stop MBTA Commuter Rail Station Salem, MA Conceptual Design Presentation Public Meeting March 22, 2016 New MBTA Commuter Rail Stop in South Salem Study Area M OF F A TT RD MON R O E GR I S

### Simple design method

method Aim of the design method 2 3 Content of presentation in a fire situation method of reinforced concrete slabs at 20 C Floor slab model Failure modes method of at Extension to fire behaviour Membrane

### 7' RICOCHET SHUFFLEBOARD TABLE

7' RICOCHET SHUFFLEBOARD TABLE ASSEM BLYL INSTRUCTIONS NG1201 THANK Y OU! Th a n k yo u f o r p u r ch a si n g t h i s p r o d u ct. We w o r k a r o u n d t h e cl o ck a n d a r o u n d t h e g l o

### T c k D E GR EN S. R a p p o r t M o d u le Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r BJB 06 013-0009 0 M /V. ja a r.

D a t a b a n k m r in g R a p p o r t M Aa n g e m a a k t o p 19 /09 /2007 o m 09 :29 u u r I d e n t if ic a t ie v a n d e m S e c t o r BJB V o lg n r. 06 013-0009 0 V o o r z ie n in g N ie u w la

### Design of an Industrial Truss

Design of an Industrial Truss Roofing U 2 U 3 Ridge U 4 Sagrod 24 U 1 U 5 L 0 L 1 L 2 L 3 L 4 L 5 L 6 6@20 = 120 Elevation of the Truss Top Cord Bracing Sagrod Purlin at top, Bottom Cord Bracing at bottom

G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1

### Bearing Capacity (Daya Dukung Tanah)

Bearing Capacity (Daya Dukung Tanah) Dr. Ir.H. Erizal, MAgr Definisi Daya dukung yang diizinkan (allowable bearing cap.) tekanan maksimum yang dapat diaplikasikan ke tanah dimana 2 kondisi diatas dipenuhi.

### Topic 3 Periodic Trends

Topic 3 Periodic Trends Chapter 06 Trends on the Periodic Table Chapter 07 Relationships between the elements CHEM 10 T03D01 How are elements arranged Prior to 1735, only 12 elements were known to man

### Prof. Dr. Hamed Hadhoud. Design of Water Tanks: Part (1)

Design of Water Tanks: Part (1) 1 Types of Tanks Elevated Tanks Resting on Soil & Underground Tanks Tank Walls Walls Shallow Medium Deep L/ L/ < & L/ >0.5 /L L L L 3 Shallow Walls L 1 m L/ (for same continuity

### CIS CO S Y S T E M S. G u ille rm o A g u irre, Cis c o Ch ile. 2 0 0 1, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d.

CIS CO S Y S T E M S A c c e s s T e c h n o lo g y T e le c o m /IT Co n n e c tiv ity W o rk s h o p G u ille rm o A g u irre, Cis c o Ch ile g m o.a g u irre @ c is c o.c o m S e s s io n N u m b e

G d y n i a U s ł u g a r e j e s t r a c j i i p o m i a r u c z a s u u c z e s t n i k ó w i m p r e z s p o r t o w y c h G d y s k i e g o O r o d k a S p o r t u i R e k r e a c j i w r o k u 2 0

### MECHANICS OF SOLIDS COMPRESSION MEMBERS TUTORIAL 1 STRUTS. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS COMPRESSION MEMBERS TUTORIAL 1 STRUTS You should judge your progress by completing the self assessment exercises. On completion of this tutorial you should be able to do the following.

### UNIVERSITY OF ILUNOхS LIBRARY AT URBANA-CHAMPA1GN AGR1CULT-"'J?'-

' UNVRSTY F NхS LBRARY AT URBANA-HAMPA1GN AGR1ULT-"'J?'- igitied by the nternet Arhive 2012 ith fndg frm University f llis Urbn-hmpign http://.rhive.rg/detils/illismmeri1982med s 8 h U p m UU t g 5. -

### 5 G R A TINGS ENGINEERING DESIGN MANUAL. MBG Metal Bar Grating METAL BAR GRATING MANUAL MBG 534-12 METAL BAR GRATING NAAMM

METAL BAR NAAMM GRATNG MANUAL MBG 534-12 5 G R A TNG NAAMM MBG 534-12 November 4, 2012 METAL BAR GRATNG ENGNEERNG DEGN MANUAL NAAMM MBG 534-12 November 4, 2012 5 G R A TNG MBG Metal Bar Grating A Division